Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/25702
DC FieldValueLanguage
dc.contributor.authorPetkovski, Pavleen_US
dc.contributor.authorDedinec, Aleksandaren_US
dc.date.accessioned2023-02-13T13:26:03Z-
dc.date.available2023-02-13T13:26:03Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/25702-
dc.description.abstractForecasting the day-ahead electricity prices can be significant for every business involved in the electricity market. In this paper, we compare different machine learning techniques and algorithms using real data from Serbian Power Exchange, weather data from Serbian capital city Belgrade and generation per production type data for Serbian electricity production. Then on this data, we train different machine learning models: Linear Regression, Decision Trees, Support Vector Machines, Random Forest models, Extreme Gradient Boosting models, Deep Learning models. Metric that we used for comparison between models is the coefficient of determination.en_US
dc.subjectelectricity, price forecasting, machine learning, deep learningen_US
dc.titleForecasting the prices of the day-ahead electricity markets using real data from SEEPEXen_US
dc.typeProceedingsen_US
dc.relation.conferenceThe 19th International Conference on Informatics and Information Technologies – CIIT 2022en_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers
Files in This Item:
File Опис SizeFormat 
CIIT_2022_26.pdf383.76 kBAdobe PDFView/Open
Прикажи едноставен запис

Page view(s)

54
checked on 4.5.2025

Download(s)

29
checked on 4.5.2025

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.