Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис:
http://hdl.handle.net/20.500.12188/25702| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Petkovski, Pavle | en_US |
| dc.contributor.author | Dedinec, Aleksandar | en_US |
| dc.date.accessioned | 2023-02-13T13:26:03Z | - |
| dc.date.available | 2023-02-13T13:26:03Z | - |
| dc.date.issued | 2022 | - |
| dc.identifier.uri | http://hdl.handle.net/20.500.12188/25702 | - |
| dc.description.abstract | Forecasting the day-ahead electricity prices can be significant for every business involved in the electricity market. In this paper, we compare different machine learning techniques and algorithms using real data from Serbian Power Exchange, weather data from Serbian capital city Belgrade and generation per production type data for Serbian electricity production. Then on this data, we train different machine learning models: Linear Regression, Decision Trees, Support Vector Machines, Random Forest models, Extreme Gradient Boosting models, Deep Learning models. Metric that we used for comparison between models is the coefficient of determination. | en_US |
| dc.subject | electricity, price forecasting, machine learning, deep learning | en_US |
| dc.title | Forecasting the prices of the day-ahead electricity markets using real data from SEEPEX | en_US |
| dc.type | Proceedings | en_US |
| dc.relation.conference | The 19th International Conference on Informatics and Information Technologies – CIIT 2022 | en_US |
| item.grantfulltext | open | - |
| item.fulltext | With Fulltext | - |
| Appears in Collections: | Faculty of Computer Science and Engineering: Conference papers | |
Files in This Item:
| File | Опис | Size | Format | |
|---|---|---|---|---|
| CIIT_2022_26.pdf | 383.76 kB | Adobe PDF | View/Open |
Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.