Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/25104
DC FieldValueLanguage
dc.contributor.authorGjorshoska, Ivanaen_US
dc.contributor.authorEftimov, Tomeen_US
dc.contributor.authorTrajanov, Dimitaren_US
dc.date.accessioned2022-12-22T12:57:23Z-
dc.date.available2022-12-22T12:57:23Z-
dc.date.issued2022-05-16-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/25104-
dc.description.abstractMissing data is a common problem in a wide range of fields that can arise as a result of different reasons: lack of analysis, mishandling samples, measurement error, etc. The area of nutrition and food composition is no exception to the problem of missing values. Missing data in food composition databases (FCDB) significantly limits their usage. Commonly this problem is resolved by calculating mean or median from available data in the same FCDB or borrowing values from other FCDBs, however, this method produces notable errors. This paper focuses on missing value imputation using autoencoders, a deep learning algorithm that has the ability to approximate values by learning a higher-level representation of its input. The data used was from the FCDBs collected by the USDA FoodData Central. We compared the autoencoder imputation method with the commonly used approaches fill-in-with-mean and fill-in-with-median, and the results show that the autoencoder method for imputation provides superior results.en_US
dc.publisherAcademic Pressen_US
dc.relation.ispartofJournal of Food Composition and Analysisen_US
dc.subjectFood composition data Food composition databases Nutrient values Missing data Missing value imputation Autoencoders Deep learningen_US
dc.titleMissing value imputation in Food Composition Data with Denoising Autoencodersen_US
dc.typeArticleen_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Journal Articles
Files in This Item:
File Опис SizeFormat 
1-s2.0-S0889157522002563-main.pdf4.84 MBAdobe PDFView/Open
Прикажи едноставен запис

Page view(s)

74
checked on 4.5.2025

Download(s)

14
checked on 4.5.2025

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.