Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/23864
DC FieldValueLanguage
dc.contributor.authorGjorgjevikj, Dejanen_US
dc.contributor.authorChakmakov, Dushanen_US
dc.date.accessioned2022-10-27T12:15:20Z-
dc.date.available2022-10-27T12:15:20Z-
dc.date.issued2003-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/23864-
dc.description.abstractIn this paper, various cooperation schemes of SVM (Support Vector Machine) classifiers applied on two feature sets for handwritten digit recognition are examined. We start with a feature set composed of structural and statistical features and corresponding SVM classifier applied on the complete feature set. Later, we investigate the various partitions of the feature set as well as the advantages and weaknesses of various decision fusion schemes applied on SVM classifiers designed for partitioned feature sets. The obtained results show that it is difficult to exceed the recognition rate of a single SVM classifier applied straightforwardly on the complete feature set. Additionally, we show that the partitioning of the feature set according to feature nature (structural and statistical features) is not always the best way for designing classifier cooperation schemes. These results impose need of special feature selection procedures for optimal partitioning of the feature set for classifier cooperation schemes.en_US
dc.subjectclassification, committee, features, rejection, reliabilityen_US
dc.titleCooperation of support vector machines for handwritten digit recognition trough partitioning of the feature seten_US
dc.typeProceedingsen_US
dc.relation.conferenceETAI 2003. 6th National Conference With International Participation ETAIen_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers
Files in This Item:
File Опис SizeFormat 
ETAI2003-I4-2.pdf511.82 kBAdobe PDFView/Open
Прикажи едноставен запис

Page view(s)

68
checked on 3.5.2025

Download(s)

8
checked on 3.5.2025

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.