Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/2382
DC FieldValueLanguage
dc.contributor.authorLazarevska, Marijanaen_US
dc.contributor.authorCvetkovska, Merien_US
dc.contributor.authorTrombeva Gavriloska, Anaen_US
dc.contributor.authorKnezevic Milosen_US
dc.contributor.authorMilanovic Milivojeen_US
dc.date.accessioned2019-07-01T12:04:25Z-
dc.date.available2019-07-01T12:04:25Z-
dc.date.issued2016-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/2382-
dc.description.abstractThe use of the neural-network-based approach, as an unconventional approach for solving complex civil engineering problems, has a huge significance in the modernization of the construction design processes. Worldwide studies show that artificial neural networks can be successfully used as prognostic model in different engineering fields, especially in those cases where some prior (numerical or experimental) analyses were already made. This paper presents some of the positive aspects of their application for determination the fire resistance of centrically loaded steel-concrete composite columns exposed to fire from all sides. The analyses were performed for three different types of composite columns: totally encased, partially encased and hollow steel sections filled with concrete. The influence of the shape, the cross sectional dimensions and the intensity of the axial force to the fire resistance of centrically loaded composite columns were analysed using the program FIRE. The results of the performed numerical analyses were used as input parameters for training the neural network model which is capable for predicting the fire resistance of centrically loaded composite columns.en_US
dc.language.isoenen_US
dc.relation.ispartofTechnical gazetteen_US
dc.subjectcivil engineering; composite columns; fire resistance; neural networken_US
dc.titleNEURAL-NETWORK-BASED APPROACH FOR PREDICTION OF THE FIRE RESISTANCE OF CENTRICALLY LOADED COMPOSITE COLUMNSen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.17559/TV-2015022321565-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.deptFaculty of Civil Engineering-
crisitem.author.deptFaculty of Architecture-
crisitem.author.deptFaculty of Civil Engineering-
Appears in Collections:Faculty of Civil Engineering: Journal Articles
Files in This Item:
File Опис SizeFormat 
Technical gazzete.pdf1.69 MBAdobe PDFThumbnail
View/Open
Прикажи едноставен запис

Page view(s)

218
checked on 19.8.2025

Download(s)

36
checked on 19.8.2025

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.