Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/23144
DC FieldValueLanguage
dc.contributor.authorTrojacanec, Katarinaen_US
dc.contributor.authorMadjarov, Gjorgjien_US
dc.contributor.authorGjorgjevikj, Dejanen_US
dc.contributor.authorLoshkovska, Suzanaen_US
dc.date.accessioned2022-09-28T07:45:04Z-
dc.date.available2022-09-28T07:45:04Z-
dc.date.issued2010-06-21-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/23144-
dc.description.abstractThe aim of the paper is to compare classification error of the classifiers applied to magnetic resonance images for each descriptor used for feature extraction. We compared several Support Vector Machine (SVM) techniques, neural networks and k nearest neighbor classifier for classification of Magnetic Resonance Images (MRIs). Different descriptors are applied to provide feature extraction from the images. The dataset used for classification contains magnetic resonance images classified in 9 classes.en_US
dc.publisherIEEEen_US
dc.subjectClassification, Support Vector Machines (SVMs), Magnetic Resonance Images (MRIs), neural networksen_US
dc.titleClassification of magnetic resonance imagesen_US
dc.typeProceedingsen_US
dc.relation.conferenceProceedings of the ITI 2010, 32nd International Conference on Information Technology Interfacesen_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers
Files in This Item:
File Опис SizeFormat 
10.1.1.404.744.pdf126.29 kBAdobe PDFView/Open
Прикажи едноставен запис

Page view(s)

48
checked on 3.5.2025

Download(s)

7
checked on 3.5.2025

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.