Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/20769
DC FieldValueLanguage
dc.contributor.authorZdravevski, Eftimen_US
dc.contributor.authorLameski, Petreen_US
dc.contributor.authorTrajkovikj, Vladimiren_US
dc.contributor.authorKulakov, Andreaen_US
dc.contributor.authorChorbev, Ivanen_US
dc.contributor.authorGoleva, Rossitzaen_US
dc.contributor.authorPombo, Nunoen_US
dc.contributor.authorGarcia, Nunoen_US
dc.date.accessioned2022-07-14T09:17:12Z-
dc.date.available2022-07-14T09:17:12Z-
dc.date.issued2017-03-21-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/20769-
dc.description.abstractAmbient-assisted living (AAL) is promising to become a supplement of the current care models, providing enhanced living experience to people within context-aware homes and smart environments. Activity recognition based on sensory data in AAL systems is an important task because 1) it can be used for estimation of levels of physical activity, 2) it can lead to detecting changes of daily patterns that may indicate an emerging medical condition, or 3) it can be used for detection of accidents and emergencies. To be accepted, AAL systems must be affordable while providing reliable performance. These two factors hugely depend on optimizing the number of utilized sensors and extracting robust features from them. This paper proposes a generic feature engineering method for selecting robust features from a variety of sensors, which can be used for generating reliable classification models. From the originally recorded time series and some newly generated time series [i.e., magnitudes, first derivatives, delta series, and fast Fourier transformation (FFT)-based series], a variety of time and frequency domain features are extracted. Then, using two-phase feature selection, the number of generated features is greatly reduced. Finally, different classification models are trained and evaluated on an independent test set. The proposed method was evaluated on five publicly available data sets, and on all of them, it yielded better accuracy than when using hand-tailored features. The benefits of the proposed systematic feature engineering method are quickly discovering good feature sets for any given task than manually finding ones suitable for a particular task, selecting a small feature set that outperforms manually determined features in both execution time and accuracy, and identification of relevant sensor types and body locations automatically. Ultimately, the proposed method could reduce the cost of AAL systems by facilitating execution of algorithms on devices with limited resources and by using as few sensors as possible.en_US
dc.publisherIEEEen_US
dc.relation.ispartofIeee Accessen_US
dc.subjectFeature extraction, time series analysis, ambient intelligence, wearable sensors, sensor fusion, pattern recognition, data mining, data preprocessing, body sensor networksen_US
dc.titleImproving activity recognition accuracy in ambient-assisted living systems by automated feature engineeringen_US
dc.typeArticleen_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Journal Articles
Show simple item record

Page view(s)

33
checked on May 13, 2024

Download(s)

11
checked on May 13, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.