Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/20054
DC FieldValueLanguage
dc.contributor.authorGievska, Sonjaen_US
dc.contributor.authorStevanoski, Bozhidaren_US
dc.date.accessioned2022-06-30T07:58:34Z-
dc.date.available2022-06-30T07:58:34Z-
dc.date.issued2019-06-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/20054-
dc.description.abstractThis paper reports an experiment carried out to investigate the relevance of several syntactic, stylistic and pragmatic features on the task of distinguishing between mainstream and partisan news articles. The results of the evaluation of different feature sets and the extent to which various feature categories could affect the performance metrics are discussed and compared. Among different combinations of features and classifiers, Random Forest classifier using vector representations of the headline and the text of the report, with the inclusion of 8 readability scores and few stylistic features yielded best result, ranking our team at the 9 th place at the SemEval 2019 Hyperpartisan News Detection challenge.en_US
dc.titleTeam Ned Leeds at SemEval-2019 Task 4: Exploring Language Indicators of Hyperpartisan Reportingen_US
dc.typeProceeding articleen_US
dc.relation.conferenceProceedings of the 13th International Workshop on Semantic Evaluationen_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers
Files in This Item:
File Опис SizeFormat 
S19-2179.pdf195.02 kBAdobe PDFView/Open
Прикажи едноставен запис

Page view(s)

48
checked on 9.11.2024

Download(s)

6
checked on 9.11.2024

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.