Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис:
http://hdl.handle.net/20.500.12188/1966
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Janeva, Biljana | en_US |
dc.contributor.author | Miovska, Valentina | en_US |
dc.contributor.author | Celakoska-Jordanova, Vesna | en_US |
dc.date.accessioned | 2019-04-19T05:37:40Z | - |
dc.date.available | 2019-04-19T05:37:40Z | - |
dc.date.issued | 2003 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12188/1966 | - |
dc.description.abstract | Using the notion of vector valued semigroups, i.e. (m+k,m)-semigroups, a special class of n-groupoids , named m|k-semigroups, is introduced and some examples of m|k semigroups are given. It is shown that the general associative law (GAL) for m|k-semigroups holds, and someand some consequences of GAL are obtained.A description of the universal semigroup of an m|k-semigroup is given. The notion of m|k-group is also introduced and some properties are shown. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Union of Mathematicians of Macedonia | en_US |
dc.relation.ispartof | Proceedings of the II Congress of Math. and Inf. of Macedonia, Ohrid 2000 | en_US |
dc.subject | (n,m)-operation, (n,m)-semigroup, n-groupoid, universal semigroup | en_US |
dc.title | On a class of n-groupoids | en_US |
dc.type | Article | en_US |
dc.relation.conference | II Congress of Math. and Inf. of Macedonia, Ohrid 2000 | en_US |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
crisitem.author.dept | Faculty of Natural Sciences and Mathematics | - |
Appears in Collections: | Faculty of Natural Sciences and Mathematics: Conference papers |
Files in This Item:
File | Опис | Size | Format | |
---|---|---|---|---|
On a class of n-groupoids.pdf | 6.67 MB | Adobe PDF | ![]() View/Open |
Page view(s)
441
Last Week
13
13
Last month
6
6
checked on 16.9.2025
Download(s)
35
checked on 16.9.2025
Google ScholarTM
Проверете
Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.