Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/1789
Title: Hankel determinant for a class of analytic functions
Authors: Milutin Obradovic
Nikola Tuneski
Keywords: Mathematics - Complex Variables
Mathematics - Complex Variables
Issue Date: 19-Mar-2019
Abstract: Let $f$ be analutic in the unit disk $\mathbb D$ and normalized so that $f(z)=z+a_2z^2+a_3z^3+\cdots$. In this paper we give sharp bound of Hankel determinant of the second order for the class of analytic unctions satisfying \[ \left|\arg \left[\left(\frac{z}{f(z)}\right)^{1+\alpha}f'(z) \right] \right|<\gamma\frac{\pi}{2} \quad\quad (z\in\mathbb D),\] for $0<\alpha<1$ and $0<\gamma\leq1$.
URI: http://hdl.handle.net/20.500.12188/1789
Appears in Collections:Faculty of Mechanical Engineering: Journal Articles

Show full item record

Page view(s)

11
checked on Sep 19, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.