Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.12188/17765| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Vesna Andova | en_US |
| dc.contributor.author | František Kardoš | en_US |
| dc.contributor.author | Riste Škrekovski | en_US |
| dc.date.accessioned | 2022-05-27T10:35:23Z | - |
| dc.date.available | 2022-05-27T10:35:23Z | - |
| dc.date.issued | 2014-05-09 | - |
| dc.identifier.uri | http://hdl.handle.net/20.500.12188/17765 | - |
| dc.description.abstract | The saturation number of a graph $G$ is the cardinality of any smallest maximal matching of $G$, and it is denoted by $s(G)$. Fullerene graphs are cubic planar graphs with exactly twelve 5-faces; all the other faces are hexagons. They are used to capture the structure of carbon molecules. Here we show that the saturation number of fullerenes on $n$ vertices is essentially $n/3$. | en_US |
| dc.language.iso | en | en_US |
| dc.relation.ispartof | MATCH Commun. Math. Comput. Chem | en_US |
| dc.relation.ispartofseries | MATCH Commun. Math. Comput. Chem;73 | - |
| dc.subject | Mathematics - Combinatorics | en_US |
| dc.subject | Mathematics - Combinatorics | en_US |
| dc.title | Sandwiching saturation number of fullerene graphs | en_US |
| dc.type | Article | en_US |
| item.fulltext | No Fulltext | - |
| item.grantfulltext | none | - |
| Appears in Collections: | Faculty of Electrical Engineering and Information Technologies: Journal Articles | |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.