Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/17765
DC FieldValueLanguage
dc.contributor.authorVesna Andovaen_US
dc.contributor.authorFrantišek Kardošen_US
dc.contributor.authorRiste Škrekovskien_US
dc.date.accessioned2022-05-27T10:35:23Z-
dc.date.available2022-05-27T10:35:23Z-
dc.date.issued2014-05-09-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/17765-
dc.description.abstractThe saturation number of a graph $G$ is the cardinality of any smallest maximal matching of $G$, and it is denoted by $s(G)$. Fullerene graphs are cubic planar graphs with exactly twelve 5-faces; all the other faces are hexagons. They are used to capture the structure of carbon molecules. Here we show that the saturation number of fullerenes on $n$ vertices is essentially $n/3$.en_US
dc.language.isoenen_US
dc.relation.ispartofMATCH Commun. Math. Comput. Chemen_US
dc.relation.ispartofseriesMATCH Commun. Math. Comput. Chem;73-
dc.subjectMathematics - Combinatoricsen_US
dc.subjectMathematics - Combinatoricsen_US
dc.titleSandwiching saturation number of fullerene graphsen_US
dc.typeArticleen_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:Faculty of Electrical Engineering and Information Technologies: Journal Articles
Show simple item record

Page view(s)

48
Last Week
0
Last month
0
checked on May 3, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.