Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/17153
DC FieldValueLanguage
dc.contributor.authorMadjarov, Gjorgjien_US
dc.contributor.authorGJorgjevikj, Dejanen_US
dc.contributor.authorDžeroski, Sašoen_US
dc.date.accessioned2022-03-29T12:25:31Z-
dc.date.available2022-03-29T12:25:31Z-
dc.date.issued2011-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/17153-
dc.description.abstractA common approach for solving multi-label classification problems using problem-transformation methods and dichotomizing classifiers is the pairwise decomposition strategy. One of the problems with this approach is the need for querying a quadratic number of binary classifiers for making a prediction that can be quite time consuming, especially in classification problems with large number of labels. To tackle this problem we propose a Dual Layer Voting Method (DLVM) for efficient pair-wise multiclass voting to the multi-label setting, which is related to the calibrated label ranking method. Five different real-world datasets (enron, tmc2007, genbase, mediamill and corel5k) were used to evaluate the performance of the DLVM. The performance of this voting method was compared with the majority voting strategy used by the calibrated label ranking method and the quick weighted voting algorithm (QWeighted) for pair-wise multi-label classification. The results from the experiments suggest that the DLVM significantly outperforms the concurrent algorithms in term of testing speed while keeping comparable or offering better prediction performance.en_US
dc.language.isoenen_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.titleDual Layer Voting Method for Efficient Multi-label Classificationen_US
dc.typeBook chapteren_US
dc.relation.conferencePattern Recognition and Image Analysisen_US
dc.identifier.doi10.1007/978-3-642-21257-4_29-
dc.identifier.urlhttp://link.springer.com/content/pdf/10.1007/978-3-642-21257-4_29-
dc.identifier.fpage232-
dc.identifier.lpage239-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers
Прикажи едноставен запис

Page view(s)

61
Last Week
1
Last month
3
checked on 3.5.2025

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.