Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/16686
DC FieldValueLanguage
dc.contributor.authorCOVIDSurg Collaborativeen_US
dc.contributor.authorT. Risteskien_US
dc.contributor.authorV. Cvetanovska Naunovaen_US
dc.contributor.authorL. Jovcheskien_US
dc.contributor.authorE. Lazovaen_US
dc.date.accessioned2022-02-23T09:46:35Z-
dc.date.available2022-02-23T09:46:35Z-
dc.date.issued2021-11-11-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/16686-
dc.description.abstractSince the beginning of the COVID-19 pandemic tens of millions of operations have been cancelled1 as a result of excessive postoperative pulmonary complications (51.2 per cent) and mortality rates (23.8 per cent) in patients with perioperative SARS-CoV-2 infection2 . There is an urgent need to restart surgery safely in order to minimize the impact of untreated non-communicable disease. As rates of SARS-CoV-2 infection in elective surgery patients range from 1–9 per cent3–8 , vaccination is expected to take years to implement globally9 and preoperative screening is likely to lead to increasing numbers of SARS-CoV-2-positive patients, perioperative SARS-CoV-2 infection will remain a challenge for the foreseeable future. To inform consent and shared decision-making, a robust, globally applicable score is needed to predict individualized mortality risk for patients with perioperative SARS-CoV-2 infection. The authors aimed to develop and validate a machine learningbased risk score to predict postoperative mortality risk in patients with perioperative SARS-CoV-2 infection.en_US
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.relation.ispartofBritish Journal of Surgeryen_US
dc.relation.ispartofseriesVolume 108;Pages 1274–1292-
dc.titleMachine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality scoreen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1093/bjs/znab183-
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.deptFaculty of Medicine-
Appears in Collections:Faculty of Medicine: Journal Articles
Files in This Item:
File Опис SizeFormat 
znab183.pdf487.51 kBAdobe PDFView/Open
Прикажи едноставен запис

Page view(s)

107
checked on 26.11.2025

Download(s)

73
checked on 26.11.2025

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.