
Does the Performance Scale the Same as the Cost in the Cloud

Monika Simjanoska, Goran Velkoski, Sasko Ristov and Marjan Gusev
Ss. Cyril and Methodius University, Skopje, Macedonia

Faculty of Information Sciences and Computer Engineering
E-mail: m.simjanoska@gmail.com, velkoski.goran@gmail.com

sashko.ristov@finki.ukim.mk, marjan.gushev@finki.ukim.mk

Abstract. Cloud computing is a paradigm that of-
fers on-demand scalable resources with the "pay-per-
usage" model. Cloud service providers’ price rises
linearly as the resources scale. However, the main
challenge for the cloud customers is "Does the per-
formance scale as the price for the rented resources
in the cloud"? Also, how does the performance scales
for different server load? In this paper we analyze the
performance and the cost of a web service that uti-
lize both memory and CPU varying the server load
with different message size and number of concurrent
messages in order to determine the real cost of rented
CPU resources. The results show that the web ser-
vice’s cost rises linearly with the resources, i.e. the
lowest cost is determined while hosted on one CPU.

Keywords. Cloud Computing, Web Services,

Performance, Resources, Cost

1. Introduction

Cloud Computing is a model that enables ubiq-

uitous, convenient, on demand network access

to a shared pool of configurable computing re-

sources that can be rapidly provisioned and re-

leased with minimal management effort or ser-

vice provider interaction [1]. Cloud computing

as a new type of infinitely scalable computing,

offers a pay-per-usage payment which also scales

to the amount of rented resources. This usage-

based pricing model offers several advantages,

including reduced capital expense, a low barrier

to entry, and the ability to scale up as demand

requires, as well as to support brief surges in ca-

pacity [2]. Cloud service providers (CSPs) guar-

antee the availability of the rented resources to

the customers by defining Service Level Agree-

ments (SLAs). However, a guarantee of scal-

able and sustainable performance is missing in

the SLAs [3]. Therefore, the problem of scalable

performance is a very challenging field of study

and is also beneficial for both the customers and

the CSPs. In this paper we perform a research to

find the trade-off between the customer’s mone-

tary costs for resources and the achieved perfor-

mance.

Most of the related studies consider the CSPs’

benefits, whereas the customer’s expenses and

privileges are not fully covered in the literature.

In our research, we assume that the performance

linearly depends on the amount of acquired re-

sources, and therefore we follow the CSPs’ rent-

ing model presented in Table 1 which informs of

the current offers for renting the following virtual

machine (VM) instances (USD per rented hour):

Azure [4], Google [5] and Amazon [6].

Table 1: VM instance types and price simulation

Type 1 VM 2 VMs 4 VMs 8 VMs

Windows Azure 0,08 0,16 0,32 0,64

Google Compute 0,151 0,302 0,604 1,208

Amazon EC2 0,065 0,13 0,26 0,52

Scaling factor 1 2 4 8

In order to simulate realistic occasions of

renting different amount of resources, we pre-

pared the cloud testing environments following

the offers presented in Table 1. Each cloud envi-

ronment hosts the Sort web service which sorts

the concatenation of two input strings.

We focus our research into two directions: 1)

how does the performance scale if the resources

are scaled for the same server load; 2) is there

a region of server load where maximum perfor-

mance is achieved paying the same price.

The rest of the paper is organized as follows.

In Section 2 we present a brief review of the re-

lated work. The methodology is defined in Sec-

tion 3 and hence it is used in Section 4 to per-

form the testing. We compare the results for the

Sort web service with memory demanding only

web service in Section 5. Eventually, we derive

doi:10.2498/iti.2013.0570

83�
Proceedings of the ITI 2013 35th Int. Conf. on Information Technology Interfaces, June 24-27, 2013, Cavtat, Croatia 

�



conclusions over the results and we present our

ideas for a future research extension in the final

Section 6.

2. Related Work

In this section we present some of the literature

we found to be closely related.

Most of the literature that examine cloud’s

computing issues take into account CSPs costs

for offering the cloud computing solution. Either

they are investigating the influence of the cloud’s

energy consumption [7, 8, 9, 10], or they are dis-

cussing other issues and challenges as automated

service provisioning, virtual machine migration,

server consolidation, traffic management, data

security, charging model, etc. [11, 12].

We are interested in the customers’ benefits

of the on-demand resource provisioning and the

pay-per-usage pricing model. Thereto, we aim to

investigate if there is a case when the customer

can achieve maximum performance with mini-

mal costs. Similar research of this kind is pre-

sented by De Assuncao et al. [13], where the

authors present several scheduling strategies for

balancing between performance and usage cost,

and how much they improve the requests’ re-

sponse times. Andrzejak et al. in [14] formu-

lated a probabilistic model that enables a user to

optimize monetary costs, performance and reli-

ability, given the user’s SLA constraints as re-

source availability and deadline for job comple-

tion. Other authors developed a service that is

able to perform the cost determination for sci-

entific applications in cloud computing environ-

ments [15].

Simjanoska et al. in [16], performed cost

vs performance basic research using only the

Concat memory demanding web service. The

results showed that Concat web service pro-

vides the lowest cost when hosted on two CPUs,

which disproves the hypothesis of proportional-

ity between the cost and the amount of rented re-

sources. The results intrigued us to go deeper

into the problem and widen the research in-

troducing the Sort web service, which is both

memory demanding and computation intensive.

Considering the performance issues, related re-

searches were performed in [17, 18], where the

authors used various web services in different

cloud environments.

3. The Methodology

In this section we present the methodology

used for testing in order to achieve reliable re-

sults.

3.1. Testing Environment

We used client-server architecture as a test-

ing environment deployed in the open source

cloud platform OpenStack [19] using KVM hy-

pervisor to instantiate VM instances. The client

and server node are installed with Linux Ubuntu

Server 12.04 operating system. Hardware com-

puting resources consist of Intel(R) Xeon(R)

CPU X5647 @ 2.93GHz with 4 cores and 8GB

RAM. The virtual machine (VM) instances con-

sist of Linux Ubuntu Server 12.04 operating sys-

tem and Apache Tomcat 6 as the application

server. To minimize the network latency we

placed the client and the VMs in the same LAN

segment [20].

3.2. Environment Configuration

In order to simulate various number of pro-

vided resources (CPU cores), we defined three

different cloud environments:

• Test Case 1: VM instance with 1 CPU;

• Test Case 2: VM instance with 2 CPUs;

• Test Case 4: VM instance with 4 CPUs.

Each VM hosts the Sort web service.

3.3. Testing Procedure

SoapUI [21] generates different server load

with N messages, each with size of M bytes,

using variance 0.5. This means that the number

of threads will vary by N/2, i.e. the number of

threads will increase to 3 ·N/2, then decrease to

N/2, and finally end with N within 60 seconds,

i.e. the end of the test. The range of parameters

M andN is selected such that web servers in VM

instances work in normal mode without replying

error messages. The web service is loaded with

N = 12; 100; 500; 752; 1000; 1252; 1500; 1752

and 2000 requests per second for each message



size M = 0; 1; 2; 4; 5 and 6. In order to simu-

late different connections per core we divide the

N concurrent messages in four groups of N/4
messages each.

3.4. Performance and Cost Measurements

Wemeasure the server’s average response time

T (n) for each parameterM andN in order to ex-

press the cloud’s performance, where n is the to-

tal number of processors used. Then we calculate

the cost C(n) as defined in (1).

C(n) = T (n) ∗ n (1)

We research if the performance is propor-

tional to the number of rented resources, and con-

sequently, if the web service’ total cost C(n) is

the real cost of rented CPU resources. For this

purpose we introduce and calculate Relative Cost
of the scaling, expressed in (2), (3) and (4), as ra-

tio of test cases with VMs 2 and 1 CPU cores;

VMs 4 and 1 CPU cores; and VMs with 4 and 2

CPU cores, correspondingly.

R21 =
C(2)

C(1)
(2)

R41 =
C(4)

C(1)
(3)

R42 =
C(4)

C(2)
(4)

An ideal expectation will be the proportional

scaling, i.e. when R21 = 2 and R41 = 4.
Any deviation from these expectations will lead

to new conclusions in this research.

4. The Results of the Experiments

In this section we present the results of the

experiments for each cloud environment distinc-

tively.

4.1. Analysis of Response Time

Sort web service has been hosted in VM in-

stances with 1, 2 and 4 CPU cores.

Figure 1: Response time T (1)

4.1.1. Test Case 1 - 1 Core

Fig. 1 depicts the results for the response time

T (1), i.e. VM instance with 1 CPU core. Since

the number of cores is 1, T (1) is equal to C(1).
The response time (cost) proportionally increases

with the load, and it depends more on the mes-

sage size M than the number of concurrent mes-

sages N . This can be explained by the fact that

Sort is computation intensive and spends more

CPU time when processing large messages. For

a simplified presentation we denote the points in

the format (M,N), whereM andN refer to both

the parameters we previously defined. Thus, the

minimum value of 0.003s is in the point (0, 100),
and the maximum value of 12.56s is in the point

(6, 1500). Considering the fact there is a lit-

tle variability in the response time for the val-

ues of the parameter N , we find the minimum

and maximum points to be within the limits of

the expected. Unexpected peaks are detected

in (5, 750) and (6, 750). The average value is

T (1) = 3.75s.

4.1.2. Test Case 2 - 2 Cores

The results for T (2) are presented in Figure 2.

The maximum value detected in this case is 8.7s,
again at the point (6, 1500), and the minimum

value is 0.002s at (0, 12). Considering the aver-

age value of 2.2s, we assume that the T (2) has

decreased 1.7 times in comparison to T (1). Oth-

erwise, it also proportionally increases with the

load, more depending on M , than on the param-

eter N .



Figure 2: Response time T (2)

4.1.3. Test Case 3 - 4 Cores

Figure 3 presents the response time T (4) re-

sults. The minimum value of 3.02s at (0, 12)

Figure 3: Response time T (4)

disproves the scalability property of response

time decrease as the number of cores used in-

creases. However, this phenomenon occurs only

for M = 0KB. The maximum value of 6.04s
is at the point (6, 1750), and the average value

is 1, 64s which means that T (4) decreased 2.3
times compared to T (1), and 1.35 times com-

pared to T (2).

4.2. Cost Analysis

Using the values for response time in (1) we

calculate the customer’s cost for rented resources

and realize the most sufficient trade-off between

the cost and the gained performance.

Considering the average response time de-

crease in Section 4.1, we concluded that scaling

up the resources n times does not provide equal

performance scale. Hereupon, we aim to inves-

tigate if the cost for resources is nearly equal to

the performance gain, precisely, if the customers

pay as much as the gained performance.

To compare the scaling with factor 2, we an-

alyze the results for relative cost R21 depicted in

Figure 4.

Figure 4: Relative cost R21

As a cost threshold we used the average per-

formance decrease of 1.7, i.e. if the cost tran-

scends this value, a customer is considered to pay

more than he gets. We observe that the cost is

within the limits except for the load with small

values ofM andN . We explain this with the fact

that web server needs more time to schedule the

small number of small tasks instead of executing

them.

The relative cost R41 is depicted in Figure 5.

Figure 5: Relative cost R41

The results show that the customer pays more

than he gets when one or both parameters M or

N are small. For greater load the customer will

obtain the performance of the resources he pays.

The results for the relative cost R42 is de-

picted in Figure 6.



Figure 6: Relative cost R42

The threshold value for scaling the resources

from scaling factor 2 to 4 is 1.35. But the relative

cost R42 is much greater than the threshold for

almost all values of parameters M and N . Al-

though there is a small region where the relative

cost is smaller the threshold, its value is near the

threshold.

5. Discussion

In this section we compare the results from

this paper with the results from the research [16]

where we performed cost and performance anal-

ysis for the memory demandingConcatweb ser-

vice.

5.1. Response Time Comparison

When discussing the performance dispropor-

tion to the scaled resources, the Concat web ser-

vice performs better for both the cloud environ-

ments with VM instance with 2 and 4 CPUs de-

fined in 3.2. Therefore, when the Concat web

service is hosted in cloud VM instance with 2

cores, the response time decreases 3.6 times in

comparison to when hosted in cloud VM instance

with 1 core. When the same web service is

hosted in cloud environment with VM instance

with 4 cores, according to the average response

time values, the performance gets 4.6 times bet-

ter than when hosted in cloud VM with 1 core.

On the other hand, for the Sort web service the

response time decreases 1.7 times when the CPU

scales to 2 cores, and 2.3 times if the number of

CPUs is 4. Obviously the performance improve-

ment depends on the type of the web service

used. For a memory demanding web service,

customers will gain higher performance when

renting more resources, whereas for computa-

tion intensive web service, the increasing perfor-

mance factor is much smaller but it also has the

affinity to rise.

5.2. Cost Analysis Comparison

Once we discussed the performance improve-

ments, in this section we proceed to discuss the

trade-off between the cost and the performance.

We observe that the Concat web service cost,

while hosted on cloud VM instance with 2 CPUs,

never transcends the 3.6 threshold. The cost anal-

ysis of the Concat web service hosted in cloud

VM instance with 4 cores, using the average re-

sponse time decrease value of 4.6, also show that

pay-per-usage model is convenient for the cus-

tomers. Even though, the computation intensive

Sort web service shows less performance gain

when scaling the resources, there are only few re-

gions when the cost transcends the performance.

The overall comparison results show that the

compromise between the cost and the perfor-

mance is positive, which means the customers

will gain as much performance as they pay with

negligible exceptions.

6. Conclusion and Future Work

CSPs pay-per-usage model offers linearly

scalable charging to the acquired resources. We

assume that the performance also scales to the

pay-per-usage model and in this paper we per-

formed series of experiments to investigate in

what case the customer would make the best

trade-off between the performance and the ex-

penses.

Performing analyses of both web services,

we confirmed that the cost-performance rela-

tion still depends on the web services’ charac-

teristics. Overall results show that for a mem-

ory demanding web service the customer will

gain maximum performance for the particular

investment, but when adding more characteris-

tics to the web service this performance gain

decreases. However, generally the performance

achievement stays positive.

This intrigues us to extend our research in the

future and to include more web services that de-

pend on different characteristics. Furthermore,



we will perform the same analysis in a multi-

tenant cloud, since we expect the performance to

be interfered as a result of a shared infrastructure

among many users.

References

[1] Mell P, Grance T. “The NIST Definition of

Cloud Computing,” Nat. Inst. of Stand. and
Tech., Inform. Tech. Lab., 2011.

[2] Grossman R L. “The case for cloud com-

puting,” IT prof., 2009, 11, 2: 23–27, IEEE.

[3] Durkee D. “Why cloud computing will

never be free,” Queue, 8, 4, 20, 2010, ACM.

[4] Microsoft. “Windows Azure,” http://www.
windowsazure.com/pricing/, May, 2013.

[5] Google. “Compute Engine,” http://cloud.
google.com/pricing/, May, 2013.

[6] Amazon. “EC2,” http://aws.amazon.
com/ec2/, May, 2013.

[7] Berl A, Gelenbe E, Di Girolamo M, Giu-

liani G, De Meer H, Dang M Q, Pentik-

ousis K. “Energy-efficient cloud comput-

ing,” The Computer Journal, 2010, 53, 7:
1045–1051, Br Computer Soc.

[8] Baliga J, Ayre R W A, Hinton K, Tucker R

S.“Green cloud computing: Balancing en-

ergy in processing, storage, and transport,”

Proc. of the IEEE, 99, 1, 149–167, 2011.

[9] Beloglazov A, Buyya R.“Energy Effi-

cient Allocation of Virtual Machines in

Cloud Data Centers,” CCGrid, 2010 10th
IEEE/ACM Inter. Conf. on.

[10] Lee Y C, Zomaya A Y. “Energy efficient

utilization of resources in cloud computing

systems,” The Journal of Supercomputing,
60, 2, 268–280, 2012, Springer.

[11] Zhang Q, Cheng L, Boutaba, R. “Cloud

computing: state-of-the-art and research

challenges,” J. of Internet Services and
App., 2010, 1, 1: 7–18, Springer.

[12] Dillon T, Wu C, Chang E. “Cloud com-

puting: Issues and challenges,” Advanced

Inform. Network. and App. (AINA), 24th
IEEE Intern. Conf. on, 27–33, 2010.

[13] De Assunção M D, Di Costanzo A, Buyya

R.“Evaluating the cost-benefit of using

cloud computing to extend the capacity

of clusters,” Proc. of the 18th ACM inter.
symp. on High perf. distr. comp., 141–150,
2009, ACM.

[14] Andrzejak A, Kondo D, Yi S.“Decision

model for cloud computing under SLA con-

straints,” in Modeling, Analysis & Simula-
tion of Computer and Telecommunication
Systems (MASCOTS), 2010 IEEE Interna-
tional Symposium on, 257–266, 2010.

[15] Truong H, Dustdar S. “Composable cost es-

timation and monitoring for computational

applications in cloud computing environ-

ments,” Procedia Computer Science, vol. 1,
no. 1, pp. 2175–2184, 2010.

[16] Simjanoska M, Ristov S, Velkoski G, Gu-

sev M. “Scaling the Performance and Cost

While Scaling the Load and Resources in

the Cloud,” MIPRO, 2013 Proceedings of
the 36th International Convention, 2013.

[17] Gusev M, Ristov S. “The optimal re-

source allocation among virtual machines

in cloud computing,” in CLOUD COM-
PUTING 2012, The Third International
Conference on Cloud Computing, GRIDs
and Virtualization, 36–42, 2012.

[18] Ristov S, Velkoski G, Gusev M, Kjiroski K.

“Compute and memory intensive web ser-

vice performance in the cloud,” in ICT In-
novations 2012, S. Markovski and M. Gu-

sev, Eds. Springer Berlin / Berlin Heidel-

berg, vol. AISC 257, pp. 215–224, 2012.

[19] OpenStack.“Openstack cloud,” www. open-
stack.org, 2013.

[20] Juric M B, Rozman I, Brumen B, Col-

naric M, Hericko M.“Comparison of per-

formance of Web services, WS-Security,

RMI, and RMI–SSL,” Journal of Systems
and Soft., 79, 5:689–700, 2006, Elsevier.

[21] SoapUI.“Functional testing tool for web

service testing,” www.soapui.org, 2013.


