
Chess as Played by

Artificial Intelligence

Filemon Jankuloski, Adrijan Božinovski1

University American College of Skopje, Skopje, Macedonia

filjankuloski@gmail.com

bozinovski@uacs.edu.mk

Abstract. In this paper, we explore the evolution of how chess machinery plays chess.

The purpose of the paper is to discuss the several different algorithms and methods

which are implemented into chess machinery systems to either make chess playing

more efficient or increase the playing strength of said chess machinery. Not only do

we look at methods and algorithms implemented into chess machinery, but we also

take a look at the many accomplishments achieved by these machines over a 70 year

period. We will analyze chess machines from their conception up until their absolute

domination of the competitive chess scene. This includes chess machines which

utilize anything from brute force approaches to deep learning and neural networks.

Finally, the paper is concluded by discussing the future of chess machinery and their

involvement in both the casual and competitive chess scene.

Keywords: Chess · Algorithm · Search · Artificial Intelligence

1 Introduction

Artificial intelligence has become increasingly prevalent in our current society. We can find

artificial intelligence being used in many aspects of our daily lives, such as through the use

of Smartphones and autonomous driving vehicles such as the Tesla. There is no clear and

concise definition for Artificial Intelligence, since it is a subject which still has massive

space for improvement and has only recently been making most of its significant

advancements. Leading textbooks on AI, however, define it as the study of “intelligent

agents”, which can be represented by any device that perceives its environment and takes

actions that maximizes its chances of achieving its goals [1]. In the context of this paper,

these intelligent agents are chess playing AI, which implement several different types of

methods and strategies for a single purpose: to defeat any opponent in a game of chess. We

will take a look at how the strategies used to develop these chess playing AI engines have

progressed and evolved over the span of AI’s 70 year existence.

2 Overview of Impactful Chess Machinery and Programs

Table I. Chess programs and machinery

Name of

program/machine

Names of creators Year of

creation

Algorithms, methods, or technology incorporated

Turochamp Alan Turing,

David

Champernowne

1948 Variable lookahead, Two move heuristic, Evaluation

of positions based on mobility, piece safety, king

mobility, king safety, castling, and more.

NSS Allen Newell,

Herbert Simon,

Cliff Shaw

1958 Move generator, Position evaluator, Alpha Beta

searching

Mac Hack VI Richard Greenblatt 1966 Move generator, Position evaluator, Alpha Beta

searching, Transposition table

First Macedonian

chess program

Stevo Božinovski 1969 Move generator, Position evaluator

Chess (Northwestern

University Chess

4.5)

Larry Atkin, David

Slate

1975 Move generator, Position evaluator, Alpha Beta

searching, Transposition table,

Bitboard, Full width search, Iterative deepening

Belle Ken Thompson,

Joe Condon

1976 Move generator, Position evaluator, Alpha Beta

searching, Transposition table, Lazy and full

evaluation, Principal variation splitting

HiTech Hans Berliner,

Carl Ebeling,

Murray Campbell,

Gordon Goetsch

1985 Move generator, Position evaluator, Pattern

recognition, Transposition table, Parallel searching,

Alpha Beta searching

Fritz Frans Morsch,

Mathias Feist

1991 Move generator, Position evaluator, Parallel

searching, Null move search

Deep Blue IBM Development

Team

1996 Move generator, Position evaluator, Alpha Beta

searching, Transposition table, Parallel searching,

Singular extension

StockFish Tord Romstad,

Marco Costalba,

Joona Kiiski, Gary

Linscott

2016 Move generator, Position evaluator, Iterative

deepening, Parallel Search, Transposition Table,

Move valuable victim/least valuable aggressor, Null

move search, Singular extensions, Futility pruning,

Static exchange evaluation

AlphaZero DeepMind

Development

Team

2017 Neural networks, Deep learning, Reinforcement

learning, Monte Carlo Tree Search, Transposition

table, Tensor processing unit

3 Chess Machinery

 3.1 Turochamp

Fig.1. Turochamp's interface [2]

One of the first chess programs to ever be created was the Turochamp in 1948. Alan Turing

and David Champernowne developed the program to be able to compete with players in

chess at a low level using a two move heuristic [3]. Firstly, an opponent’s move would need

to be used as input, and the output would be calculated as a response. The calculation is

done by treating each space that a piece could move to as a “state” and measuring how

many points could be acquired by moving to said “state”. The criteria for number of points

is an extensive list which includes: the mobility of each piece, the safety of each piece, the

threat of a checkmate, the value of the player’s piece if it is taken, the value of a piece that

may be taken by the moving piece, and much more [4]. The amount of points a piece is

worth is also dependent on the piece itself. For example, a rook would be worth more than

a pawn, and the queen would be worth more than both the rook and the pawn. According

to Champernowne, the main objective of the program is not just to defeat its opponent, but

also to decide whether or not a piece should be taken [4]. It is also worth noting that, due to

the complexity of the program, it was never executed on a computer as technology was not

capable of running code on that level yet. However, it was still the first computer chess

program conceived that began development, and was published in 1951.

3.2 NSS

Fig. 2. NSS being run with the help of the JOHNNIAC computer [5]

In 1958, NSS became the first chess program capable of utilizing the Alpha Beta search

algorithm [6]. This algorithm is used to search with a depth of 2 within the chess board.

Taking the depth into consideration, we will consider all possible moves that we can make,

and also take into consideration all possible counter responses that can be made to that

move. Let’s say we have a move called “Move A” and a move called “Move B”. Move A

guarantees us an even position with the opponent, while there is a scenario with Move B

which results in the loss of one of our pieces. With this knowledge in mind, we can say that

Move A is “better” than Move B since Move A at least gives us an even position regardless

of where it’s moved. Move A helps us define a lower bound, and this bound helps us

determine when a move is too bad to even take into consideration.. The upper bound also

needs to be defined, because if we search with a depth greater than 3 and we continuously

attempt to make moves which benefit us, the opposing player simply will not let this happen

as they could just avoid this sequence of advantageous moves. The Alpha and Beta in this

algorithm’s name comes from the lower bound and upper bound, respectively. Using the

Alpha Beta algorithm, NSS became the first chess program which defeated a human

opponent in 1958 [7].

3.3 Mac Hack VI

Fig. 3. Mac Hack’s bitmap display [8]

The Mac Hack was fully developed in 1967 by Richard Greenblatt, and, more notably, it

was the first chess program to utilize a transposition table [9]. As aforementioned,

computers were incapable of running the first chess programs which were published due to

the complexity of their codes. At the time of the Mac Hack’s creation, there were still many

computer programs using the Alpha Beta algorithm which took a tedious amount of time

just to make a single move. The introduction of transposition tables offered a solution to

this problem. Instead of calculating the amount of points gained from moving a chess piece

to a particular state repeatedly, Mac Hack would simply hash the calculation and keep it

stored in a table. In a case where it would have to analyze the same position, instead of

making the same redundant calculation, it would simply locate where the calculation was

stored in the table instead of wasting precious time that could be spent making new

calculations. In an actual game of chess, the program would first check to see if a position

had been previously analyzed before making any calculations, and, if it had been analyzed,

it would simply retrieve the calculation from the table. Unfortunately, due to the lower

memory capacity of computers at the time, there was a limit on how many positions could

be stored inside of a table. Should a new position need to be stored inside of the table, the

program would simply remove the calculation of a position which had been accessed the

least. As a result of the implementation of these transposition tables, reduction of search

time could range anywhere between 0 percent and a whopping 50 percent [10]. Utilizing its

Alpha Beta algorithm and transposition table, Mac Hack became the first chess program to

defeat a human opponent in a tournament setting in 1967 [11].

3.4 First Macedonian Chess Program

The first Macedonian chess program was created by Stevo Božinovski in 1969 and it was

written in Fortran for the IBM 1130 computer [12]. The program was not meant to complete

a full game, but rather simulate a scenario where the human player has a black king, and

the computer has a white king and a white rook. This program used a call named “DATSW”

in order to plot the chess board every time a chess piece was moved [12]. The program also

consisted of 3 different subroutines. “POTEZ” was used to determine if a move made by

the human was legal or illegal, “KODER” encoded the move written in standard chess

notation (KE6) into international representation, and “POZIC” served the purpose of both

analyzing positions and generating moves for the program to make [12]. There was also a

function named “MATIR”, which was used to determine if the current state of a chessboard

was in checkmate.

3.5 Chess

Fig. 4. Chess’ 4.6 version ran on a chess machine named “Chesstor” [13]

After nearly a full decade with little to no progress in the evolution of chess programs, the

Northwestern University chess program 4.5 was finally introduced in 1975 after 8 years of

development [14]. The full width search and iterative deepening depth first search is what

separated the Chess 4.5 program from its predecessors. The full width search, much like the

name implies, is a search where all directions that a chess piece can move to are considered.

In the early stages of a chess game, such a search is purely impractical due to how extensive

they would be. However, in the late stages of a game where there are few pieces left, a full

width search would prove to be far more useful than the basic Alpha Beta algorithm and

other selective heuristics. Iterative deepening searches are much like full width searches,

except that rather than only exploring how many different directions a chess piece can go,

it also checks how far a particular chess piece can go in a certain direction, and whether or

not there is a position to be secured that would be in favor of the program’s victory. One

would think that such a search would be costly, however, in actuality, this search is quite

memory efficient. When a goal node is found, or for example, when a bishop piece finds a

piece to attack, then it unwinds without searching any other positions which may lie ahead

of the piece that may be attacked. The Chess 4.5 program is also the first program to utilize

bitboards. Basically, a bitboard is a 64 bit data structure in which there is a bit for each

corresponding space on the chessboard. Each bit is labeled according to the following

structure: from left to right, the columns are labeled from “a” to “h” and from bottom to

top, the rows are labeled from “1” to “8”. In other words, the very bottom left space is

labeled “a1” and the very top right space is labeled “h8”; a1 is the 0th bit and h8 is the 63rd

bit respectively. Utilizing several different algorithms and technologies at once, the

Northwestern University Chess program became the model for all future chess development

and it dominated all other computer chess programs and computer chess program

tournaments until the early 80s. It is also worth noting that when Chess 4.5 was updated to

Chess 4.7, it became good enough at chess to be able to win against a chess master, David

Levy, in 1978 [15]. This was the first time a chess program was able to take a game off of

a human chess master.

3.6 Belle

Fig. 5. The chess machine “Belle” [16]

Belle was the first chess machine that achieved a master ranking in chess in 1983 [17]. It

was also the first chess machine which used specialized hardware specifically for itself in

order to improve its chess play. Belle’s chess program implemented a move generator,

which was updated from 1976 up to 1980, from the first generation up to the third

generation. In the first generation, a 6 bit “from” register searches the board for friendly

chess pieces. When a friendly piece is found, an offset bit code is generated. The code

generated from the starting position of the chess piece is aggregated to the code generated

from the friendly piece’s movement, and this resulting code describes a potential move.

This is the process for how a single position is generated, stored, and analyzed all at once.

In the second generation, the generator had implemented several improvements such as a

stack in which it could store its moves, a position evaluator, and a transposition table to

memorize moves it had already made. By 1978, Belle could search 5,000 positions in a

single second [17]. In 1980, Belle implemented several more improvements in the third and

final generation. The move generator now included 64 transmitter and receiver circuits

which correspond with each space on the board. Transmitters were able to remember the

piece on its square and all potential moves it could make, while receivers could detect

incoming moves or threats from enemy pieces [17]. The transposition table was now able

to store up to 1 megabyte’s worth of chess positions. Belle’s Alpha Beta algorithm was also

now implemented in microcode, which meant that it could control the move generator,

position evaluator, and transposition table [17]. With all of these improvements

implemented, Belle was now capable of searching upwards of 100,000 positions in a single

second. The accumulation of all of these improvements allowed Belle to become the first

chess machine to attain a chess master ranking.

3.7 HiTech

Fig. 6. HiTech and its developers Han Berliner and Carl Ebeling [18]

In 1988, the chess machine “HiTech” became the first machine to defeat a grandmaster

chess player in a tournament. Much like Belle, HiTech had 64 chips in parallel for the

purpose of move generation and position evaluation. The HiTech chess machine also could

do quick searching and evaluation by implementing a full width depth first Alpha Beta

search algorithm, and this allowed it to be able to search up to 175,000 moves per second

[19]. However, what distinguished HiTech from all other chess machines was that it was

one of the first machines capable of implementing pattern recognition. Pattern recognition

is incredibly useful in chess, as it allows HiTech to ascertain the relationship between all

chess pieces on the chess board and use this knowledge to its advantage [20]. Implementing

pattern recognition means HiTech was capable of recognizing common, simple checkmate

patterns, which increased HiTech’s chances of winning chess games in some situations. It

also decreased unnecessary search time wasted on the engine’s attempt at understanding the

properties of the chess board that patterns can easily encode on their own [20]. Another

concept which distinguished HiTech from other chess machines was the utilization of

“Oracles”. An Oracle, in this context, is a repository of knowledge that the chess machine’s

system uses in order to more efficiently search chess boards and make moves [20]. The

Oracle has rules which define goals for both the friendly and opposing chess pieces and the

patterns that are needed in order to achieve these goals. Essentially, the Oracle is what

enabled HiTech to utilize pattern recognition in chess games.

3.8 Fritz

Fig. 7. Fritz chess interface [21]

Fritz was a strong enough chess machine that it was able to defeat one of Deep Blue’s earlier

versions in a tournament in 1995 with the use of an experimental algorithm called “Null

Move Pruning”. In chess, a null move is essentially where no chess pieces are moved during

your turn. The purpose of null move pruning is to cut on the amount of time spent when a

chess machine is searching. Essentially, Fritz will allow the opponent to move twice by

simulating a null move, and if Fritz’ evaluation function does not return a high value, then

that means that there is no threat from an enemy chess piece [22]. Any subtrees which are

connected to a null move node where the evaluation function returns a low value, are

deemed harmless and irrelevant and are removed from Fritz’ search process. This saves on

time and computational power that can be directed towards more important areas of the

game tree. In Fritz’ architecture, move generators, position evaluators, and data structures

are all designed and coded as such to utilize the null move search to its maximum potential

[22]. Instead of simply adding more parallel processors to increase computational power

similarly to Deep Blue, the developers of Fritz used an algorithm which enabled the

machine to conduct more efficient searches.

3.9 Deep Blue

Fig. 8. IBM’s Deep Blue chess machine [23]

In 1997, Deep Blue became the first chess machine to defeat the world champion of chess,

who was Garry Kasparov at the time. This marked the beginning of the concession of the

domination of the best human chess players to machinery like the Deep Blue. It consisted

of 30 processors, controlling 16 chess chips each [24]. Each chess chip had its own move

generator, move stack, evaluation function, and Alpha Beta algorithm hardware. Each chip

was capable of searching a minimum of 2 to 2.5 million positions per second, and, with 480

chips, this meant that Deep Blue could search up to 1 billion positions per second [24].

Deep Blue was capable of multiprocessing and utilizing the brute force approach with its

powerful hardware unlike any other chess machine in existence. Up until the late 90s, the

focus on chess machinery was to increase computational power by adding several parallel

processors. Deep Blue and a few other machines were only capable of exhibiting symbolic

artificial intelligence in the form of expert systems through the aforementioned “Oracles”

which harbored all necessary chess knowledge. After Kasparov was defeated, Deep Blue

was dismantled, and the focus on chess machines was no longer on computational power

and brute force, but rather, on the utilization of newer and more efficient algorithms and

artificial intelligence.

 3.10 Stockfish

Fig. 9. Stockfish being run on the DroidFish engine [25]

Currently, the strongest chess algorithm in competitive play is Stockfish with an ELO score

of 3493 [26]. To better understand Stockfish’s strength, the world chess champion Magnus

Carlsen has an ELO score 2863, bringing the difference to a massive 630 points [27].

Stockfish’s initial release was in 2008, and, since then, the developers have added countless

improvements in the form of search algorithms [28]. One of such search algorithms is called

the Most Valuable Victim - Least Valuable Aggressor. In this algorithm, a piece capture

order in terms of priority is defined according to both the most valuable enemy piece to be

captured and the least valuable friendly attacker. The purpose of the algorithm is to not only

avoid disadvantageous captures, but to also determine which captures are the most

advantageous. In chess, however, captures are often not done without some consequences,

since professional players often guard their vulnerable pieces with another piece. There are

also scenarios where a professional will purposely give away one of their pieces in exchange

for one of their enemy’s stronger pieces. Stockfish is capable of determining advantageous

and disadvantageous exchanges in these situations with its Static Exchange Evaluation

algorithm. The purpose of the Static Exchange Evaluation is to determine the consequences

of an exchange of pieces in a single square on the chessboard. The value which represents

this exchange is called the “swapoff value”. A high swapoff value represents an

advantageous exchange while a low value signifies a disadvantageous exchange. In the case

of Stockfish, the Static Exchange Evaluation algorithm is optimized to only return a flag

which shows whether a position has a high or low swapoff value, so that Stockfish only

spends time searching moves which are advantageous to it. These algorithms are only a few

from the large pool of algorithms that Stockfish uses. Stockfish also utilizes aforementioned

algorithms and methods such as iterative deepening, null move pruning, parallel searching

and more.

3.11 AlphaZero

Fig. 10. One of the Tensor Processing Units utilized by AlphaZero [29]

In 2017, chess machines experienced one of the largest revolutions to date with the release

of Google’s AlphaZero. AlphaZero is the first chess machine to teach itself how to play

chess. It utilizes a reinforcement learning algorithm by combining deep learning with the

Monte Carlo Tree Search [30]. 5,000 first generation Tensor Processing Units were used to

generate self play games [31]. The reinforcement learning algorithm comes into play with

these self play games, as it goes through trial and error playing several games with itself,

discovering weaknesses within its chess play, and mapping situations and actions in such a

way that its able to improve its chess play with every game played. 64 second generation

Tensor Processing Units were used in order to train its artificial neural network, which was

needed in order for it to better learn how to play the game [32]. Older chess machines which

purely implemented brute force approaches such as Deep Blue, used Oracles as a repository

of knowledge in which it could base its moves. The Tensor Processing Units, however, are

used to improve neural networks which is what AlphaZero bases its moves from. Neural

networks serve the purpose of simulating the human brain and the way that neurons

communicate with each other inside of it in order to process information like human beings

do. The Monte Carlo Tree Search (MCTS) also plays a massive role in AlphaZero’s playing

capabilities. Essentially, MCTS is a type of search algorithm which is capable of learning

based on playouts, which can be defined as the randomized explorations of search spaces

[33]. It uses the results of previously successful explorations in order to produce its own

game tree, and these game trees are used by chess engines to calculate the optimal move in

a chess game. Also, after every playout, the nodes in the MCTS are updated according to

the result and how that result was attained, essentially replicating the learning capabilities

of human beings and increasing AlphaZero’s ability to estimate the values of advantageous

chess moves. To prove AlphaZero’s strength, Google negotiated a match between

AlphaZero and the world’s strongest chess engine at the time, Stockfish. AlphaZero won

overwhelmingly versus Stockfish with a 28 and 0 winning record [34]. Before this

tournament match, AlphaZero had only spent 9 hours training itself how to play chess.

Another impressive fact is that AlphaZero was only searching 80,000 positions per second

while Stockfish was looking at a massive 70 million positions per second [35]. These

numbers convey a single message, and that is that quality is far more important than

quantity. AlphaZero covered a smaller search space with far more promising, advantageous

moves than Stockfish. With its overwhelming victory, AlphaZero has proven that AI based,

self learning chess machinery is capable of dominating, not just Chess, but many other

games as well.

4 Discussion

In regards to the criticisms made by the reviewers, there were intentions of performing a

quantitative analysis of all chess engines which were aforementioned, but due to a lack of

sufficient funding, we were unable to acquire the necessary versions of each chess engine

in order to realize the analysis. Originally, we would have had each chess engine play

against itself 30 separate times, and record the time (in seconds) and the number of moves

needed in order for the engine to have a checkmate. The results of the quantitative analysis

would have then been used to determine which chess engine proves to be the most effective

in terms of achieving a checkmate.

5 Conclusion

In a matter of 70 years, chess programs were able to dominate a sport which was around for

several centuries. The way that chess is played has changed significantly, since the

development of chess playing machines and games. Now that these chess AI are available

on phones and laptops, there are many children who will be able to learn the game much

easier due to easy accessibility of both technology and knowledge. There are also chess

machines like AlphaZero that are teaching us new openings in chess theory which have

never been seen before. It is fascinating that, originally, it was human beings that were

supposed to teach machines how to perform certain tasks. Now, we have machines which

are teaching us new ways of playing chess unlike anything that has been seen before. As

machines continue to evolve, not just in Chess, but in other areas as well, we should stay

open minded and use these paragons as examples so that we can better ourselves too.

References

1. Russell, S. and Norvig, P., 2003. Artificial Intelligence: A Modern Approach. 2nd ed. Upper

Saddle River, New Jersey: Prentice Hall, p.55

2. n.d. Turochamp Interface. [image] Available at:

https://10007969blog.files.wordpress.com/2016/10/turbochamp_glennie_1952b.png

3. Turing, A., 2004. The Essential Turing. Oxford, United Kingdom: Oxford University Press,

pp.563-564

4. Levy, D. and Newborn, M., 2009. How Computers Play Chess. Mountain View, California:

Ishi Press, p.35.

5. Lih, A., 2005. JOHNNIAC. [image] Available at:

https://upload.wikimedia.org/wikipedia/commons/1/1b/Johnniac.jpg

6. Rushton, P. and Marsland, T., 1973. Current Chess Programs: A Summary Of Their Potential

And Limitations. INFOR: Information Systems and Operational Research, 11(1), pp.13-20.

7. Walls, B., 2008. Computer Chess History By Bill Wall. [online] Oocities.org. Available at:

http://www.oocities.org/siliconvalley/lab/7378/comphis.htm

8. 2018. Mac Hack Bit Display. [image] Available at:

https://www.chessprogramming.org/images/5/5f/TV-Ocm.png

9. Wall, B., 2008. Machack Attack. [online] Chess.com. Available at:

https://www.chess.com/article/view/machack-attack

10. 2011. Computers And Games: 7th International Conference. Berlin, Germany: Spring Science

& Business Media.

11. Wall, B., n.d. Early Chess Computer Programs. [online] Archive.is. Available at:

https://archive.is/20120721202324/http://www.chessville.com/BillWall/EarlyComputerChess

Programs.htm

12. Božinovski, S., 2016. Cognitive and Emotive Robotics: Artificial Brain Computing Cognitive

Actions and Emotive Evaluations, Since 1981. In: ICT Innovations Conference 2016. Skopje,

https://10007969blog.files.wordpress.com/2016/10/turbochamp_glennie_1952b.png
https://upload.wikimedia.org/wikipedia/commons/1/1b/Johnniac.jpg
http://www.oocities.org/siliconvalley/lab/7378/comphis.htm
https://www.chessprogramming.org/images/5/5f/TV-Ocm.png
https://www.chess.com/article/view/machack-attack
https://archive.is/20120721202324/http:/www.chessville.com/BillWall/EarlyComputerChessPrograms.htm
https://archive.is/20120721202324/http:/www.chessville.com/BillWall/EarlyComputerChessPrograms.htm

p.11.

13. Newborn, M., 2018. Chesstor. [image] Available at:

http://archive.computerhistory.org/projects/chess/related_materials/physical-object/3-

1%20and%203-

3.Chess_4.6_electronic_board_ACM_9_NACCC_Washington_1978_10264526.NEWBORN.j

pg

14. Jennings, P., 1978. The Second World Computer Chess Championships. Byte, p.108.

15. Levy, D., 1978. Man Beats Machine!. Chess Life, pp.600-603.

16. Computer History Museum, 2018. Belle Chess Playing Machine. [image] Available at:

https://images.computerhistory.org/chess/belle.06230375.jpg?w=600

17. Frey, P., 2012. Chess Skill In Man And Machine. 2nd ed. Berlin, Germany: Spring Science &

Business Media.

18. Redick, B., n.d. Hitech Developers. [image] Available at:

https://images.computerhistory.org/chess/carnegie-mellon-university.berliner-hans-ebeling-

carl.198x.l062302001.cmu.jpg?w=600

19. Newell, A., 1994. Unified Theories Of Cognition. Cambridge, Massachusetts: Harvard

University Press.

20. Marsland, A. and Schaeffer, J., 2012. Computers, Chess, And Cognition. Berlin, Germany:

Springer Science & Business Media.

21. Marquardt, H., n.d. Fritz Interface. [image] Available at:

http://www.septober.de/chess/pics/9104.gif

22. Game-ai-forum.org. 2020. Fritz (ICGA Tournaments). [online] Available at:

https://www.game-ai-forum.org/icga-tournaments/program.php?id=27

23. Gardener, J., 2007. Deep Blue. [image] Available at:

https://upload.wikimedia.org/wikipedia/commons/b/be/Deep_Blue.jpg

24. Hsu, F., 1999. IBM's Deep Blue Chess Grandmaster Chips. IEEE Micro, 19(2).

25. Österlund, P., Romstad, T., Costalba, M. and Kiiski, J., 2013. Droidfish. [image] Available at:

https://upload.wikimedia.org/wikipedia/commons/b/b6/DroidFish.jpg

26. Ccrl.chessdom.com. 2020. CCRL 40/15 - Index. [online] Available at:

https://ccrl.chessdom.com/ccrl/4040 [Accessed 20 May 2020].

27. Ratings.fide.com. 2020. Carlsen, Magnus FIDE Chess Profile - Players Arbiters Trainers.

[online] Available at: http://ratings.fide.com/card.phtml?event=1503014 [Accessed 20 May

2020]

28. Costalba, M., 2020. Stockfish 1.0 - Talkchess.Com. [online] Talkchess.com. Available at:

http://www.talkchess.com/forum3/viewtopic.php?t=24675 [Accessed 20 May 2020].

29. 2019. Tensor Processing Unit. [image] Available at:

https://upload.wikimedia.org/wikipedia/commons/b/be/Tensor_Processing_Unit_3.0.jpg

30. 2017. Mastering Chess And Shogi By Self-Play With A General Reinforcement Learning

Algorithm. [ebook] Available at:

https://www.researchgate.net/publication/321571298_Mastering_Chess_and_Shogi_by_Self-

Play_with_a_General_Reinforcement_Learning_Algorithm.

31. Hemsoth, N., 2017. First In-Depth Look At Google’S TPU Architecture. [online] The Next

Platform. Available at: https://www.nextplatform.com/2017/04/05/first-depth-look-googles-

tpu-architecture/.

32. Talkchess.com. 2020. Photo Of Google Cloud TPU Cluster - Talkchess.Com. [online]

Available at: http://www.talkchess.com/forum3/viewtopic.php?t=65945 [Accessed 20 May

2020].

33. Chaslot, G., Winands, M. and van den Herik, J., 2008. Parallel Monte-Carlo Tree Search. In:

Computers and Games.

34. McGourty, C., 2017. Deepmind’S Alphazero Crushes Chess. [online] chess24.com. Available

at: https://chess24.com/en/read/news/deepmind-s-alphazero-crushes-chess [Accessed 20 May

2020].

35. Chess.com. 2017. How Does Alphazero Play Chess?. [online] Available at:

https://www.chess.com/article/view/how-does-alphazero-play-chess [Accessed 20 May 2020].

36. Silver, D., Hubert, T., Schrittweiser, J. and Hassabis, D., 2018. Alphazero: Shedding New

Light On The Grand Games Of Chess, Shogi And Go. [online] Deepmind. Available at:

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-

and-go [Accessed 22 August 2020].

http://archive.computerhistory.org/projects/chess/related_materials/physical-object/3-1%20and%203-3.Chess_4.6_electronic_board_ACM_9_NACCC_Washington_1978_10264526.NEWBORN.jpg
http://archive.computerhistory.org/projects/chess/related_materials/physical-object/3-1%20and%203-3.Chess_4.6_electronic_board_ACM_9_NACCC_Washington_1978_10264526.NEWBORN.jpg
http://archive.computerhistory.org/projects/chess/related_materials/physical-object/3-1%20and%203-3.Chess_4.6_electronic_board_ACM_9_NACCC_Washington_1978_10264526.NEWBORN.jpg
http://archive.computerhistory.org/projects/chess/related_materials/physical-object/3-1%20and%203-3.Chess_4.6_electronic_board_ACM_9_NACCC_Washington_1978_10264526.NEWBORN.jpg
https://images.computerhistory.org/chess/belle.06230375.jpg?w=600
https://images.computerhistory.org/chess/carnegie-mellon-university.berliner-hans-ebeling-carl.198x.l062302001.cmu.jpg?w=600
https://images.computerhistory.org/chess/carnegie-mellon-university.berliner-hans-ebeling-carl.198x.l062302001.cmu.jpg?w=600
http://www.septober.de/chess/pics/9104.gif
https://www.game-ai-forum.org/icga-tournaments/program.php?id=27
https://upload.wikimedia.org/wikipedia/commons/b/be/Deep_Blue.jpg
https://upload.wikimedia.org/wikipedia/commons/b/b6/DroidFish.jpg
https://ccrl.chessdom.com/ccrl/4040
http://ratings.fide.com/card.phtml?event=1503014
http://www.talkchess.com/forum3/viewtopic.php?t=24675
https://upload.wikimedia.org/wikipedia/commons/b/be/Tensor_Processing_Unit_3.0.jpg
https://www.researchgate.net/publication/321571298_Mastering_Chess_and_Shogi_by_Self-Play_with_a_General_Reinforcement_Learning_Algorithm
https://www.researchgate.net/publication/321571298_Mastering_Chess_and_Shogi_by_Self-Play_with_a_General_Reinforcement_Learning_Algorithm
https://www.nextplatform.com/2017/04/05/first-depth-look-googles-tpu-architecture/
https://www.nextplatform.com/2017/04/05/first-depth-look-googles-tpu-architecture/
http://www.talkchess.com/forum3/viewtopic.php?t=65945
https://chess24.com/en/read/news/deepmind-s-alphazero-crushes-chess
https://www.chess.com/article/view/how-does-alphazero-play-chess
https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go
https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

