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Abstract. In this paper, we address the task of taxonomic classification of diatoms from images 

taken under a light microscope. The corresponding machine learning task is the task of hierar-

chical multi-label classification, where the taxonomy plays the role of the label hierarchy. More 

specifically, an image is assigned several labels, including a single lowest-level taxonomic unit 

(species), as well as the ancestor ones (family). Since Convolutional Neural Networks are state-

of the art in image classification, we apply them to this problem. Since we have a relatively 

small set of diatom images, we apply the paradigm of transfer learning and use an ImageNet 

pre-trained InceptionV3 model. We explore two avenues of transfer, one of which is commonly 

applied, namely to freeze some layers of the pre-trained network and allow for fine-tuning of 

the unfrozen layers with diatom images. We use one output neuron for each of the leaf nodes in 

the taxonomy. The second avenue we explore is to use the features extracted by the ImageNet 

pre-trained InceptionV3 model and train a tree-ensemble classifier. In particular, we use en-

sembles of predictive clustering trees [6] for hierarchical multi-label classification (PCTs for 

HMC). We compare our results with earlier work on the task at hand. This includes the use of 

ensembles of PCTs for HMC on hand-crafted features extracted from the diatom images, as 

well as features extracted by scale-invariant feature transforms. The transfer learning approach 

of fine-tuning the ImageNet pre-trained CNN achieves excellent predictive performance.  

Keywords: Hierarchical multi-label classification ∙ Diatoms ∙ Transfer learning ∙ Con-

volutional neural networks ∙ Feature extraction ∙ Predictive clustering trees ∙ Tree en-

sembles 

1 Introduction 

Diatoms are specific, large and ecologically important group of algae organisms [1]. 

The species are found in a water reserve constitute a bio indicator of its quality and 

whether some kind of activities are more suitable or not [4]. The cell wall can be di-

vided into two halves. Each half of the cell consists of a valve and a number of girdle 

bands. One half is slightly then the other and overlaps it. In the variety of uses of dia-

toms, such as water quality monitoring, paleoecology and forensics [1], microscope 

slides must be first scanned for diatoms: if diatoms are present, they need to be classi-

fied. Most classifications are done using classification keys and/or comparing speci-

mens using slides, photographs or drawings of diatoms in books and atlases (Stoermer 



 

and Smol, 2004). This is not a trivial task, taking into consideration that taxonomists 

estimate that there may be 200,000 different diatom species, half of them still undis-

covered, and many of these extremely hard to distinguish on the basis of morphology 

(du Buf and Bayer, 2002). Furthermore, this is very tedious and repetitive work, thus 

any degree of automation can greatly help. Therefore, in this paper we propose a 

method for hierarchical diatom classification with Transfer Learning using Convolu-

tional Neural Networks (CNNs).  There are several important properties of the dia-

toms that can be used to distinguish them: the valve’s outline, the contour (symmetry, 

global and local shape characteristics, length and width of the diatoms), and the or-

namentation of the valve face. Some of these characteristics can be noted in Fig.1 and 

Fig.2. Our approach consists of two parts: feature extraction using transfer learning, 

and hierarchical image classification. The feature extraction uses the pre-trained In-

ceptionV3 model [5] in order to extract image features. The idea is that the feature 

extraction phase would extract numerous relevant features so that a hierarchical mod-

el can be learned to distinguish the diatoms.  The second part of the approach classi-

fies the image into hierarchy of classes, (note that an image can be labeled with more 

than one label). The classes can be organized into different levels in the hierarchy of 

taxonomic ranks: genus, species, variety and form. We use predictive clustering trees 

(PCTs) that can exploit the hierarchical taxonomy and simultaneously predict all tax-

onomic ranks.  

In our experiments, we used a subset of 1100 microscopic images that are classi-

fied using the taxonomic rank of diatoms. The diatoms from the images belong to 55 

different classes (taxa). For each class there are at least 10 images up to a maximum 

29 images. Images in the dataset vary in shape and ornamentation. Images (Fig.1 and 

Fig.2) below, show two different taxa that belong to different genus.  

 

 
Fig. 1.Tabularia_sp.1__      Fig.2.Achnanthes_minutisima_minutisima_ 

2 Related Work 

There are several studies that directly address automatic diatom classification. One of 

that studies uses random forests of PCTs for HMC, bagging of PCTs for HMC and 

SVMs of diatom images [1].  In the PCT framework, a tree is viewed as a hierarchy of 

clusters: the top node corresponds to one cluster containing all data, which is recur-



 

sively partitioned into smaller clusters while moving down the tree. This system for 

automatic diatom classification also has two parts: image processing (feature extrac-

tion) and image classification [1]. The main difference between this model and our 

hierarchical classification is image processing part. First model has implemented two 

feature extraction techniques. The first technique produces descriptors (Fourier de-

scriptors), that contain information concerning the properties of the valve outline. 

While descriptors from the second technique, called Scale Invariant Feature Trans-

form (SIFT histograms) contain information about the ornamentation of the valve 

face. But, before extracting features from the images, they performed image segmen-

tation. The problem of image segmentation, i.e., contour extraction, of gray-scale 

diatom images can be solved mainly by applying four methods: threshold-based, 

boundary-based, region-based and hybrid methods [1]. In their system for automatic 

image classification they used marker-controlled watershed segmentation which has 

already been successfully applied for diatom image classification. For image classifi-

cation part, they used ensembles of PCTs, in particular bagging and random forest of 

PCTs. They compared the results and predictive performance of the ensembles of 

PCTs [6] for HMC on the three variants of the image database (55 taxa, 48 taxa, 38 

taxa). Table 1 in Dimitrovski’s paper [1] shows the predictive performance of the 

feature extraction algorithms and their combination evaluated using recognition rate. 

We noticed that random forest classifier is better than bagging and SVMs over the 

variants of database and the three types of descriptors. Most recent researches have 

shown the lack of ability in solving this problem using deep learning. Due to these 

research results, we decided on proceeding in solving hierarchical classification on 

diatom images using transfer learning. 

3 CNNs for image classification 

Deep learning (also known as deep structured learning) is part of a broader family 

of machine learning  methods based on artificial neural networks with representation 

learning [3]. Learning can be supervised, semi-supervised or unsupervised. The adjec-

tive "deep" in deep learning comes from the use of multiple layers in the network. 

Early work showed that a linear perceptron cannot be a universal classifier, and then 

that a network with a no polynomial activation function with one hidden layer of un-

bounded width can on the other hand so be. Deep learning is a modern variation 

which is concerned with an unbounded number of layers of bounded size, which per-

mits practical application and optimized implementation, while retaining theoretical 

universality under mild conditions. In deep learning the layers are also permitted to be 

heterogeneous and to deviate widely from biologically in-

formed connectionist models, for the sake of efficiency, trainability and understanda-

bility, whence the "structured" part. Deep learning techniques overcome the problem 

of feature selection by not requiring pre-selected features but extracting the significant 

features from raw input automatically for a problem in hand. 

 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Artificial_neural_networks
https://en.wikipedia.org/wiki/Representation_learning
https://en.wikipedia.org/wiki/Representation_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Semi-supervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Connectionism


 

3.1 Convolutional Neural Networks (CNNs) 

CNNs have deep feed-forward architecture and ability to generalize in a better way as 

compared to networks with fully connected layers [3]. Figurе 3 describes CNN as the 

concept of hierarchical feature extractors. It learns highly abstract features from the 

diatom image, and identifies its characteristics efficiently.  

The reasons why CNN generalizes better than classical models are as follows. 

First, the key interest for applying CNN lies in the idea of using concept of weight 

sharing, due to which the number of parameters that needs training is substantially 

reduced, resulting in improved generalization. Due to lesser parameters, CNN can be 

trained smoothly and does not suffer overfitting. Secondly, the classification stage is 

incorporated with feature extraction stage, both uses learning process. Thirdly, it is 

much difficult to implement large networks using general models of artificial neural 

network (ANN) than implementing in CNN. CNNs are widely being used in various 

domains due to their remarkable performance such as image classification, object 

detection, face detection, speech recognition, vehicle recognition, diabetic retinopa-

thy, facial expression recognition and many more.  

Typical CNN has two parts: convolutional base and classifier - shown in Fig.3. The 

first part, convolutional base, is composed by stack of convolutional and pooling lay-

ers. The main goal of the convolutional base is to generate features from the images. 

The first layer of each CNN used is ‘input layer’ which takes images, resize them for 

passing onto further layers for feature extraction. The next few layers of the convolu-

tional base are convolution layers which act as filters for images, hence finding out 

features from images and also used for calculating the match feature points during 

testing. The extracted feature sets are then passed to ‘pooling layer’. This layer takes 

large images and shrink them down while preserving the most important information 

in them. It keeps the maximum value from each window, it preserves the best fits of 

each feature within the window. The ReLU (Rectified Linear Unit) layer is a non-

linear activation function that swaps every negative number of the pooling layer with 

0. This helps the CNN stay mathematically stable by keeping learned values from 

getting stuck near 0 or blowing up toward infinity. The second part in each CNN is 

classifier, which is usually composed by fully connected layers. The main goal of the 

classifier is to take the high-level filtered images and translate them into categories 

with labels. A fully connected layer is a layer whose neurons have full connections to 

all activation in the previous layer. 



 

 
Fig.3. CNN architecture 

3.2 Transfer Learning 

Transfer learning is a popular method in computer vision because it allows to build 

accurate models in a timesaving way [3] [5]. With transfer learning, instead of starting 

the learning process from scratch, you start from patterns that have been learned when 

solving a different problem. This way you leverage previous learnings and avoid start-

ing from scratch. Transfer learning allows to train deep networks using significantly 

less data then we would need if we had to train from scratch. With transfer learning, 

we are in effect transferring the “knowledge” that a model has learned from a previous 

task, to our current one. The idea is that the two tasks are not totally disjoint, and as 

such we can leverage whatever network parameters that model has learned through its 

extensive training, without having to do that training ourselves. Transfer learning has 

been consistently proven to boost model accuracy and reduce require training time.  

In our approach, the goal of transfer learning is to transfer the knowledge learned 

by InceptionV3 on millions of images by learning to classify thousands of classes. In 

particular, we use the final output of the convolutional base (the last layer in the red 

section in Fig.3) as input to another hierarchical classifier. 

 

3.3 Pre-Training 

In computer vision, transfer learning is usually expressed through the use of pre-trained 

models [8]. A pre-trained model is a saved network that was previously trained on a 

large benchmark dataset, typically on a large-scale image-classification task, to solve a 

problem similar to the one that we want to solve. Deep Neural Network is trained on 

that large dataset, usually on ImageNet dataset [5].  ImageNet is an image database 

organized according to the WordNet hierarchy, in which each node of the hierarchy is 

depicted by hundreds and thousands of images.  Accordingly, due to the computation-

al cost of training such models, it is common practice to import and use models from 

published literature (e.g. VGG, InceptionV3, MobileNet). Several pre-trained models 

used in transfer learning are based on large convolutional neural networks (CNN). Its 

http://wordnet.princeton.edu/
https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/pdf/1512.00567.pdf
https://arxiv.org/pdf/1704.04861.pdf


 

high performance and its easiness in training are two of the main factors driving the 

popularity of CNN over the last years. The intuition behind transfer learning for image 

classification is that if a model is trained on a large and general enough dataset, this 

model will effectively serve as a generic model of the visual world. You can then take 

advantage of these learned feature maps without having to start from scratch by train-

ing a large model on a large dataset. The first step in this approach is to create the 

base model from the pre-trained convnets. We created the base model from 

the InceptionV3 model developed at Google. Inception V3 by Google is the 3rd ver-

sion in a series of Deep Learning Convolutional Architectures. Inception V3 was 

trained using a dataset of 1,000 classes from the original ImageNet dataset which was 

trained with over 1 million training images, the Tensorflow version has 1,001 classes 

which is due to an additional "background' class not used in the original ImageNet. 

Inception V3 was trained for the ImageNet Large Visual Recognition Challenge 

where it was a first runner up. We are using this model to extract features from dia-

toms images. The input shape of the images in InceptionV3 is 299x299x3. It should 

have exactly 3 inputs channels, and width and height should be no smaller than 75. 

E.g. we used (150, 150, 3) input shape values for width and height. The output of the 

last Dense layer is array with 1000 neurons, which is the number of classes that Incep-

tionV3 model was trained. Detailed architecture of InceptionV3 pre- trained model is 

shown on Fig.4. 

 

 

 
Fig.4. InceptionV3 architecture [12] 

3.4 Fine Tuning 

We are giving a diatom dataset to fine tune the pre-trained CNN. Consider that the 

diatom dataset is almost similar to the original dataset used for pre-training. Since the 

new dataset is similar, the same weights can be used for extracting the features from 

the new dataset. If the dataset is very small, as the diatoms dataset, it’s better to train 

only the final layers of the network to avoid overfitting, keeping all other layers fixed.  

So the aim is to remove the final layers of the pre-trained network. Add new layers 

and retrain only the new layers. 

https://github.com/tensorflow/models/blob/master/research/slim/datasets/imagenet.py#L83


 

4 Transfer learning for hierarchical classification of images 

From the wide range of pre-trained models that are available, we picked one that is 

suitable for our problem. The model that we used to solve the problem is InceptionV3 

pre-trained model.  The goal of the Inception module is to act as a “multi-level feature 

extractor” by computing 1×1, 3×3, and 5×5 convolutions within the same module of 

the network — the output of these filters are then stacked along the channel dimen-

sion and before being fed into the next layer in the network. The weights for Incep-

tion V3 are smaller than both VGG and ResNet, coming in at 96MB. Number of 

trainable parameters in this model is 23 817 352. It has a lot of convolutional, pooling 

and activation layers. The input shape of the diatom images in InceptionV3 that we 

used is 150x150x3 (shown in Figure 5), and the output of the last Dense layer is array 

with 3* 3* 2048 extracted features from each image (Figure 5). We simply added a 

new classifier, which was trained from scratch, on top of the pre-trained model so that 

it can repurpose the feature maps learned previously for the dataset. We don’t have to 

(re)train the entire model. The base convolutional network (InceptionV3) already 

contains features that are generically useful for classifying pictures. When we initial-

ized our base model we set include_top=False. This setting is important, as it means 

that we won’t be keeping the Fully-Connected (FC) layers at the end of the model. This 

is exactly what we want since we’re going to train our own brand new fully connected 

layers for transfer learning. However, the final, classification part of the pre-trained 

model is specific to the original classification task, and subsequently specific to the 

set of classes on which the model was trained. The classification part of our model 

consists of two Dense layers and one Dropout layer, which reduces chances of overfit-

ting. The first Dense layer has 256 neurons and as an input takes the features extracted 

from convolutional base, and the second Dense layer is using “softmax” activation 

function and has 55 units, one for each leaf in the hierarchy (taxon). Fine-tuning part 

of the classification of diatom images consists of unfreezing last 14 layers, which 

means that all layers up should be frozen. Earlier layers in the convolutional base 

encode more generic, reusable features, while layers higher up encode more special-

ized features.  

 

 



 

 
Fig.5. Transfer Learning model for HMC of diatom images [11] 

It is more useful to fine-tune the more specialized features, as these are the ones that 

need to be repurposed on our new problem. There would be fast-decreasing returns in 

fine-tuning lower layers. Unfreeze a few of the top layers of a frozen model base and 

jointly train both the newly-added classifier layers and the last layers of the base mod-

el. This allows us to "fine-tune" the higher-order feature representations in the base 

model in order to make them more relevant for the specific task. The final step is to 

train our model and to evaluate the performances.   

5 Ensembles of PCTs 

Predictive Clustering Trees (PCTs) generalize decision trees and can be used for a 

variety of learning tasks including different types of prediction and clustering. A tree 

is viewed as a hierarchy of clusters [2]: the top-node corresponds to one cluster con-

taining all data, which is recursively partitioned into smaller clusters while moving 

down the tree. The leaves represent the clusters at the lowest level of the hierarchy 

and each leaf is labeled with its cluster's prototype (prediction). The features that we 

extracted using InceptionV3 pre-trained model, combined together with the annota-

tions of the images, are used to train a classifier. An ensemble classifier is a set of 

(base) classifiers [1]. Ensemble learning helps improve machine learning results by 

combining several models. This approach allows the production of better predictive 

performance compared to a single model. Basic idea is to learn a set of classifiers 

(experts) and to allow them to vote. We use PCTs for HMC as base classifiers. We 

consider three ensemble learning techniques that have primarily been used in the con-

text of decision trees: bagging, random forest and support vector machines. Random 

forests are a combination of tree predictors [7] such that each tree depends on the 

values of a random vector sampled independently and with the same distribution for 

all trees in the forest. More precisely, at each node in the decision tree, a random sub-

set of the input attributes is taken, and the best feature is selected from this subset 



 

(instead of the set of all attributes). For training the SVM we used linear kernel and 

for random forest classifier we used 100 trees in the forest. Bagging classifier is an 

ensemble meta-estimator [9] that fits base classifiers each on random subsets of the 

original dataset and then aggregate their individual predictions (either by voting) to 

form a final prediction. The base estimator that fits on random subsets of the dataset is 

decision tree with 100 base estimators (trees). 

 

6 Experiments and Results 

6.1 Estimating performance 

Once any image analysis method has been applied, it is important to quantify the per-

formance to know how accurate it is or compare it with other methods. In this section, 

we present the experimental setup to evaluate the proposal system and compare the 

results from hierarchical image classification using Transfer Learning and ensembles 

of PCTs. As a model validation technique, we used k-cross-validation. Cross-

validation [10] is a statistical method used to estimate the skill of machine learning 

models. It is mainly used in settings where the goal is prediction, and one wants to 

estimate how accurately a predictive model will perform in practice. In a prediction 

problem, a model is usually given a dataset of known data on which training is run 

(training dataset), and a dataset of unknown data (or first seen data) against which the 

model is tested (called the validation dataset or testing set). The goal of k-cross-

validation is to test the model's ability to predict new data that was not used in esti-

mating it, in order to flag problems like overfitting or selection bias and to give an 

insight on how the model will generalize to an independent dataset (i.e., an unknown 

dataset, for instance from a real problem). The procedure has a single parameter 

called k that refers to the number of groups that a given data is to be split into. As 

such, the procedure is often called k-fold cross-validation. When a specific value for k 

is chosen, it may be used in place of k in the reference to the model, such as k=10 

becoming 10-fold cross-validation (Fig.6). It is a popular method because it is simple 

to understand and because it generally results in a less biased or less optimistic esti-

mate of the model skill than other methods, such as a simple train/test split. The gen-

eral procedure is as follows: 

• Shuffle the dataset randomly 

• Split the dataset into k folds (groups) 

• For each unique group: 

o Take the group as a hold out or test data set 

o Take the remaining groups as a training data set 

o Fit a model on the training set – using 100 epochs and 10 batch_size  

o Evaluate the model on the test set 

o Print precision and recall measures for each fold 

o Retain the evaluation score and discard the model 

 

 

https://en.wikipedia.org/wiki/Accuracy
https://en.wikipedia.org/wiki/Predictive_modelling
https://en.wikipedia.org/wiki/Validation_set
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Selection_bias


 

 
Fig.6. 10-fold Cross-validation  

6.2 Performance measures 

As a performance measure, we use primarily the overall recognition rate. This meas-

ure is also known as classification accuracy. It is calculated as the number of correctly 

classified images divided by the number of all classified images.  

 

For a more detailed evaluation of performance, we calculate the precision and recall 

measures for all classes. Precision (1) measures the proportion of diatom images be-

longing to a given class that are correctly labeled by the classifier. Recall (2), on the 

other hand, measures the proportion of diatom images labeled by the classifier with a 

given class that truly belong to that class.  

  

    (1) 

 

    (2) 

 

6.3 Performance of PCT ensembles and SVMs with CNN extracted features  

Table 1 summarizes the performance of three machine learning algorithms (bagging 

and random forests of PCTs for HMC and SVMs). The predictive performance is 

compared with the results from Dimitrovski’s paper [1], where the features used by 

the machine learning algorithms (bagging, random forest and SVMs) were Fourier 

descriptors and SIFT histograms. In their work, random forests of PCTs for HMC 

performed best, followed by bagging of PCTs for HMC and then SVMs.  

When we apply SVMs to the features extracted from the InceptionV3 pre-trained 

model, we get worse results as compared to using Fourier descriptors and SIFT histo-

grams as features. The SVM results are only slightly worse. However, the PCT en-

semble results are much worse. To some extent, this is probably due to the very high 

dimensionality of the feature vectors extracted from the CNN as compared to the 



 

manually extracted features (the difference is two orders of magnitude) and the fact 

that SVMs are designed to learn in very high dimensional feature spaces.  

Table 1. Comparison between the predictive performances of the features extracted from Incep-

tionV3 model and the Fourier descriptors + SIFT histograms (Dimitrovski [1]), evaluated using 

overall recognition rate 

Classifier Overall recognition 

rate, InceptionV3 

Overall recognition 

rate, Fourier desc. + 

SIFT hist. 

 55 diatom taxa  55 diatom taxa 

Bagging 80.27 95.45 

Random Forest 86.36 96.17 

SVM 

Fine-tuned CNN                          

91.09 

98.72 

92.35 

N/A 

 

6.4 Performance of the fine-tuned CNN 

 

The overall recognition rate of the fine-tuned CNN, where transfer learning was per-

formed by unfreezing the final layers, is 98.72%. This is better than the best results on 

the Fourier descriptors+SIFT features. These are the best results reported so far on the 

dataset at hand.  

We now discuss these results in terms of precision and recall values (shown in Ta-

ble 2) for each class/ diatom species. Results are compared with those of Dimitrovski 

et al. [1], obtained with the combined feature set (Fourier descriptors + SIFT histo-

grams) and the approach of learning random forest of PCTs for HMC. For most taxa, 

the CNN results are clearly better.  

We further discuss the taxa for which we achieved poor annotation results. The 

worst precision for the CNN is 0.80 and is obtained for the taxon Navicula/gregaria, 

where Dimitrovski et al. obtain a precision of 0.88. We believe that this is because of 

the similarity with other species from the same genus, the small number of images 

and the fact that the images are not clean and contain other artifacts. On the other 

hand, the worst precision of Dimitrovski et al. is 0.56 for Nitzschia/hantzschiana, where 

the CNN has a precision of 1. 

Table 2. Precision and recall per taxon obtained with the fine-tuned InceptionV3CNN, com-

pared with those with a combined feature sets (Fourier descriptors + SIFT histograms) and the 

approach of random forest of PCTs for HMC 

  

Transfer Learning  

CNN 

Random Forest of 

PCTs for HMC 

(Dimitrovski et al. 

[1]) 

  55 diatom taxa 

Taxon #images Precision  Recall Precision Recall 



 

Achnanthes/minutissima  10 1 0.9 
0.83 

0.7

1 

Achnanthes/oblongella  12 1 1 0.67 1 

Caloneis/amphisbaena  18 1 1 1 1 

Cocconeis/placentula  19 1 1 1 1 

Cocconeis/neodiminuta  20 1 1 1 1 

Cocconeis/stauroneiformis  23 1 1 1 1 

Cymbella/helvetica  26 1 1 1 1 

Cymbella/hybrida  20 1 1 1 1 

Cymbella/subequalis  21 1 1 0.9 1 

Denticula/tenuis  22 1 1 1 1 

Diatoma/mesodon  26 1 1 1 1 

Diatoma/moniliformis  20 1 1 1 1 

Encyonema/neogracile  10 1 1 1 1 

Encyonema/silesiacum  25 1 1 1 1 

Epithemia/sorex  19 0.9 0.9 1 1 

Eunotia/bilunaris  12 0.87 0.87 0.8 1 

Eunotia/denticulata  22 0.87 0.87 1 1 

Eunotia/incisa  20 1 0.96 1 1 

Eunotia/tenella  21 1 1 
1 

0.8

8 

Fallacia/forcipata  26 1 1 1 1 

Fallacia/sp.5  17 1 1 1 1 

Fragilariforma/bicapitata  20 1 1 1 1 

Gomphonema/augur  20 0.96 1 
0.91 

0.8

8 

Gomphonema/minutum  24 1 1 1 1 

Gomphonema/sp.1  20 1 0.96 
0.94 

0.8

4 

Gyrosigma/acuminatum  20 1 1 1 1 

Meridion/circulare  20 1 1 1 1 

Navicula__ 
24 0.9 0.9 

N/A 

N/

A 

Navicula/capitata  20 1 1 
1 

0.8

6 

Navicula/constans  22 1 0.96 1 1 

Navicula/gregaria  11 0.8 0.75 
0.88 

0.7

8 

Navicula/lanceolata  27 0.98 1 1 1 

Navicula/menisculus  18 1 1 1 1 

Navicula/radiosa  21 1 1 1 1 

Navicula/reinhardtii  29 0.96 1 1 1 

Navicula/rhynchocephala  19 0.94 1 1 1 

Navicula/viridula  19 1 0.97 0.94 1 

Nitzschia/dissipata  20 1 0.96 1 0.9 

Nitzschia/hantzschiana  20 1 1 
0.56 

0.8

3 

Nitzschia/sinuata  20 1 0.98 
1 

0.8

9 

Nitzschia/sp.2  27 0.98 1 
0.93 

0.7

9 

Opephora/olsenii  20 0.84 1 0.84 0.8



 

9 

Parlibellus/delognei  20 0.97 1 
1 

0.9

5 

Petroneis/humerosa  20 1 1 1 1 

Pinnularia/kuetzingii  21 1 1 1 1 

Pinnularia/silvatica  10 1 1 0.78 1 

Pinnularia/subcapitata  15 1 1 
N/A 

N/

A 

Sellaphora/bacillum  18 1 0.94 1 1 

Stauroneis/smithii  19 1 1 0.86 0.9 

Staurosirella/pinnata  17 0.95 1 
N/A 

N/

A 

Surirella/Surirella_brebissonii 26 1 
1 

1 

0.9

1 

Tabellaria_flocculosa__ 20 1 1 1 1 

Tabellaria_quadriseptata__ 23 1 1 1 1 

Tabularia_investiens__ 21 0.88 0.88 1 1 

Tabularia_sp.1__ 20 1 0.94 1 1 

 

7 Conclusion 

To summarize, we propose a system for hierarchical classification of diatom images 

using Transfer Learning from an ImageNet pre-trained InceptionV3 model. We ex-

plore two avenues of transfer, one of which is the typical approach of freezing most 

layers of the network and fine-tuning the final layers. This approach turns out to work 

very well and achieves the best results so far on the dataset at hand.  

The other transfer approach we explore is to use the features extracted from the fi-

nal convolutional layers of the pre-trained network. These are then used by ensembles 

of predictive clustering trees for hierarchical multi-label classification. Unfortunately, 

this approach does not perform very well, probably due to the ineffective use of the 

large number of features by the tree-based approaches. This hypothesis is supported 

by the fact that kernel-based approaches using the same features perform much better.  

Many avenues of further work remain to be explored. One of these is certainly the 

use of more recent and larger datasets of diatom images. Another is the use of both 

hand-crafted and more classical features (such as the Fourier descriptors and SIFT 

histograms), on one hand, and features extracted from CNNs, on the other hand. Us-

ing data augmentations is a further possibility to explore.  

CNNs have already been used for multi-label classification. However, our current 

approach was considering each of the species as a class value in a multi-class classifi-

cation problem, ignoring the hierarchy and the multi-label aspect. We will also ex-

plore the possibility to adapt CNNs for hierarchical multi-label classification.  
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