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We study Susceptible-Exposed-Asymptomatic-Infectious-Recovered (SEAIR) epidemic spreading
model of COVID-19. It captures two important characteristics of the infectiousness of COVID-19:
delayed start and its appearance before onset of symptoms, or even with total absence of them.
The model is theoretically analyzed in continuous-time compartmental version and discrete-time
version on random regular graphs and complex networks. We show analytically that there are
relationships between the epidemic thresholds and the equations for the susceptible populations at
the endemic equilibrium in all three versions, which hold when the epidemic is weak. We provide
theoretical arguments that eigenvector centrality of a node approximately determines its risk to
become infected.

I. INTRODUCTION

Understanding epidemic spreading of contagious dis-
eases and effectiveness of various countermeasures is of
high interest for the public health and the society in
general, with important contributions provided by epi-
demiologists, mathematicians and physicists as well. Al-
though earliest theoretical work in the mathematical epi-
demiology dates back to Daniel Bernoulli [1], the devel-
opment of the modern approach started in the begin-
ning of the past century [2–4]. In the last two decades,
since the emergence of the complex networks theory, epi-
demic modeling has gained novel insights. By model-
ing the contacts between the individuals with complex
networks, some associations were found between the epi-
demic threshold and the network properties like the de-
gree distribution or the leading eigenvalue of the adja-
cency matrix [5–10]. Moreover, the epidemic spreading
has grown as a concept that extends its original design
for modeling diffusion of infectious diseases to sharing
ideas, rumors, or computer viruses [9].
In the classical approach, the individuals are conve-

niently grouped in compartments or classes. The math-
ematical models for epidemic spreading in this setting
are systems of differential equations for the evolution of
the size of those compartments. In such models, there is
an assumption of homogeneous mixing, which means that
the pathogen can spread between each pair of individuals
with equal probability. In a more realistic modeling each
individual is considered as node in certain network of con-
tacts, where infection can spread only among neighbors
in that network. This is particularly relevant, because
real world networks besides being random, among oth-
ers they possess properties like small-world phenomenon
[11], or scale-free distribution of the node degrees [12].

∗
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One approach for studying the disease spreading on net-
works is the heterogeneous mean-field [6, 13] in which all
nodes with the same degree are assumed to be statisti-
cally equivalent. The quenched mean-field technique is
applied in even more realistic scenario, where each node
is treated separately [14, 15]. Among major contribu-
tions in the field of epidemic spreading on networks one
should mention the studies of disease localization [16, 17],
spreading on multilayer networks [17, 18], the assumption
of non-exponential distribution of periods between con-
secutive events [19, 20] and the effects of the delay in the
recovery [21] and in the infection [22].

Various infections are characterized with different
stages in the course of development of the disease in
the host, starting from contracting the pathogen to the
healing. Depending on the disease under study, several
compartments, or classes are defined in order to differ-
entiate between the stages. The most frequently used
compartments are the Susceptible (S), Exposed (E), In-
fectious (I) and Recovered (R) [9, 23]. The meaning of
the compartmental symbols usually is: S – healthy in-
dividuals subjected to infection, E – infected which do
not transmit the disease yet, I – infected and infectious
and R – cured which cannot become infected again. The
most popular models are the SIS and SIR, which are suf-
ficiently simple to provide mathematical tractability, and
powerful enough to capture the features of epidemics of
many contagious diseases [23].

In this theoretical work we consider the known
Susceptible-Exposed-Infected-Recovered (SEIR) model
augmented with another state, the asymptomatic state
(A), which precedes the infectious. The chosen SEAIR
model has a built-in delay which means that the infected
person do not start to spread the disease immediately,
allows to address the different contagiousness of the dis-
ease in different phases and captures the presence of un-
detected spreaders. Also, it is simple enough to allow for
theoretical study of different properties. We study the
SEAIR model with two approaches: the classical, which
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uses differential equations, and the one based on statis-
tical physics framework, in which is considered discrete-
time epidemic model on complex networks. We study the
latter model on random regular graphs and on complex
networks separately. For the three versions we obtain
the epidemic threshold, equation for the fraction of sus-
ceptible individuals at the end of epidemic and we study
the linear stability of the disease-free and endemic equi-
libria. The results for the random regular graphs hold
when the contagiousness is weak, while for the complex
networks it is also needed that epidemic is small-scale
one in a sense that it can affect a tiny fraction of the
population. We furthermore study the roles of the lead-
ing eigenvalue and the principal eigenvector of the adja-
cency matrix in the spreading. It is already known that
the leading eigenvalue determines the epidemic threshold
[14, 24]. We show that the principal eigenvector and its
associated eigenvector centrality have important role in
estimation of the risk of infection. We finally note that,
the techniques which are applied for analysis of the Jaco-
bian matrix at the equilibria might be relevant in studies
of linear stability of coupled multidimensional dynamical
systems.

The paper is organized as follows. First, in Section II
we present some of the relevant literature about epidemic
spreading models of COVID-19 and their relation to the
proposed model. Then, in Section III we introduce and
analyze the SEAIR compartmental model. In the fol-
lowing Section IV is studied the discrete-time version on
random regular graphs and complex networks, while in
Section V we present some results of the numerical ex-
periments. The paper ends with the Conclusion.

II. EPIDEMIC SPREADING MODELS OF

COVID-19 AND THEIR RELATION TO THE

SEAIR MODEL

The ongoing COVID-19 is the largest pandemic in
modern history. The understanding of the virus and its
influence on the infected individuals are still in progress.
However, it was established that a key feature is the pos-
sibility that an infected person can spread the disease
before onset of symptoms or without having them at all
[25, 26]. Another important observation is that the me-
dian incubation period of the disease is approximately
five days [27]. Thus, the asymptomatic spreaders and
individuals in the incubation period are hidden disease
carriers. Their presence poses a challenge in the control
of the epidemic, in the planning of healthcare capacity
buildup or the relaxation of lockdown measures, and even
for estimation of the population affected by the pathogen.
The mathematical models of the epidemic spreading are
adapted accordingly to capture the key features of the
spreading of the COVID-19, for which the most basic
and popular ones, SIS and SIR are not satisfactory. The
existence of incubation period is addressed by including
compartment of exposed individuals (E), which in certain

studies in the literature is denoted as latent. The absence
or presence of symptoms is addressed in different ways in
the literature. In one approach [28], it is considered pres-
ence of presymptomatic, or prodromic phase, where the
individual is already infectious, which is followed by ei-
ther asymptomatic or symptomatic phase which can have
three different severity levels. In another study [29], there
are separate latent compartments for the asymptomatic
and symptomatic individuals, and it is considered differ-
ent contagiousness by the infected individuals depending
on the presence or absence of symptoms. The observation
of existence of super spreaders of the disease was also in-
cluded in a mathematical model [30]. In the analysis per-
formed in [31], the infected persons which are detected,
either asymptomatic or symptomatic, are accounted in
separate class from those that are not. Since the quar-
antine is one of the key defence measures against the
spreading, the quarantined compartment was considered
as well in many works [32–35]. Also, to account for the
disease outcomes and the burden on the healthcare ca-
pacities were introduced compartments for the hospital-
ized, for those under intensive care, and for those which
did not survive the disease [28, 29, 34, 35].

From one side, the simpler models are easier to study
and in general provide better estimation of the model
parameters which are needed for making predictions for
future development of an epidemic. From another side,
the more complex models obviously allow for better de-
scription of certain features of particular epidemic like
the COVID-19. Thus, one has to make a choice about
what kind of model to apply in order to obtain partic-
ular insight. In this work, the aim is to work with a
model that will address the key features of COVID-19
epidemic, the latency and the existence of asymptomatic
transmission, and study it in frames of complex networks
theory which accounts for nontrivial pattern of contacts
between the individuals. Accordingly, we separate the
disease transmitters in two compartments. In the asymp-
tomatic one is included an individual which do not have
symptoms at the moment of transmission of the virus, re-
gardless whether he or she will obtain them later or not.
In the infectious compartment are accounted the persons
which can infect the others and have symptoms already.
Thus, in the asymptomatic and infectious compartments
are included the three kinds of disease spreaders: al-
ways asymptomatic, currently asymptomatic which will
develop symptoms later and symptomatic. More detailed
description of the SEAIR model are given in the fol-
lowing two sections. We finally note that the proposed
model can be considered as similar to that in [36], where
the individuals which are not detected as carriers of the
virus are considered as unreported to the authorities and
can transmit the disease, while the reported, or detected
ones, do not contribute to the spreading. Another model
closely related to SEAIR is that in [37], because it also
has incorporated pre-symptomatic transmission and two
different compartments for the asymptomatic and symp-
tomatic individuals.
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III. SEAIR COMPARTMENTAL MODEL

Let the variables S, E, A, I and R denote the frac-
tion of individuals which are respectively susceptible, ex-
posed, asymptomatic, infectious and recovered. We as-
sume that the exposed state corresponds to the incuba-
tion period when a host has the pathogen, but he or she
cannot infect the others. In the asymptomatic state the
individual spreads the disease, possibly with higher vir-
ulence without being aware about having the virus. The
person can even recover without ever noticing that he,
or she had the disease. Certain percentage of carriers of
the virus will show symptoms and we classify them as
infectious. Let the infecting rate of the asymptomatic
persons be α, while of infectious ones be β. The rate
at which exposed individuals become asymptomatic is
γ. The growth of the fraction of infectious hosts, which
have symptoms is determined with rate σ. For simplic-
ity, we assume that healing of both the asymptomatic
and infectious persons is modeled with the same rate µ.
We emphasize that µ does not exactly correspond to the
time of complete healing, but the period in which a per-
son can infect the others. With these assumptions one
has the following SEAIR compartmental model

Ṡ = −αAS − βIS,

Ė = αAS + βIS − γE,

Ȧ = γE − σA− µA,

İ = σA− µI,

Ṙ = µA+ µI. (1)

We have neglected the births and deaths in the popula-
tion and one can easily verify that the total number of
persons in all states is constant, S(t)+E(t)+A(t)+I(t)+
R(t) = 1.
One trivial solution of the system (1) is the disease-free

state S = 1, when the pathogen is absent. If some virus
is introduced, an epidemic can occur. Then there is an
endemic equilibrium which corresponds to the situation
when the fraction of susceptibles is not sufficient for fur-
ther spread of the disease. When epidemic occurs, the
number of unaffected people can be obtained by stan-
dard technique which will be applied here [38]. For the
SEAIR model, if we sum the top four equations in (1),
the following relationship will hold

d(S + E +A+ I)

dt
= −µ(A+ I). (2)

In situations when the epidemic starts with negligibly
small number of virus bearers, by taking that at the fin-
ish of the epidemic the fractions of individuals with the
pathogen is zero, after integration of the last equation,
one obtains

S(0)− S(∞) = µ

∫ ∞

0

[A(t) + I(t)] dt. (3)

The first equation in (1) can be rewritten as

dS

S
= −(αA+ βI)dt, (4)

which by integration will result in another relationship
between the initial and the final fractions of susceptibles

ln
S(0)

S(∞)
= α

∫ ∞

0

A(t)dt+ β

∫ ∞

0

I(t)dt. (5)

One can also integrate the fourth equation in (1) on
both sides to obtain

I∞ − I0 = σ

∫ ∞

0

A(t)dt− µ

∫ ∞

0

I(t)dt ≈ 0. (6)

The last result provides a relationship between asymp-
tomatic and infectious fractions in the course of the whole
epidemic

σ

∫ ∞

0

A(t)dt = µ

∫ ∞

0

I(t)dt. (7)

By combining the relationships (3), (5) and (7), the fol-
lowing equation for the fraction of unaffected individuals
is obtained

S(0)− S(∞) =
µ(µ+ σ)

αµ+ βσ
[lnS(0)− lnS(∞)] . (8)

Using the fact that f(x) = lnx is steeper than g(x) = x
for x < 1, one can verify that

S(0)− S(∞) < lnS(0)− lnS(∞). (9)

This implies that the transcendental equation (8) has a
solution only if

µ(µ+ σ) < αµ+ βσ. (10)

The last inequality is the condition of existence of en-
demic equilibrium S = S(∞);E = A = I = 0;R =
S(0)− S(∞) of the system (1).
To study the linear stability of the equilibrium states,

one should linearize the system (1). The respective Jaco-

bian matrix J = [∂Ḃ/∂C];B,C ∈ {S,E,A, I, R}, reads

J =

















−αA− βI 0 −αS −βS 0

αA + βI −γ αS βS 0

0 γ −σ − µ 0 0

0 0 σ −µ 0

0 0 µ µ 0

















. (11)

At the disease-free state for which S = 1 and E = A =
I = R = 0, the Jacobian has rather simple form

JDF =

















0 0 −α −β 0

0 −γ α β 0

0 γ −σ − µ 0 0

0 0 σ −µ 0

0 0 µ µ 0

















. (12)
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Because the first and last columns are zero, this Jacobian
has two trivial zero eigenvalues, while the other three are
the roots of the polynomial

R(λ) = (−µ− λ) [(−γ − λ)(−σ − µ− λ)− αγ] + βγσ.
(13)

We show in Appendix A that the three nontrivial eigen-
values of the Jacobian have negative real part, which im-
plies linear stability of the disease-free state, if the fol-
lowing relationship holds

µ(µ+ σ) > αµ+ βσ. (14)

The obtained inequality is opposite of the condition for
the existence of endemic equilibrium, as one can expect.
If (14) holds, (10) does not, the disease-free state is stable
and epidemic will not occur. In the opposite, if (14) is
not satisfied, the equilibrium (1, 0, 0, 0, 0) is unstable, the
epidemic will ensue, and the size of unaffected population
can be obtained from (8). Thus the threshold at which
epidemic can emerge is the following relationship

µ(µ+ σ) = αµ+ βσ. (15)

The linear stability analysis of the endemic equilibrium
can be applied by the same procedure as for the disease-
free one. In this case, in the Jacobian (11) one should
take S = S(∞) and E = A = I = 0. By applying the
same procedure which is explained in Appendix A, it will
be obtained that the only difference from the disease-free
case is that instead of α and β, it should be used S(∞)α
and S(∞)β, respectively. This would simply change the
condition for stability of the endemic equilibrium to

µ(µ+ σ) > S(∞)(αµ+ βσ). (16)

From (8) one has the following relationship for the frac-
tion containing the parameters

µ(µ+ σ)

αµ+ βσ
=

S(0)− S(∞)

lnS(0)− lnS(∞)
. (17)

Plugging the last relationship in (16), it will be obtained
that the endemic equilibrium is stable once the following
holds

S(0)− S(∞)

lnS(0)− lnS(∞)
> S(∞). (18)

The last inequality can be rearranged as

S(0)

S(∞)
> 1 + ln

S(0)

S(∞)
, (19)

which holds always since S(0) > S(∞).

IV. DISCRETE-TIME SEAIR MODEL

Subsequent investigation of a disease spreading model
when one needs to account for the contacts between the

individuals, is to study epidemic spreading on complex
networks framework. Let us consider discrete-time evo-
lution version of the proposed SEAIR model with finite
population of N individuals. The network of contacts
is conveniently modeled with fixed undirected graph, in
which the vertices are the individuals, while the links
exist between those persons which have contact to each
other. This means that the disease can be transmitted
only between neighbors in the graph. An exact approach
for analysis of contact-based spreading on complex net-
works is based on using indicator random variable for
each state of every node in the network and working with
a system of size 5N . However, as it is elaborated in de-
tails in [39], under the assumption that a node can be
in certain state independently of the states of the other
nodes, one can instead use the probability of being at
that state as a more convenient variable of interest. We
proceed in that spirit and build our model on the set of
probabilities for each node being in certain state, S, E, A,
I, or R, at given moment n. We will also denote the pa-
rameters with the same Greek letters as in the compart-
mental model. They correspond to the same transitions
and have meaning of probabilities instead of rates. To
be more precise, α is the probability that asymptomatic
person will infect a susceptible neighbor at one time step,
while β is the respective probability in the case of con-
tact between infectious and susceptible individual. Once
becoming exposed, the person can proceed into asymp-
tomatic phase with probability γ at one time step, or
remain in the same state with probability 1− γ. The re-
spective probability to show symptoms by asymptomatic
individual is σ. Again, as in the compartmental model,
we assume identical probability µ to become recovered,
for both the asymptomatic and the infectious state.
The dynamics of the discrete-time version of the

SEAIR model is built similarly to the model considered
in [14]. Denote the probabilities that the individual i at
the discrete moment n is in respective state with pS,i(n),
pE,i(n), pA,i(n), pI,i(n) and pR,i(n). Our model assumes
reactive process of epidemic spreading, which means that
in each time step every individual has contact with every
neighbor [40]. Then, certain susceptible person i at the
moment n+ 1 will not receive the infection from any of
its neighbors with probability [14, 40]

Pi(n) =
∏

j∈Ni

[1− αpA,j(n)− βpI,j(n)] , (20)

whereNi denotes the set of neighbors of i. The individual
will remain susceptible at the moment n+1, if he, or she,
did not receive the contagion, which means that

pS,i(n+ 1) = pS,i(n)Pi(n). (21)

Otherwise, an individual can become exposed if he, or she
has been susceptible before and received the contagion,
or continue to be exposed at the next moment, if the
incubation has not finished, with probability

pE,i(n+ 1) = pS,i(n) [1− Pi(n)] + (1− γ)pE,i(n). (22)
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The probability of being asymptomatic at the next mo-
ment is

pA,i(n+ 1) = γpE,i(n) + (1− σ − µ)pA,i(n), (23)

where the last term accounts for the situation that nei-
ther the symptoms will appear, nor healing will happen
in one time step, which imposes a restriction µ+ σ < 1.
The node i will be in state I at the moment n + 1 with
probability

pI,i(n+ 1) = σpA,i(n) + (1 − µ)pI,i(n), (24)

where the former term describes the probability to show
symptoms, if in the previous moment the node was
asymptomatic, while the last one corresponds to recover-
ing. Finally, the probability of being recovered at some
moment is

pR,i(n+ 1) = pR,i(n) + µ [pA,i(n) + pI,i(n)] . (25)

The set of equations (21) to (25) determines a discrete-
time dynamical system of equations for evolution of prob-
abilities of the states for each node in the network. It
can be solved numerically for arbitrary initial condition
and one can thus observe the progress of the epidemic
at each moment. In practice one can make such studies
with networks with size depending on the computational
capacities at hand.

A. Epidemic spreading on random regular graphs

We will pursue our analysis of spreading processes on
random regular graphs where each node has the same
degree k. For infinitely large random regular graphs, the
probabilities of the states are equal for all nodes and one
can drop the index of the node. The probability to avoid
infection (20) will be simplified to

P(n) = [1− αpA(n)− βpI(n)]
k . (26)

Then the system of equations for discrete-time epidemic
spreading on random regular graph reads

pS(n+ 1) = pS(n) [1− αpA(n)− βpI(n)]
k
,

pE(n+ 1) = pS(n)
{

1− [1− αpA(n)− βpI(n)]
k
}

+ (1− γ)pE(n),

pA(n+ 1) = γpE(n) + (1 − σ − µ)pA(n),

pI(n+ 1) = σpA(n) + (1− µ)pI(n),

pR(n+ 1) = pR(n) + µ [pA(n) + pI(n)] . (27)

Here we have also two equilibrium points: one where all
individuals are susceptible p = (1, 0, 0, 0, 0) and the other
when the fraction of susceptible individuals is such that it
prevents further spread of the disease p = (p∗S , 0, 0, 0, 1−
p∗S). In the Appendix B we show how application of
similar reasoning as for the compartmental model can

allow to find a closed form equation for the number of
susceptible individuals at the end of the epidemic. It
can be applied when the contagion probabilities α and
β are very small. As it is shown in the Appendix B,
the equation for determination of the probability of the
susceptible state at the end of epidemic is very similar to
the respective one for the compartmental case

pS(0)− pS(∞) =
µ(µ+ σ)

k(αµ+ βσ)
ln

pS(0)

pS(∞)
. (28)

The last result extends the one for all-to-all coupling con-
sidered in compartmental models, where effectively each
individual can get the disease from anyone in the popu-
lation. Here, it is obtained that appropriately modified
relationship holds for restricted number of contacts. By
repeating the same analysis as for the compartmental
model, one can also obtain that the condition for exis-
tence of endemic equilibrium is

µ(µ+ σ) < k(αµ+ βσ). (29)

One can note that the last relationship is similar to the
respective one for the compartmental model (10), and
the only difference is the presence of the node degree k
in the discrete-time case.
We can further make linear stability analysis of equi-

libria by linearizing the evolution equations. The re-
spective Jacobian matrix at the fixed points for which
pE = pA = pI = 0 and pS = p∗S is

J =

















1 0 −kαp∗S −kβp∗S 0

0 1− γ kαp∗S kβp∗S 0

0 γ 1− σ − µ 0 0

0 0 σ 1− µ 0

0 0 µ µ 1

















. (30)

Solving the characteristic equation Q(λ) = det(J−λI) =
0 of the Jacobian (30), for p∗S = 1 will result in two trivial
eigenvalues equal to one and other three. We note that in
the discrete-time case the trivial eigenvalues have value
equal to one that also corresponds to the marginal stabil-
ity, which are zero in the continuous-time scenario. The
nontrivial eigenvalues λ are the roots of the polynomial

S(λ) = (1− µ− λ) [(1 − γ − λ)(1 − σ − µ− λ)− αγk]

+ βγσk. (31)

One can notice the similarity to the respective character-
istic polynomial for the compartmental case (13). The
only difference is presence of the degree k which in the
latter expression multiplies α and β and one has 1−λ in
the discrete-time case instead of −λ. In the Appendix C
it is shown that the disease-free state is stable once the
following relationship is satisfied

µ(µ+ σ) > k(αµ+ βσ), (32)

which is similar to the one for the compartmental case.
Again, the only difference is the presence of the node
degree k.
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The linear stability of the endemic equilibrium is estab-
lished from the leading eigenvalue of the same Jacobian
matrix (30) as the disease-free one, but using p∗S = pS(∞)
obtained from (28). The procedure is nearly the same as
for the disease-free equilibrium and the only difference
is that instead of k one should use kpS(∞) in all analy-
sis. Then the endemic equilibrium will be stable, if the
condition similar to (32) is satisfied

µ(µ+ σ) > kpS(∞)(αµ+ βσ). (33)

Without showing the details, we will just mention that
once the endemic equilibrium in this discrete-time disease
spreading model exists, it is linearly stable.

B. Epidemic spreading on complex networks

Let us now consider the general case when the contacts
between individuals are described with complex network.
In studies of interacting units coupled in a network it is
typical to define the state of the whole system by stacking
the state vectors of each node one on top of another. In
this case another ordering is more appropriate [24]. First,
create vector of the probabilities of susceptible states of
all nodes pS = [pS,1, pS,2, . . . , pS,N ]T, then those of the
exposed states pE = [pE,1, pE,2, . . . , pE,N ]T, and likewise
for the remaining three pA, pI and pR. Also, denote
with A the adjacency matrix of the network of contacts
between the individuals with elements Ai,j = 1 only if
nodes i and j are neighbors and Ai,j = 0 otherwise. Un-
der general circumstances, determination of the proba-
bilities at the end of epidemic in case it happens, is very
complicated, if not impossible. However, when the con-
tagiousness is weak, which means that α ≪ 1 and β ≪ 1,
one can obtain similar expressions which relate initial and
final probabilities of susceptible state as for the former
two models. As it is explained in details in the Appendix
D, when α ≪ 1 and β ≪ 1, the susceptibility probability
vector can be calculated from the following self-consistent
system

pS(0)− pS(∞) = µ(1 +
σ

µ
)

∞
∑

n=0

pA(n),

lnpS(0)− lnpS(∞) =

(

α+ β
σ

µ

)

A

∞
∑

n=0

pA(n). (34)

The solution of the system of transcendental equations
(34) consists of the susceptibility vector at the endemic
equilibrium pS(∞) and the vector of sums of probabili-
ties of asymptomatic states

pA =

∞
∑

n=0

pA(n). (35)

Such transcendental system should be solved numerically,
and for large networks might be impossible task. How-
ever, one can at least obtain how the solution will look

like, when the epidemic is weak in a sense that only
small fraction of the population is infected during its
course. In such case the probability of susceptibility will
not change significantly pS(0) ≈ pS(∞). This situation
might be present, for example, when the contagiousness
of the pathogens is slightly over the threshold. Then one
can keep only the leading terms in the expansion of the
logarithm and obtain

ln pS,i(0)− ln pS,i(∞) ≈ pS,i(0)− pS,i(∞). (36)

The last approximation means that effectively the left
hand sides of relationships (34) are equal. Then, after
some algebra, by using (35), from those relationships one
can obtain

pA =
αµ+ βσ

µ(µ+ σ)
ApA. (37)

The last relationship is eigenvalue equation of a matrix
which is the adjacency matrix multiplied by the scalar
(αµ + βσ)/[µ(µ + σ)], which corresponds to eigenvalue
equal to one. Thus, the vector of sums of the probabilities
of the asymptomatic state (35) represents eigenvector of
the adjacency matrix that corresponds to the eigenvalue
Λ such that

1 = Λ
αµ+ βσ

µ(µ+ σ)
. (38)

To determine which is the eigenvalue Λ, observe that we
can apply similar inequality as (9), which means that for
each node i one has

pS,i(0)− pS,i(∞) < ln pS,i(0)− ln pS,i(∞). (39)

This implies that one has the following vector inequality

pA <
αµ+ βσ

µ(µ+ σ)
ApA, (40)

which is obtained from (34) with simple algebra. When
the epidemic parameters are such that

Λmax
αµ+ βσ

µ(µ+ σ)
< 1, (41)

where Λmax is the largest eigenvalue of A, then (38) can
not be satisfied for no one eigenvalue. That is the condi-
tion when endemic equilibrium does not exist. To deter-
mine when it will emerge, one should increase the value
of the fraction in (41), by modifying the epidemic pa-
rameters. Then, the first eigenvalue that can satisfy the
equation as (38) will be exactly the largest eigenvalue
Λmax. Thus the condition for existence of endemic equi-
librium is

µ(µ+ σ) < Λmax(αµ+ βσ). (42)

The last result is generalization of the case of random
regular graph for which Λmax = k.
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Because the leading eigenvalue of the adjacency matrix
A determines the equation for pA, that vector is deter-
mined from the respective eigenvector, or the principal
eigenvector of A. However, the eigenvalue equation (37)
just determines the relative magnitudes of the compo-
nents of pA. If it is used in the system (34), it will be
obtained that for each node the change in the probabil-
ity of being susceptible is the same, which counters the
fact that it corresponds to the respective component of
the principal eigenvector. We further note that from (34)
the relative magnitudes of the changes of the probabili-
ties of susceptible state pS,i(0)−pS,i(∞), and the result-
ing probabilities of recovered state pR,i(∞), as collinear
to pA, are also proportional to the principal eigenvector
of the adjacency matrix. This is in accordance to the
reasoning that the individuals with highest risk of infec-
tion are those with many contacts, and particularly those
which have many high-degree neighbors. Thus the eigen-
vector centrality of the node [41], which is the respec-
tive component in the principal eigenvector, determines
the risk of infection of that node. We note that, by ap-
plying this procedure one can also show that the same
conclusions about the role of the leading eigenvalue and
principal eigenvector in epidemic spreading on complex
networks hold for the simpler SEIR, SIR and SIS models.

It should be emphasized that, there are works in the
literature which point that the principal eigenvector of
the adjacency matrix can have important role in disease
spreading. The probability of infectious state of a node in
SIS spreading model on complex networks was found to
be proportional to the eigenvector centrality, in vicinity
of the epidemic threshold [16], similarly as the analy-
sis above claims. This finding was further extended to
multilayer networks [17]. It was reported in the same
contributions, that if the structure of the network is such
that the principal eigenvector is localized, the spreading
will be limited to small number of nodes, even for large
networks. Thus, the association between the eigenvector
centrality and probability of becoming infected might not
be observed in certain scenarios. Such example could be
observed, for example, in structured network with com-
munities, when the virus starts spreading in a node in one
community, while principal eigenvector has significantly
large components in the other communities. Thus, more
research on this issue is needed for better understanding
of the conditions when the principal eigenvector is really
useful in estimation of the risk of infection. Finally, it is
worth noting that it was found that the principal eigen-
vector of another matrix – the submatrix correspond-
ing to the infectious states – also determines the disease
spreading pathways. This observation has appeared in
the studies of disease spreading between spatial regions
in a waterborne disease [42] and COVID-19 [34].

We now proceed with the study of the stability of
the disease-free equilibrium and determine the epidemic
threshold. The associated Jacobian matrix is obtained
by taking the respective derivatives in the equations (21)
to (25). Also, we remind that after making differentia-

tion, at the epidemic inception, in the Jacobian it should
be taken pE,i = 0, pA,i = 0, pI,i = 0 and pS,i = 1. It
can be verified that the Jacobian will have the following
matrix form

J =

















I 0 −αA −βA 0

0 (1− γ)I αA βA 0

0 γI (1− σ − µ)I 0 0

0 0 σI (1− µ)I 0

0 0 µI µI I

















, (43)

where I is identity matrix of the same size N as the adja-
cency matrix of the network A – the number of nodes in
the network. One can note the similarity in the structure
between the last matrix and that in (30). The eigenvalues
of the last Jacobian are obtained from the characteristic
equation T (λ) = det(J − λI5N ) = 0, where we empha-
size that the involved identity matrix has size 5N × 5N .
One could use the approach given in [24] to determine
the dependence of the epidemic threshold on the largest
eigenvalue of the adjacency matrix. We have chosen al-
ternative approach here, based on Schur’s determinant
identity

det

[

Q R

S T

]

= det(T) · det(Q−RT−1S), (44)

which is more general. Clearly, when a matrix has many
zero submatrices, its application provides simpler results.
By repetitive use of it, which is elaborated in the Ap-
pendix E, it can be shown that the nontrivial eigenvalues
can be obtained from the polynomial corresponding to
the following determinant

V(λ) = det

[

(1− γ − λ)(1 − σ − µ− λ)(1 − µ− λ)

γ[α(1− µ− λ)− βσ]
I−A

]

.

(45)
We note that the same determinant can be obtained by
the procedure given in the Appendix G which even de-
livers the eigenvectors of the Jacobian. Currently, we
cannot state whether the approach in Appendix E is just
an alternative, or it might have potential to provide re-
sults when the latter is not useful. To continue with the
analysis, one can substitute the multiplier of the identity
matrix in the last equation as

Λ =
(1− γ − λ)(1 − σ − µ− λ)(1 − µ− λ)

γ[α(1− µ− λ)− βσ]
, (46)

and will obtain the characteristic function for deter-
mination of the eigenvalues of the adjacency matrix,
det(ΛI − A). From the relationship (46) it can be seen
that to each eigenvalue of the adjacency matrix Λ cor-
respond three eigenvalues of the Jacobian λ, which are
obtained from the polynomial

SΛ(λ) = (1− µ− λ) [(1− γ − λ)(1− σ − µ− λ)− αγΛ]

+ βγσΛ. (47)
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The last relationship will be identical to the respective
one for the random regular graph (31), if one substitutes
Λ with k. Because all eigenvalues Λ of the adjacency
matrix are real [43], the coefficients in the last polyno-
mial in λ are also real for each Λ. Instead of checking
whether the roots of the last polynomial are within the
unit circle, one can determine the eigenvalues of the re-
lated polynomial that corresponds to the Jacobian of the
compartmental model (13), and then use the relation-
ship between the roots of the characteristic polynomi-
als of the compartmental and discrete-time models (C5).
The disease-free state of the model on complex network
is unstable, if there is at least one eigenvalue Λ of the ad-
jacency matrix, for which there is a real positive root of
the polynomial (47) in which one should use −λ instead
of 1 − λ. This situation happens when parameters are
such that the following inequality holds

µ(µ+ σ) < Λ(αµ+ βσ). (48)

In determination of the epidemic threshold in SIS and
SIR models, usually the fraction between the contagious-
ness and recovery parameters is varied. Since the last
inequality is a bit more complex than those in the SIS
and SIR models, for the SEAIR model one can use the
parameters α and β as bifurcation parameters. Then
from the last inequality the smallest α and β for which
the disease-free state is unstable are those obtained for
the largest Λ, that is the leading eigenvalue of the adja-
cency matrix Λmax. Thus, the same condition (42) im-
plies existence of endemic equilibrium and instability of
the disease-free state. If the opposite is true,

µ(µ+ σ) > Λmax(αµ+ βσ), (49)

then the disease-free state will be stable. The last in-
equality can be seen as generalization of the respective
one for the random regular graphs (32).
Let us proceed with determination of the linear sta-

bility of the endemic state. To determine the respective
Jacobian matrix, first observe the following derivatives

∂pS,i
∂pA,j

= −αpS,iAi,j ,
∂pS,i
∂pI,j

= −βpS,iAi,j ,

∂pE,i

∂pA,j
= αpS,iAi,j ,

∂pE,i

∂pI,j
= βpS,iAi,j , (50)

where Ai,j is the i, j-th element of the adjacency ma-
trix. The remaining partial derivatives in the Jacobian
matrix are the same as for the disease-free state and are
conveniently captured in the respective submatrices in
(43). The form of the partial derivatives (50) is such
that for each pS,i they have identical form and likewise
for the pE,i. To write a more compact form for express-
ing such relationship, one can introduce a diagonal ma-
trix Σ which contains the endemic equilibrium probabil-
ities pS,i(∞) along the diagonal Σi,i = pS,i(∞). Then,
one can obtain that the partial derivatives between the
susceptibility and exposed vectors with respect to the

asymptomatic and infectious vectors can be compactly
written as

∂pS

∂pA
= −αΣA,

∂pS

∂pI
= −βΣA,

∂pE

∂pA
= αΣA,

∂pE

∂pI
= βΣA. (51)

Now, the Jacobian of the endemic equilibrium differs
from that for the disease-free one, only in that it con-
tains the matrix product ΣA instead of A. Respectively,
the stability of the endemic equilibrium will depend on
the leading eigenvalue Lmax of the matrix product ΣA.
Thus, the stability condition is similar to that for the
disease-free state (49)

µ(µ+ σ) > Lmax(αµ+ βσ). (52)

In the Appendix F it is shown that in case of small con-
tagiousness α ≪ 1 and β ≪ 1 and when epidemic affects
small population during its course, the endemic equilib-
rium is linearly stable.
Let us finally examine the behavior of the disease

spreading in the early phase of epidemic. The one-step
evolution of the probabilities of different states in disease
spreading on complex networks is given by equations (21)
to (25). One can combine all probabilities in single col-
umn vector as p = [pT

S ,p
T
E ,p

T
A,p

T
I ,p

T
R]

T and the right
hand sides of the probability evolution equations in a vec-
tor F . Then, one-step evolution of the probabilities can
be compactly written in vector notation as

p(n+ 1) = F [p(n)] . (53)

Consider early stages of the epidemics, when the states
p(n) are sufficiently close to the disease-free equilibrium
pDF = F [pDF]. Denote with δp(n) = p(n) − pDF the
deviation from the disease-free state. Then from (53) one
has

δp(n+ 1) = p(n+ 1)− pDF = F [p(n)]− pDF. (54)

The linear approximation of the nonlinear function F in
vicinity of the disease-free state is

F [p(n)] ≈ F [pDF] + JDF [p(n)− pDF]

= pDF + JDFδp(n), (55)

where JDF is the Jacobian at the disease-free state. It
means that consecutive perturbations satisfy simple re-
lationship

δp(n+ 1) ≈ JDFδp(n). (56)

Thus, at the early phase of an epidemic, the perturbation
at given moment n is approximately given as

δp(n) ≈ Jn
DFδp(0). (57)

Denote with zi the eigenvector of the Jacobian JDF

that corresponds to the eigenvalue λi. Consider situa-
tion when the eigenvectors zi constitute an orthonormal



9

basis, in which the perturbation δp(0) can be expressed
in terms of the Jacobian basis vectors as

δp(0) =
5N
∑

i=1

pizi. (58)

Then, after n time steps the perturbation will approxi-
mately evolve to

δp(n) = Jn
DFδp(0) =

5N
∑

i=1

piλ
n
i zi. (59)

It is clear that as the number of steps n increases, the
projection along the principal eigenvector will dominate
the others. It means that one can use the approximation

δp(n) ≈ pmaxλ
n
maxzmax, (60)

where pmax is the projection of the initial perturbation
along the principal eigenvector zmax. In the Appendix G
it is explained that when the epidemic starts the leading
eigenvalue of the Jacobian λmax depends on that of the
adjacency matrix Λmax and that the principal eigenvec-
tor of the Jacobian in that case is determined with the
principal eigenvector of the adjacency matrix. Thus, the
latter determines the evolution of the epidemics at the
early stages. We emphasize that this is an approximation
since as n grows, the Jacobian which is used, represents
the nonlinear evolution less accurately, because the state
of the system goes away from the disease-free one. Al-
though being an approximation, the last result provides
an estimate of the risk of being infected of the nodes in
a network, by the respective eigenvector centrality.

V. NUMERICAL EXPERIMENTS AND

DISCUSSION

The focus of numerical experiments in this work is put
on validation of the theoretical results for the discrete-
time SEAIR model. The theoretical analysis of the com-
partmental model was classical and did not bring any
significant novelty, which is not known for the other com-
partmental models. Thus, the potential of the compart-
mental model should be tested on real data, which is left
for future study.
We have made simulations of disease spreading on ran-

dom regular graphs by numerical solution of the evolution
equations (27). The aim of these numerical experiments
was to check the validity of the epidemic threshold re-
lationships, as well as the equation for the fraction of
the susceptible individuals at the end of the epidemic
(28). For computational reasons, for this and the other
numerical experiments in this work, we have considered
networks with 1000 nodes. All versions of the SEAIR
epidemic spreading model considered here, have five pa-
rameters α, β, σ, µ and γ. However, theoretical analy-
sis in previous sections has shown that only the first

four of them are relevant for determination of the epi-
demic threshold and the susceptible fraction at the end
of the epidemic. The contagiousness parameters’ values,
α = 0.0025 and β = 0.002 < α were chosen arbitrarily,
by caring to be small to ensure that the approximations
made in the theoretical analysis are justified and using
the observation that for COVID-19 contagiousness is big-
ger before the onset of symptoms. We have taken γ = 0.5
which should correspond to two days mean period of in-
cubation, while the value of σ = 0.2 was chosen arbitrar-
ily. The critical parameter µ0 was calculated from the
following quadratic equation

k
αµ0 + βσ

µ0(µ0 + σ)
= 1, (61)

which is obtained from the condition for emergence of
endemic state for the random regular graphs (29). The
value of the parameter µ was varied in the vicinity of
µ0. All simulations were repeated for ten different net-
works and for each network ten different initializations
were made by putting a randomly chosen node in ex-
posed state (patient zero), while leaving the remaining
ones as susceptible. The pathogen was considered as ex-
tinct at the moment when the total fraction of exposed,
asymptomatic and infectious individuals is smaller than
10−8 of the population. In the figure 1 are shown the av-
erage number of the susceptible individuals at the end of
the epidemic. The number of susceptible individuals for
each particular simulation is simply sum of the probabili-
ties of the susceptible state over all nodes. The averaging
was performed for all networks from the same type and
for all initial conditions. In the blue diamonds are given
the results for the random regular graph with node de-
gree k = 50, while with red circles are those for random
graph with constant degree distribution in the interval
[30, 70]. We emphasize that in this figure the threshold
value µ0 is obtained for the random regular graph and
the same value is used for the others. Both considered
kinds of graphs have the same average degree, and thus
show similar results, particularly when one is far enough
from the threshold µ = µ0. In vicinity of µ0, as was the-
oretically shown for general complex networks, the epi-
demic threshold depends on the leading eigenvalue as is
given in (42), which for the graph with distributed node
degree is greater than the average degree Λmax > 〈k〉
as the Perron-Frobenius theorem claims [43]. Thus, for
the same µ one expects more infected individuals for the
graphs with distributed degree. The results from the
simulations are further compared with theoretical values
obtained from (28) for random regular graph with k = 50
nodes, which holds for network with infinite number of
nodes. It can be seen a noticeable difference between
the theoretical curve and the simulations. One reason
for such discrepancy could be attributed in the fact that
the theoretical results hold for infinitely large networks.
The other factor is the way of initialization of the epi-
demics, which even in case of stable disease-free state,
µ > µ0, produces a small fraction of potentially infected
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FIG. 1: and 1000 nodes. ]Disease spreading on random regular

graph and random graph with constant degree

distribution.The curves represent the dependence of the
number of susceptible individuals at the end of the epidemic

on the parameter µ. The meaning of the symbols is the
following: orange stars theoretical values from eq. for (28)
for infinite-size random regular graph with node degree 50;
blue diamonds – random regular graph with the same degree
and 1000 nodes; red circles – random graph with uniform

degree distribution in [30,70] and 1000 nodes.

individuals – at least the neighbors of the patient zero.
Next, we have considered disease spreading on Erdős-

Rényi (ER) [44] and Barabási-Albert (BA) [12] models
of complex networks. Within the ER model, we have
considered probability of existence of link between each
pair of nodes pER ∈ {0.01, 0.03, 0.05} and generated ten
different networks for each case. For the BA complex
networks we have taken four different values of the seed
m ∈ {5, 10, 15, 20}. As for the random regular graphs, for
each ER and BA network ten different initial conditions
were considered. The parameter values for α, β, γ and σ
were taken identical as for the random regular graphs. In
the figure 2 are shown the average number of susceptible
individuals and the correlation coefficient between the
recovered probability vector and the principal eigenvector
of the adjacency matrix at the end of epidemic. Here,
the threshold value µ0 was calculated for each network
separately from the equation

Λmax
αµ0 + βσ

µ0(µ0 + σ)
= 1, (62)

where Λmax is the leading eigenvalue of the given net-
work.
In the figure 2 can be seen that as the parameter µ

increases towards the critical value µ0, the number of
susceptible at the endemic equilibrium approaches the
total number of individuals, as it is expected. We re-
mark that it is not equal to the total population even
when the conditions of epidemic are not satisfied, because
there is certain probability that the patient zero will in-
fect some neighboring nodes. However, this is finite size
effect, and in infinitely large network the fraction of in-

fected individuals is expected to be infinitesimally small
in general. We remind that, in the related case, when
the epidemic threshold is barely passed, for networks in
which the principal eigenvector of the adjacency matrix
is localized, only infinitesimal fraction of the population
will be affected [16], although for general networks it will
be finite. One can also notice that the results about
the ER network look that it is more prone to epidemic.
This deception appears because the horizontal axis is in
the units of the threshold value µ0 and not the absolute
terms. We emphasize that, as it is well known, for infi-
nite size BA networks the respective leading eigenvalue is
infinite, and thus the threshold value of the contagious-
ness parameter is vanishing [6]. In our analysis of such
networks, where the parameter µ is chosen to be varied,
its critical value µ0 diverges for infinite networks.

The rather high value of the correlation coefficient ρ,
when disease is spreading suggests that indeed the prin-
cipal eigenvector predicts the pattern of infection. When
the epidemic is not possible, µ > µ0, the correlation does
not drop sharply, due to the finite size effects. Near the
epidemic threshold there is nonzero probability of infect-
ing the neighborhood by the initially exposed node, and
particularly those with higher eigenvector centrality.

We have finally studied the behaviour of the epidemics
at the onset in order to verify which nodes bear the high-
est risk of contracting the disease. As common wisdom
suggests, highly connected nodes, and particularly those
with well connected neighbors are most risky ones – just
as the eigenvector centrality ranks the nodes. For that
reason we have calculated the evolution of the correlation
coefficient between the principal eigenvector of the adja-
cency matrix and the probability vector of the recovered
state as the epidemic unfolds. In the figure 3 is shown
the correlation coefficient as function of time. For the BA
network shown at right the parameters have the same val-
ues as previously, while for the ER network (at left panel)
α = 0.05 and β = 0.04, while γ and σ are the same as in
the other simulations. One can note that generally in the
early stages of the disease outbreak very high correlation
is achieved, which confirms that the eigenvector central-
ity predicts rather well the riskiness of contraction of the
pathogen. As the epidemics fades out the correlation
might drop, because for certain parameter combinations
majority of population has high chance of becoming in-
fected and this infection pattern can differ significantly
from the predictions by the principal eigenvector of the
adjacency matrix. However, the lowest curve for the ER
network model shows that this is not always happening.
In such situation, when epidemic is barely possible, only
small fraction of population can be affected, particularly
those which are close to the patient zero. This observa-
tion suggests further investigation of the pattern of risk
in case of such small outbreaks.
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FIG. 2: Discrete-time epidemic model on complex networks at the end of epidemic. In all panels ten
different complex networks with 1000 nodes are considered. The seed of generating the BA networks, m, and the
link probability for ER networks pER is given in the inset. In the top panels are shown the average number of

susceptible individuals 〈S〉, while at bottom are average correlation coefficients 〈ρ〉 between the number of recovered
individuals and the principal eigenvector of the respective adjacency matrix. The horizontal axis is given in units of
the critical value of the parameter µ0 at the epidemic threshold which is calculated for each network separately.

VI. CONCLUSIONS

We have studied SEAIR epidemic spreading model
aimed to capture the contagiousness features of COVID-
19. Theoretical analysis were made for the compartmen-
tal version as well as for discrete-time epidemic spreading
on random regular graphs and complex networks. For the
compartmental model the epidemic threshold was found
and it was shown that it also determines the emergence
of endemic equilibrium as well. When the contagious-
ness is weak, we have shown that for random regular
graphs and complex networks the epidemic threshold ob-
tained from stability analysis of the disease-free state de-
pends in a similar way on the model parameters. As
is known for many other disease spreading models, the
epidemic threshold was obtained to depend on the lead-
ing eigenvalue of the adjacency matrix. We have also
demonstrated that when endemic equilibrium exists, it is
linearly stable in the three considered models. The the-
oretical analysis in this work has shown that the risk for

infection of certain node is dependent on its eigenvector
centrality. In early stages of epidemics, the eigenvector
centrality points which nodes are most likely to be first
to contract the disease, while in case of mild epidemic on
complex network, it shows which nodes have more risk
to contract the disease during the whole course of the
epidemic.
The analysis of the linear stability was based on two

approaches. By appropriately organizing the probabili-
ties of various states as dynamical variables it was ob-
tained the Jacobian matrix of the equilibria which has
form that allows analytical treatment. The first ap-
proach was based on applying Schur’s determinant iden-
tity which lead to result that the nontrivial eigenvalues of
the Jacobian are related to those of the adjacency matrix.
In the second approach we have furthermore shown that
eigenvectors corresponding to the nontrivial eigenvalues
of the Jacobian are combinations of scaled eigenvectors
of the adjacency matrix. We believe that these two tech-
niques can be applied in a range of studies where multidi-
mensional dynamical systems interact through complex
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FIG. 3: Evolution of correlation coefficient between the principal eigenvector of the adjacency matrix
and the vector of probability of recovered state in ER (left panel) and BA (right panel) complex

networks. The considered networks have 1000 nodes. Each curve is obtained by averaging ten networks with the
same parameters and ten randomly chosen initially infected nodes for each network.

topology of contacts.

Although the motivation for studying the SEAIR epi-
demic spreading model was the COVID-19 pandemic, we
did not make any testing about its relevance on real data.
Naturally, it is the first study which should follow this
one. One of the key issues would be inference of the frac-
tion of the population which has contracted the disease,
but has not shown symptoms at all. This could help in
estimating the likelihood of reappearance of the epidemic
and its possible size, once it weakens. Since, in general,
contagiousness parameters change during epidemic, test-
ing the validity of the relationships for the fraction of
susceptible individuals at the end of epidemic might not

be easy task. However, at the early phase of an epi-
demic these parameters could be considered as constant.
Then, by using real data, it could be verified how well the
eigenvector centrality anticipates which individuals bear
highest risk of infection. If it proves to be useful predic-
tor, then a follow up is investigation of its relevance to
planning of vaccination and other protective measures.
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Lett. 118, 128301 (2017).
[21] C.-y. Xia, Z. Wang, J. Sanz, S. Meloni, and Y. Moreno,

Physica A 392, 1577 (2013).
[22] C. Xia, L. Wang, S. Sun, and J. Wang, Nonlinear Dyn.

69, 927 (2012).
[23] H. W. Hethcote, SIAM Rev. 42, 599 (2000).
[24] B. A. Prakash, D. Chakrabarti, M. Faloutsos, N. Valler,

and C. Faloutsos, arXiv preprint arXiv:1004.0060 (2010).
[25] X. He, E. H. Lau, P. Wu, X. Deng, J. Wang, X. Hao,



13

Y. C. Lau, J. Y. Wong, Y. Guan, X. Tan, et al., Nat.
Med. 26, 672 (2020).

[26] Z. Du, X. Xu, Y. Wu, L. Wang, B. J. Cowling, and L. A.
Meyers, Emerg. Infect. Dis. 26, 1341 (2020).

[27] S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng,
H. R. Meredith, A. S. Azman, N. G. Reich, and
J. Lessler, Ann. Intern. Med. 172, 577 (2020).

[28] L. Di Domenico, G. Pullano, C. E. Sabbatini, P.-Y.
Boëlle, and V. Colizza, medRxiv (2020).

[29] A. Aleta, D. Martin-Corral, A. P. y Piontti, M. Ajelli,
M. Litvinova, M. Chinazzi, N. E. Dean, M. E. Halloran,
I. M. Longini Jr, S. Merler, et al., medRxiv (2020).

[30] F. Ndairou, I. Area, J. J. Nieto, and D. F. Torres, Chaos
Soliton. Fract. 135, 109846 (2020).

[31] G. Giordano, F. Blanchini, R. Bruno, P. Colaneri,
A. Di Filippo, A. Di Matteo, and M. Colaneri, Nat.
Med. , 1 (2020).

[32] S. Zhao and H. Chen, Quant. Biol. 8, 11 (2020).
[33] L. Peng, W. Yang, D. Zhang, C. Zhuge, and L. Hong,

arXiv preprint arXiv:2002.06563 (2020).
[34] M. Gatto, E. Bertuzzo, L. Mari, S. Miccoli, L. Car-

raro, R. Casagrandi, and A. Rinaldo, PNAS 117, 10484
(2020).

[35] K. N. Nabi, Chaos Soliton. Fract. , 110046 (2020).
[36] Z. Liu, P. Magal, O. Seydi, and G. Webb, Infect. Dis.

Model. (2020).
[37] J. Arino and S. Portet, Infect. Dis. Model. (2020).
[38] F. Brauer, C. Castillo-Chavez, and Z. Feng, Mathemat-

ical Models in Epidemiology (Springer, 2019).
[39] P. Van Mieghem, arXiv preprint arXiv:1402.1731 (2014).
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Appendix A: Stability condition for the disease-free

equilibrium in the compartmental model

As is given in the main text, the eigenvalues of the
Jacobian at the disease-free state of the compartmental
model are obtained from the determinant det(JDF −λI),

that is
















−λ 0 −α −β 0

0 −γ − λ α β 0

0 γ −σ − µ− λ 0 0

0 0 σ −µ− λ 0

0 0 µ µ −λ

















= λ2 det







−γ − λ α β

γ −σ − µ− λ 0

0 σ −µ− λ






. (A1)

Besides the two trivial eigenvalues λ = 0, the remaining
three are the roots of the polynomial which is obtained
by expanding the last determinant

R(λ) = (−µ− λ) [(−γ − λ)(−σ − µ− λ) − αγ]

+ βγσ. (A2)

The cubic polynomial in λ in the last equation can be
written in the form

−R(λ) = λ3 + a2λ
2 + a1λ+ a0, (A3)

where the coefficients are

a2 = γ + σ + 2µ,

a1 = µσ + γσ + µ2 + 2γµ− αγ,

a0 = γ(µ2 + µσ − αµ− βσ). (A4)

By the Routh-Hurwitz criterion [38], the roots of the
third order polynomial of the form (A3) will have nega-
tive real parts if and only if a2 > 0 and a2a1 > a0 > 0.
Since a2 > 0, the condition a0 > 0 is equivalent to

µ(µ+ σ) > αµ+ βσ. (A5)

We should also verify that a2a1 > a0 is satisfied, which
after multiplication of the respective values in (A4) will
result in

γµσ + γ2σ + γµ2 + 2γ2µ− αγ2

+µσ2 + γσ2 + µ2σ + 2γµσ − αγσ

+2µ2σ + 2γµσ + 2µ3 + 4γµ2 − 2γαµ

> γµ2 + γµσ − γαµ− γβσ. (A6)

By algebraic manipulation and rearrangement of the
terms, the last inequality becomes

4γµσ + γ2σ + 4γµ2 + 2γ2µ

−αγ2 + µσ2 + γσ2 + 3µ2σ

−αγσ + 2µ3 − γαµ+ γβσ > 0. (A7)

Now, from the condition (A5) one has the inequality

µ+ σ > α, (A8)

which implies the following relationships for the terms
with minus sign before them in (A7)

γ2(µ+ σ) > γ2α,

γσ(µ+ σ) > γσα,

γµ(µ+ σ) > γµα. (A9)
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By using the last three inequalities in (A7), one will ob-
tain that only positive terms will remain at the left hand
side, which means that it is satisfied. Thus by the Routh-
Hurwitz criterion the nontrivial eigenvalues of the Jaco-
bian have negative real parts if and only if (A5) holds.
It is worth noting that disease-free state becomes un-

stable when the condition (A5) is not satisfied. In that
case a0 < 0, which from the equation (A3) implies that

R(0) = −a0 > 0. (A10)

Since the sign of the highest term of the characteristic
polynomial R(λ) is negative, it means that the cubic
parabola is decreasing towards−∞, when λ → ∞. Thus,
there must be a real root of the polynomial with positive
sign, because the curve intersects the horizontal axis for
some λ > 0. Thus, the root responsible for the insta-
bility of the disease-free equilibrium is real and positive
one. This observation is important in the analysis of the
equilibria in discrete-time models.

Appendix B: Endemic equilibrium for random

regular graph

For determination of the population remaining unaf-
fected by the epidemic in disease spreading on random
regular graph, we follow the same approach as in the
compartmental model. To proceed in that spirit, first
sum up the first four equations in the system (27) and
obtain

pS(n+ 1) + pE(n+ 1) + pA(n+ 1) + pI(n+ 1)

= pS(n) + pE(n) + (1 − µ) [pA(n) + pI(n)] . (B1)

We can sum the last relationship over all moments n,
from the onset to the finish of the epidemic, and assume
negligibly small initial probabilities of infected individu-
als. Then, due to cancellation of the respective terms it
will be obtained

pS(0)− pS(∞) = µ

∞
∑

n=0

[pA(n) + pI(n)] , (B2)

which corresponds to the equation (3) of the compart-
mental model.
Next, the fourth equation in (27) is rewritten as

pI(n+ 1)− pI(n) = σpA(n)− µpI(n). (B3)

Summation of the infinite ladder of equations (B3) and
using pI(0) ≈ 0 = pI(∞) leads to similar relationship
between the probabilities of asymptomatic and infectious
states as in the case of the compartmental model (7),

σ
∞
∑

n=0

pA(n) = µ
∞
∑

n=0

pI(n). (B4)

The first equation in (27) can be written as

[

pS(n+ 1)

pS(n)

]1/k

= 1− βpI(n)− αpA(n). (B5)

If we take logarithm of the last equation, and use ap-
proximation αpA(n) ≪ 1 and βpI(n) ≪ 1, that holds for
weak spreading α ≪ 1 and β ≪ 1, it will be obtained

1

k
[ln pS(n+ 1)− ln pS(n)] = −βpI(n)− αpA(n). (B6)

Summing the last relationship for all moments, after can-
cellations, results in

ln pS(0)−ln pS(∞) = kα

∞
∑

n=0

pA(n)+kβ

∞
∑

n=0

pI(n). (B7)

Using the relationships (B2), (B4) and (B7) one can
obtain an estimate of the number of unaffected individu-
als in epidemic spreading on random regular graphs from

pS(0)− pS(∞) =
µ(µ+ σ)

k(βσ + αµ)
ln

pS(0)

pS(∞)
. (B8)

Appendix C: Stability of disease-free equilibrium for

random regular graph

The characteristic polynomial of the Jacobian of the
disease-free state in the discrete-time SEAIR model on
random regular graph can be compactly written as

− S(λ) = λ3 + b2λ
2 + b1λ+ b0. (C1)

Its coefficients are related to those of the compartmental
model (A4) with

b0 = a0 − a1 + a2 − 1,

b1 = a1 − 2a2 + 3,

b2 = a2 − 3, (C2)

where we remind that in the expressions (A4) for the co-
efficients a0, a1 and a2 one should use kα and kβ instead
of α and β, respectively.
An equilibrium of a discrete-time dynamical system is

linearly stable, if the modulus of the dominant eigenvalue
of the associated Jacobian matrix does not exceed one.
It means that all roots of the characteristic polynomial of
the Jacobian are within the unit circle. For polynomials
with real coefficients this is verified with the Jury test
[45, 46], which is discrete-time analogue to the Routh-
Hurwitz criterion. According to the Jury test, the roots
of the polynomial lie within the unit circle, if an only if
the following four conditions are met

S(1) > 0,

S(−1) < 0,

|b0| < 1,

|1− b20| > |b0b2 − b1|. (C3)

In the application of the test, the conditions above are
checked in the given order and if one is not satisfied, than
at least one root is outside the unit circle and the equi-
librium is unstable. The verification of the first condition
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in the Jury test S(1) > 0, by using the relationships (A4)
and (C2) leads to the demand that a0 > 0, which also
appeared in the analysis of the compartmental case. This
will result in the following inequality

µ(µ+ σ) > k(αµ+ βσ), (C4)

which if holds, also implies that the endemic equilibrium
does not exist. The last inequality is similar to the re-
spective one for the compartmental case, with only dif-
ference being the presence of the node degree k. It can
be shown that the second and the third condition of the
Jury test are satisfied once the first one holds. The veri-
fication of the fourth condition is very complex, since it
involves several dozens of products of the parameters up
to degree six. Thus, a numerical verification was applied
by taking all combinations of 100 different equally spaced
values for the parameters α, β, γ and σ in the range (0, 1),
while for µ in the range 1−σ for each σ, because 1−µ−σ
is the probability for an asymptomatic person to remain
so in the next time step. This procedure has shown that
the fourth condition is satisfied if the first one is ful-
filled as well. However, because theoretical verification
is not complete without the fourth condition in the Jury
test is analytically checked, the presentation of the proofs
that the second and the third are satisfied is omitted for
brevity.

If one compares the characteristic polynomials for the
compartmental (13) and discrete-time model on random
regular graph (31), by substituting 1 − λ in the latter
with −λ and taking k = 1 will obtain the former. This
implies that the roots of the compartmental model λc are
related with those of the discrete-time case λd with

λd = λc + 1. (C5)

The last equation implies that the disease-free state of the
discrete-time model becomes unstable due to existence of
real eigenvalue of the Jacobian that is greater than one.

Appendix D: Endemic equilibrium for complex

network

For small contagiousness parameters α ≪ 1 and β ≪ 1,
one can approximate the probability that a susceptible
individual will not receive the virus as

∏

j∈Ni

[1− αpA,j(n)− βpI,j(n)] (D1)

≈ 1− α
∑

j∈Ni

pA,j(n)− β
∑

j∈Ni

pI,j(n).

Then the evolution of all probabilities can be compactly
written as

pS(n+ 1) = pS(n) [I− αApA(n)− βApI(n)] ,

pE(n+ 1) = pS(n) [αApA(n) + βApI(n)]

+ (1− γ)IpE(n),

pA(n+ 1) = γIpE(n) + (1− σ − µ)IpA(n),

pI(n+ 1) = σIpA(n) + (1 − µ)IpI(n),

pR(n+ 1) = IpR(n) + µI [pA(n) + pI(n)] . (D2)

We will follow the same technique as for the previous two
scenarios. Summing up the first four equations in the last
system will result in

pS(n+ 1) + pE(n+ 1) + pA(n+ 1) + pI(n+ 1)

= pS(n) + pE(n) + (1− µ) [pA(n) + pI(n)] . (D3)

Now, lets sum over all moments and use the fact that
the probabilities of infected states at the beginning and
ending of epidemic are vanishing. Then from the last
relationship will be obtained

pS(0)− pS(∞) = µ

∞
∑

n=0

[pA(n) + pI(n)] . (D4)

Rearrangement of the fourth equation in (D2) and sum-
ming over all moments will lead to result that generalizes
(B4)

σ
∞
∑

n=0

pA(n) = µ
∞
∑

n=0

pI(n). (D5)

One can write the evolution equation of probability of
the susceptible state for each node i as

pS,i(n+ 1)

pS,i(n)
=

∏

j∈Ni

[1− αpA,j(n)− βpA,j(n)] . (D6)

Further, take logarithm on both sides of the last equation
and keep only leading terms in α and β in the expansion
of the logarithm of the multipliers to obtain

ln
pS,i(n+ 1)

pS,i(n)
= −α

∑

j∈Ni

pA,j(n)− β
∑

j∈Ni

pI,j(n). (D7)

Summing (D7) over all moments will result in

ln pS,i(0)−ln pS,i(∞) = α
∑

j∈Ni

∞
∑

n=0

pA,j(n)+β
∑

j∈Ni

∞
∑

n=0

pI,j(n).

(D8)
Denote with lnpS(n) the vector which components
are the logarithms of probabilities of susceptible states
ln pS,i(n). Then, the relationship (D8) for all nodes can
be compactly written as

lnpS(0)− lnpS(∞) = αA

∞
∑

n=0

pA(n) + βA

∞
∑

n=0

pI(n).

(D9)
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From one side, using (D5) in (D4) will result in

pS(0)− pS(∞) = µ(1 +
σ

µ
)

∞
∑

n=0

pA(n). (D10)

From another side, applying (D5) in (D9) will lead to

lnpS(0)− lnpS(∞) =

(

α+ β
σ

µ

)

A

∞
∑

n=0

pA(n). (D11)

The last two relationships are system of equations for de-
termination of the vector of the probabilities of the sus-
ceptible state at the end of the epidemic and the infinite
sum of the vectors of the asymptomatic states during the
whole epidemic.

Appendix E: Characteristic polynomial for the

eigenvalues of the Jacobian of the discrete-time

model

To obtain more compact expression for determination
of the eigenvalues of the Jacobian (43), we will exten-

sively use the Schur’s determinant identity

det

[

Q R

S T

]

= det(T) · det(Q−RT−1S). (E1)

One should note that the identity does not need the ma-
trices to be square and if at least one of the matrices R
or S is zero, then one has simpler relationship

det

[

Q R

S T

]

= det(Q) · det(T). (E2)

First we can assign the role of the bottom-right subma-
trixT in (E1) to the bottom-right identity matrix in (43).
Then one can note that to the respective submatrix R
corresponds zero matrix and use (E2) instead to obtain

T (λ) = det [(1− λ)I] · det











(1 − λ)I 0 −αA −βA

0 (1 − γ − λ)I αA βA

0 γI (1 − σ − µ− λ)I 0

0 0 σI (1− µ− λ)I











(E3)

By repeating the same procedure one more time with
taking top-left submatrix (1−λ)I as the submatrix Q in
the Schur’s determinant identity, and observing that now
the submatrix S is zero, one can obtain that

T (λ) = {det [(1− λ)I]}2

· det







(1− γ − λ)I αA βA

γI (1− σ − µ− λ)I 0

0 σI (1− µ− λ)I






.(E4)

To simplify notation one could first stop repetitive writ-
ing of the part which contains the trivial eigenvalue λ = 1
which has multiplicity 2N , and focus on the remaining.
Take the submatrix T = (1− µ−λ)I which determinant
contains trivial eigenvalues λ = 1−µ and respectively the
remaining submatrices Q, R and S. We note that 1− µ
are not eigenvalues of the Jacobian, since in expanding
the determinants as polynomial, the terms correspond-
ing to 1 − µ − λ that appear in T will cancel with the
same terms which will appear in the denominator in the
remaining determinant as will be seen below. From the
last determinant let us first consider the submatrix that
corresponds to the product RT−1S in the Schur’s iden-
tity (E1). By using the properties of the inverse matrix

one can obtain first
[

(1− µ− λ)I
]−1

·
[

0 σI
]

=
[

0 σ
1−µ−λI

]

. (E5)

Then it follows that
[

βA

0

]

·
[

0 σ
1−µ−λI

]

=

[

0 βσ
1−µ−λA

0 0

]

. (E6)

Now, the part of the characteristic polynomial which con-
tains the nontrivial eigenvalues is

U(λ) = det

{[

(1− γ − λ)I αA

γI (1− σ − µ− λ)I

]

−

[

0 βσ
1−µ−λA

0 0

]}

= det

[

(1 − γ − λ)I
(

α− βσ
1−µ−λ

)

A

γI (1 − σ − µ− λ)I

]

. (E7)

We can apply the Schur’s identity again. First observe
the matrix product that corresponds to the RT−1S term
in (E1)

(

α−
βσ

1− µ− λ

)

A · [(1− µ− σ − λ)I]
−1 · γI

=
γ

1− σ − µ− λ

(

α−
βσ

1− µ− λ

)

A. (E8)
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After simplification of the scalar at the right-hand side of
the last relationship and subtract the respective matrices

in the form Q − RT−1S from (E1) one will obtain the
following characteristic polynomial of the eigenvalues

U(λ) = det [(1− σ − µ− λ)I] · det

[

(1− γ − λ)I−
γ[α(1− µ− λ)− βσ]

(1 − σ − µ− λ)(1 − µ− λ)
A

]

. (E9)

Again, the first determinant has trivial eigenvalues λ =
1 − σ − µ with multiplicity N as well and the nontriv-
ial ones are contained in the second determinant. By
observing the second determinant in (E9) one can note
that in the denominator multiplying the adjacency ma-
trix appear terms 1−µ−λ and 1−σ−µ−λ. Expansion
of the determinants as polynomials will result in cancel-
lation of those terms in the denominators with the re-
spective ones in the determinants det [(1− µ− λ)I] and
det [(1− σ − µ− λ)I]. Finally, the characteristic polyno-
mial resulting from the last nontrivial determinant will
not change if one multiplies it with a constant. So, a
more convenient form of the last determinant, and the
respective characteristic polynomial is

V(λ) = det

[

(1 − γ − λ)(1 − σ − µ− λ)(1 − µ− λ)

γ[α(1 − µ− λ)− βσ]
I−A

]

.

(E10)

Appendix F: Stability of the endemic equilibrium in

disease spreading on complex networks

Since the Jacobian of the endemic and of the disease-
free equilibrium differ only in the presence of the ma-
trix Σ, the characteristic equation will have the same
form for both cases. However, it was previously obtained
that the leading eigenvalue of the Jacobian of the disease-
free equilibrium λmax depends on the leading one of the
adjacency matrix Λmax. Accordingly, for the endemic
state the dependence will be on the leading eigenvalue
Lmax of the matrix product ΣA. We will verify that this
eigenvalue is related with that of the adjacency matrix
as Lmax < pS,maxΛmax, where pS,max = max pS,i(∞), is
the maximum of the probabilities of susceptible states at
the end of the epidemic. To prove that, denote with x
the unit eigenvector of ΣA, corresponding to Lmax, or
ΣAx = Lmaxx. Let Λi and ui are the eigenvalues and
the respective orthogonal basis vectors corresponding to
the adjacency matrix. The vector x in the basis ui is
given as

x =

N
∑

i=1

aiui, (F1)

where
∑

a2i = 1 because x is unit vector. Then, multi-
plying the matrix A with x will result in some vector

y = Ax =

N
∑

i=1

aiΛiui, (F2)

Due to the orthonormality of the basis uT
i uj = δi,j , the

squared magnitude of y reads

yTy =

N
∑

i=1

a2iΛ
2
i , (F3)

which can be bounded as

yTy ≤ Λ2
max

N
∑

i=1

a2i = Λ2
max. (F4)

This means that the vector y has length not bigger than
Λmax. In connected network each node will be infected
with nonzero probability, and thus pS,i(∞) < 1. Then
the matrix Σ is symmetric positive semi-definite, and all
its eigenvalues are strictly less than one. Let us now
express the vector y in the orthonormal basis vi of the
matrix Σ

y =

N
∑

i=1

bivi. (F5)

Then the vector Σy can be expressed as

Σy =

N
∑

i=1

bipS,i(∞)vi, (F6)

since Σ is diagonal matrix with eigenvalues pS,i(∞). The
squared magnitude of Σy is bounded as

yTΣTΣy =
∑N

i=1 b
2
i pS,i(∞)2

< p2S,max

∑N
i=1 b

2
i = p2S,max|y|

2. (F7)

Now, combining (F2), (F4) and (F7) will result in

L2
maxx

Tx = xTATΣTΣAx < p2S,maxΛ
2
max. (F8)

Thus, we have just bounded the leading eigenvalue of the
matrix ΣA as

Lmax < pS,maxΛmax. (F9)
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Recall that in the stability analysis of the endemic
equilibrium one has the matrix product ΣA instead of
A which is used for the disease-free state. So, the sta-
bility of the endemic equilibrium depends on Lmax as
the other case depends on Λmax. Correspondingly, the
endemic equilibrium will be linearly stable, once the fol-
lowing inequality holds [refer to the respective condition
(49)]

µ(µ+ σ) > Lmax(αµ+ βσ). (F10)

Now, consider the system of transcendental equations
(34) and use the fact that pA is principal eigenvector
of the adjacency matrix A, or ApA = ΛmaxpA. By al-
gebraic manipulations, from the system (34) it can be
shown that for each component of the susceptible prob-
ability vector holds relationship similar to (8)

pS,i(0)−pS,i(∞) =
µ(µ+ σ)

Λmax(βσ + αµ)
[ln pS,i(0)− ln pS,i(∞)] ,

(F11)
from which one has

µ(µ+ σ)

βσ + αµ
= Λmax

pS,i(0)− pS,i(∞)

ln pS,i(0)− ln pS,i(∞)
. (F12)

Combining the endemic equilibrium stability condition

(F10) with the last relationship (F12) will result in

Λmax
pS,i(0)− pS,i(∞)

ln pS,i(0)− ln pS,i(∞)
> Lmax. (F13)

Rearranging the terms in the last inequality will result
in more convenient form

ΛmaxpS,i(∞)

pS,i(0)
pS,i(∞) − 1

ln
pS,i(0)
pS,i(∞)

> Lmax. (F14)

The last inequality is satisfied since one can use (F9) and
the fraction at the left-hand side is always greater than
one. Thus, when an epidemic occurs such that small frac-
tion of the population is affected, the respective endemic
equilibrium is linearly stable.

Appendix G: Eigenvalues and eigenvectors of the

Jacobian at the disease-free state for epidemic

spreading on complex networks

Denote the eigenvectors of the Jacobian ma-
trix in the disease-free equilibrium with w =
[wT

S ,w
T
E ,w

T
A,w

T
I ,w

T
R]

T where wS , wE , wA, wI and wR

are the column vectors which correspond to probabilities
of the states S, E, A, I and R respectively. Then, the
eigenvalue equation for the Jacobian Jw = λw in more
detailed form is

















I 0 −αA −βA 0

0 (1− γ)I αA βA 0

0 γI (1 − σ − µ)I 0 0

0 0 σI (1− µ)I 0

0 0 µI µI I

















·











wS

wE

wA

wI

wR











= λ











wS

wE

wA

wI

wR











. (G1)

From the fourth row in (G1), which corresponds to the
infectious state, one can obtain that

σwA + (1− µ)wI = λwI , (G2)

which can be rearranged into

σwA = (µ+ λ− 1)wI . (G3)

The last equation relates the magnitudes of the vectors
wA and wI and shows that they are collinear. In similar
manner, from the last row in (G1), one can show that
the vector wR is collinear with the previous ones and
moreover

µ(µ+ λ+ σ + 1)

µ+ λ+ 1
wA = (λ − 1)wR. (G4)

Likewise, from the third row in (G1) it follows that the
exposed probability vector wE is also collinear to the

previous ones, or more precisely

γwE = (µ+ λ+ σ − 1)wA. (G5)

Now consider the second row in (G1), from which one
has

αAwA + βAwI = (λ + γ − 1)wE, (G6)

which after using (G3) and (G4) will result in
(

α+
βσ

µ+ λ− 1

)

AwA = (λ+γ−1)
(µ+ λ+ σ − 1)

γ
wA.

(G7)
The last relationship could be rearranged further as

AwA =
(λ+ γ − 1)(µ+ λ+ σ − 1)(µ+ λ− 1)

γ[α(µ+ λ− 1) + βσ]
wA.

(G8)
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We have obtained eigenvalue equation for the adjacency
matrix. Thus, every vector wA must be eigenvector of
the adjacency matrix A. Since the eigenvalues of the
adjacency matrix Λ are independent on any dynamical
process evolving on the network, it means that the eigen-
values of the Jacobian λ must satisfy the relationship

Λ =
(λ+ γ − 1)(µ+ λ+ σ − 1)(µ+ λ− 1)

γ[α(µ+ λ− 1) + βσ]
. (G9)

The last result relates the eigenvalues of the Jacobian
with those of the adjacency matrix. By expanding the
terms, one can see that it is cubic polynomial in λ, and
thus for each eigenvalue Λ one has three possibly differ-
ent eigenvalues λ. Thus, N eigenvalues of the adjacency
matrix would generate 3N eigenvalues of the Jacobian.
We remind that as is given in the Appendix E, there is
one trivial eigenvalue λ = 1 with algebraic multiplicity
2N . The eigenvectors corresponding to this eigenvalue
are those that span the subspace consisting of suscepti-
ble or recovered states only and zeros at the remaining
states. It can be easily verified from (G1), that each
vector of the form

wS,R = [w∗T
S ,0T,0T,0T,w∗T

R ]T (G10)

is eigenvector of the Jacobian.
Finally, from the first row in (G1) it follows that

(

α+
βσ

µ+ λ− 1

)

AwA = (1− λ)wS , (G11)

in which one can use (G8) to obtain

wS =
(µ+ λ+ σ − 1)(λ+ γ − 1)

γ(1− λ)
wA. (G12)

Thus, the vector wS is collinear with the rest as well.
This implies that besides the vectors (G10), the remain-
ing eigenvectors of the Jacobianw consist of scaled copies
of the eigenvectors of the adjacency matrix. More pre-
cisely, by using the relationships (G3), (G4), (G5) and
(G12), the eigenvector w is

w =











wS

wE

wA

wI

wR











=















(µ+λ+σ−1)(λ+γ−1)
γ(1−λ) wA

µ+λ+σ−1
γ wA

wA
σ

µ+λ−1wA
µ(µ+λ+σ−1)
(µ+λ−1)(λ−1)wA















(G13)

SincewA is eigenvector of the adjacency matrix, there are
3N eigenvectors of the form given in (G13). Together
with 2N vectors of the form (G10), they constitute a
set of 5N eigenvectors. When they are orthogonal, with
normalization one can obtain an orthonormal basis.


