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Abstract – Image analysis, data mining, protein folding and 
gene sequencing are some examples of high-intensive 
bioinformatics applications that require high computing 
resources. In this paper we present a problem of computationally 
intensive methodology for microarray data analysis, whose 
performance needs to be improved by using high performance 
computing techniques. Parallelization is a key computing 
technique for reducing the time required for the analyses and the 
classification procedure. GPU provides great level of 
parallelization based on throughput of vast amount of data 
needed for machine learning problems. Therefore, we propose a 
model for machine learning problems parallelization based on 
GPU programming that will increase the speedup of several 
stages of the machine learning process.  
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I. INTRODUCTION 

Scientific computing involves the construction of 
mathematical models and numerical solution techniques to 
solve scientific and engineering problems that often require a 
huge number of computing resources to perform large scale 
experiments, or to cut down the computational complexity 
into a reasonable time frame [1]. The image analysis, data 
mining, protein folding and gene sequencing are important 
tools for biomedical researchers, and examples of high 
compute and resource intensive scientific applications [2]. 
When comparing the DNA sequencing throughput to the 
computer speed, sequencing wins at a rate of about 5-fold per 
year [3], while computer performance generally follows the 
Moore’s Law, doubling only every 18 or 24 months [4]. The 
exponential growth of biomedical data requires large storage 
databases and computing resources. However, the need for 
computing capacity in the biomedical applications varies 
dramatically for different stages, i.e. sometimes very big 
computing power with huge storage space is needed, whereas 

in the following stage these computationally expensive 
applications may not require as much computing power as in 
the previous steps [5]. 

Bioinformatics researchers are now confronted with 
analysis of ultra large-scale data sets, a problem that will only 
increase at an alarming rate in coming years [6]. Therefore, 
the parallelization seems to be a key computing technique for 
reducing the time required for the bioinformatics analyses. 

GPU is a powerful technology created for graphics 3D 
rendering towards meeting the need of the 3D gaming 
industry. Single-threaded processor performance is no longer 
scaling at historic rates. A GPU that is optimized for 
throughput delivers parallel performance much more 
efficiently than a CPU that is optimized for latency [7]. 

Nowadays a GPU has become an important part of today’s 
computing systems. The GPU’s rapid increase in both 
programmability and capability has spawned a research 
community that has successfully mapped a broad range of 
computationally demanding, complex problems to the GPU 
[8]. 

CUDA™ is a parallel computing platform and 
programming model invented by NVIDIA. It enables dramatic 
increases in computing performance by harnessing the power 
of the GPU [9]. CUDA provides several key abstractions, thus 
the GPU programming model has proven quite successful at 
programming multithreaded many code GPUs, to achieve 
high speedups for research codes and productive solutions. 
Therefore, hybrid CUDA OpenMP, and Message Passing 
Interface (MPI) programming approaches emerge in order to 
create GPU enabled clusters [10]. 

In this paper we present a CUDA GPU enabled 
parallelization method for a bioinformatics problem, i.e., a 
methodology for biomarkers detection and classification 
analysis of microarray gene expression data. We decided to 
use CUDA to parallelize this methodology since it is an 
example of computationally intensive problem whose demand 
for computing resources varies in different stages of the 
analyses. 

The rest of the paper is organized as follows. In Section II 
we give an overview of the latest literature for parallel 
solutions of bioinformatics problems. Our parallel machine 
learning (ML) approach is presented in Section III. The 
conclusion and our plans for future implementation of the 
analysis are discussed in Section IV. 

II. RELATED WORK

In this section we briefly present the latest frameworks for 
distributed computing and parallelization solutions of 
bioinformatics problems. 
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Altekar et al. [11] present a parallel algorithm for 
Metropolis Coupled Markov Chain Monte Carlo method used 
in phylogeny. The proposed parallel algorithm retains the 
ability to explore multiple peaks in the posterior distribution 
of trees while maintaining a fast execution time. The 
algorithm has been implemented using two popular parallel 
programming models: message passing and shared memory. 
Performance results indicate nearly linear speed improvement 
in both programming models for small and large data sets. 

Multiple sequence alignment (MSA) is an important step in 
comparative sequence analyses. Katoh and Toh [12] 
parallelized the three calculation stages, all-to-all comparison, 
progressive alignment and iterative refinement, of the MAFFT 
MSA program. They implemented two natural parallelization 
strategies, best-first and simple hill-climbing. Based on 
comparisons of the objective scores and benchmark scores 
between the two approaches, they selected a simple hill 
climbing approach as the default. 

ClustalW [13] is a tool for aligning multiple protein or 
nucleotide sequences. The alignment is achieved via three 
steps: pairwise alignment, guide-tree generation and 
progressive alignment. 

Taylor [6] is giving an overview of the Hadoop - 
MapReduce framework and its current applications in 
bioinformatics. He concludes that Hadoop and the 
MapReduce programming paradigm already have a 
substantial base in the bioinformatics community, especially 
in the field of next-generation sequencing analysis. This is due 
to the cost-effectiveness of Hadoop based analysis on 
commodity Linux clusters, and in the cloud via data upload to 
cloud vendors who have implemented Hadoop/HBase; and 
due to the effectiveness and ease-of-use of the MapReduce 
method in parallelization of many data analysis algorithms. 

Considering CUDA, the parallel computing platform of our 
interest, we present the following applications. 

The Smith Waterman algorithm [14] for sequence 
alignment is one of the main tools of bioinformatics. It is used 
for sequence similarity searches and alignment of similar 
sequences. 

Ligowski and Rudnicki [15] present an efficient 
implementation of the Smith Waterman algorithm on the 
Nvidia GPU. The algorithm achieves more than 3.5 times 
higher per core performance than the previously published 
implementation of the Smith Waterman algorithm on GPU, 
reaching more than 70% of theoretical hardware performance. 

Markov clustering (MCL) [16] is becoming a key algorithm 
within bioinformatics for determining clusters in networks. 
However, with increasing vast amount of data on biological 
networks, performance and scalability issues are becoming a 
critical limiting factor in applications. Bustaman et al. [16] 
introduce a very fast MCL using CUDA to perform parallel 
sparse matrix-matrix computations and parallel sparse Markov 
matrix normalizations, which are at the heart of MCL. They 
utilized ELLPACK-R sparse format to allow the effective and 
fine-grain massively parallel processing to cope with the 
sparse nature of interaction networks data sets in 
bioinformatics applications. As the results show, CUDA MCL 
is significantly faster than the original MCL running on CPU. 

In context of microarray analysis studies, Shterev et al. [17] 
have developed a CUDA based implementation, permGPU 
that employs GPU in microarray association studies. They 
illustrate the performance and applicability of permGPU 
within the context of permutation resampling for a number of 
test statistics. An extensive simulation study demonstrates a 
dramatic increase in performance when using permGPU on an 
NVIDIA GTX 280 card compared to an optimized C/C++ 
solution running on a conventional Linux server. 

Zhang et al. [18] develop Parallel Multicategory Support 
Vector Machines (PMC-SVM) based on the sequential 
minimum optimization-type decomposition method for SVM 
(SMO-SVM). It was implemented in parallel using MPI and 
C++ libraries and executed on both shared memory 
supercomputer and Linux cluster for multicategory 
classification of microarray data. PMC-SVM has been 
analysed and evaluated using four microarray datasets with 
multiple diagnostic categories, such as different cancer types 
and normal tissue types. 

Salinas and Karmaker [19] have presented a set techniques 
used to analyse a microarray dataset by computing correlation 
coefficients between gene expression profiles and 
transcription factor expression profiles across tissues. Its goal 
is to find multiple transcription factors that bind together and 
have a target gene whose transcription is modulated. The 
technique involves hypothetical heteromeric transcription 
factor profiles whose expressions are estimated by taking 
minima for each tissue. A scoring function based on a 
comparison among the correlation coefficients is used to sort 
and prioritize combinations of genes and transcription factors. 
The higher scoring combinations are thought to be more likely 
to form transcription factor complexes for the gene. By using 
CUDA enabled NVIDIA GPUs to speed up the computations, 
they achieved speedups of about 6x. 

III. PARALLEL ML APPROACH

In this section we discuss the ML approach, separate it in 
several sequential stages and determine the level of 
parallelization that can be employed on each of them. 

A. ML Process 

In general, the ML process can be abstracted in three 
distinct stages: Data Preprocessing, Data Modelling and Data 
Classification, as depicted in Figure 1. 

1) Data Preprocessing: The input data is usually retrieved
from the publicly available databases, or gathered from 
experiments done by hospitals, research centers, 
meteorological stations, etc. The input data is raw and inclined 
to noise. Therefore, it must be preprocessed in order to be 
applicable in the methods for knowledge extraction. Since the 
raw data sets are often measured in gigabytes, the 
preprocessing process is considered to be the slowest part in 
the ML procedure. However, a sequential approach of 
preprocessing and independence in its steps are the features 
that can be easily parallelized. 
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2) Data Modelling: As soon as the data is preprocessed, it
is ready to be an input in a series of methods for the purpose 
of creating a suitable model for further classification analysis. 
This part of the process can also benefit from the 

parallelization, since it can be slow and inefficient when being 
executed sequentially. 

3) Data Classification: The final goal is achieved when a
reliable classifier is created. The testing procedure is usually 
less computation demanding than the training procedure; 
however, it depends on the type of classification method used 
and on the problem dimensionality. 

B. Bioinformatics ML Methodology 

In this section we present the computation intensive 
segments of our methodology for microarray analysis 
presented in [20]. 

The methodology is developed for two different 
microarrays technologies and as discussed in Section III-A 
can also be mainly separated in three parts: preprocessing, 
building a classification model and the classification process 
itself. 

1) Preprocessing: The preprocessing consists of few
methods executed in the following order: Quantile 
Normalization (QN), Low Entropy Filter (LEF), T-test, False 
Discovery Rate (FDR) and Volcano Plot (VP). 

The QN is a gene expression normalization method for 
making two distributions identical in statistical properties. It 
can be easy parallelized since we normalize each column of 
the input matrix distinctively. 

LEF is a filter that removes the genes with low variability 
in their expression levels across the samples. It is based on the 
entropy computations of each gene (row) in the data matrix, 
and therefore, can also be parallelized. 

The T-test computes the value of a t-statistics for the 
difference between means of the two columns of data. 

FDR uses the p-values from the T-test in order to discover 
the false positive genes, i.e. the genes that were found to be 
significant when in reality there is no statistical significance. 
It is computed for each gene and the process can be 
parallelized. 

When applying the VP method, we consider that the 
number of genes has significantly decreased from thousands 
to hundreds and therefore, there is no need of parallelization. 

2) Building the classification model: In order to build the
classification model, we perform hypothesis tests to determine 
the most probable distributions of the genes. This process can 
be parallelized since we perform tests for four types of 
distributions for each of the genes. During the testing, the 
parameters of the distributions are estimated by using the 
Maximum Likelihood Estimation (MLE) method, which are 
then used in the Chi-square goodness-of-fit test. The input of 
Chi-square goodness-of-fit is also a vector of the expression 
values of a given gene. 

3) Classification procedure: The classification method that
we proposed is based on a calculation of the Bayesian
posterior probability P (Ci| x ):
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C. Parallel execution on CUDA GPU 

We already mentioned that large number of methods in the 
ML process can be parallelized. Since almost always the 
methods are without data dependency, we can easily partition 
the data and create full data parallelization. 

Because of the large number of multiple distinctive 
microarray data portions on which several distinctive 
operations are used as single instructions sequentially, we 
conclude that the GPU SIMD architectures might be an 
appropriate platform. 

In Figure 2 we present the parallelization procedure. For 
each of the above methods a distinctive kernel is created on 
the GPU. Each kernel is executed on optimal number of cores 
on GPU and each core gets a single vector data to work on. 

If the time needed for each core to do its job is tc, and Nv 
and Nc denote the number of vectors and the number of cores 
available correspondingly, then the time needed for a single 
method execution Tm is calculated by using the following 
equation: 

Fig. 1. Machine Learning Approach 

Fig. 2. Parallelization on GPU Architectures 
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In the best case scenario the number of vectors Nv will be 
equal to the number of cores Nc and therefore, Tm = tc, i.e., the 
time needed for a method execution equals the time needed 
for a single core to finish its task. 

Since no GPU provides unlimited number of cores, we can 
conclude that this is just an isolated case. Most commonly the 
CUDA enabled GPU devices are packed up with Nc =512, or 
Nc = 1024 cores. Therefore, the expected speedup S according 
to Gustafson’s law when executed on CUDA enabled GPU is: 
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where Tms is the method execution time when implemented 
sequentially and Tmp is the method execution time executed in 
parallel. 

Since the GPU involves additional latency for data transfer 
and core utilization, we hypothesize that the speedup will not 
reach 512, or 1024 with fully utilized GPU; however, this will 
be part of our future work on the topic. 

In the end, each of the kernels will be executed sequentially 
and therefore the overall speedup will abide the speedup for 
each of the methods. 

IV. CONCLUSION

In this paper we present a computation intensive 
bioinformatics methodology for biomarkers detection and 
classification analysis of microarray gene expression data. 
Our ML approach is comprised in three distinctive parts, 
where each part consists of one or more different methods. 
Considering the methods used in the methodology, we can 
conclude that the analyses are usually performed in context of 
genes, or patients, but never depend on both. 

We propose a parallelization procedure to reduce the time 
for execution of the distinct methods. Because of the nature of 
the problem we decided that a parallelization by using GPU 
computing may be convenient. Consequently, we discussed 
the advantages of using CUDA technology for parallelization. 

Based on CUDA GPU properties we modelled a kernel 
based solution for ML process theoretically. In our solution 
each kernel is an implementation of a single method. Since the 
methods are sequentially executed, the kernel execution is 
also sequential. 

As future work we will implement large variety of methods 
for ML by using CUDA and we will test if our CUDA 
implementations achieve the expected speedup level. 

REFERENCES 
[1] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance 

cloud computing: A view of scientific applications,” in 
Pervasive Systems, Algorithms, and Networks (ISPAN), 2009 
10th International Symposium on. IEEE, 2009, pp. 4–16. 

[2] A. Rosenthal, P. Mork, M. H. Li, J. Stanford, D. Koester, and P. 
Reynolds, “Cloud computing: A new business paradigm for 

biomedical information sharing,” Journal of Biomedical 
Informatics, vol. 43, no. 2, pp. 342–353, 2010. 

[3] L. D. Stein et al., “The case for cloud computing in genome 
informatics,” Genome Biol, vol. 11, no. 5, p. 207, 2010. 

[4] G. E. Moore et al., “Cramming more components onto 
integrated circuits,” Proc. of IEEE, vol. 86, no. 1, pp. 82–85, 
1998. 

[5] H. Chae, I. Jung, H. Lee, S. Marru, S.-W. Lee, and S. Kim, “Bio 
and health informatics meets cloud: Biovlab as an example,” 
Health Information Sci. and Systems, vol. 1, no. 1, p. 6, 2013. 

[6] R. C. Taylor, “An overview of the hadoop/mapreduce/hbase 
framework and its current applications in bioinformatics,” BMC 
bioinformatics, vol. 11, no. Suppl 12, p. S1, 2010. 

[7] J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE 
micro, vol. 30, no. 2, pp. 56–69, 2010. 

[8] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and 
J. C. Phillips, “GPU computing,” Proceedings of the IEEE, vol. 
96, no. 5, pp. 879–899, 2008. 

[9] NVIDIA. (2014, May) NVIDIA CUDA - Parallel Programming 
and Computing Platform. [Online]. Available: 
http://www.nvidia.com/object/ cuda home new.html 

[10] C.-T. Yang, C.-L. Huang, and C.-F. Lin, “Hybrid cuda, openmp, 
and mpi parallel programming on multicore gpu clusters,” 
Computer Physics Communications, vol. 182, no. 1, pp. 266–
269, 2011. 

[11] G. Altekar, S. Dwarkadas, J. P. Huelsenbeck, and F. Ronquist, 
“Parallel metropolis coupled markov chain monte carlo for 
bayesian phylogenetic inference,” Bioinformatics, vol. 20, no. 3, 
pp. 407–415, 2004. 

[12] K. Katoh and H. Toh, “Parallelization of the mafft multiple 
sequence alignment program,” Bioinformatics, vol. 26, no. 15, 
pp. 1899–1900, 2010. 

[13] K-B. Li, “ClustalW-MPI: ClustalW analysis using distributed 
and parallel computing,” Bioinformatics, vol. 19, no. 12, pp. 
1585-1586, 2003. 

[14] F. T. Smith and S. M. Waterman, “Identification of common 
molecular subsequences,” in Journal of molecular biology, vol. 
147, no. 1, pp. 195-197, Elsevier, 1981. 

[15] L. Ligowski and W. Rudnicki, “An efficient implementation of 
smith waterman algorithm on gpu using cuda, for massively 
parallel scanning of sequence databases,” in Parallel & 
Distributed Processing, 2009. IPDPS 2009. IEEE International 
Symposium on. IEEE, 2009, pp. 1–8. 

[16] A. Bustamam, K. Burrage, and N. A. Hamilton, “Fast parallel 
markov clustering in bioinformatics using massively parallel 
computing on gpu with cuda and ellpack-r sparse format,” 
IEEE/ACM Transactions on Computational Biology and 
Bioinformatics (TCBB), vol. 9, no. 3, pp. 679–692, 2012. 

[17] I. D. Shterev, S.-H. Jung, S. L. George, and K. Owzar, 
“permgpu: Using graphics processing units in RNA microarray 
association studies,” BMC bioinformatics, vol. 11, no. 1, p. 329, 
2010. 

[18] C. Zhang, P. Li, A. Rajendran, Y. Deng, and D. Chen, 
“Parallelization of multicategory support vector machines (pmc-
svm) for classifying microarray data,” BMC bioinformatics, vol. 
7, no. Suppl 4, p. S15, 2006. 

[19] E. A. Salinas and A. Karmaker, “Cuda-accelerated data-mining 
for putative heteromeric transcription factors and target genes 
using microarray gene expression profiles.” 

[20] M. Simjanoska, A. Madevska Bogdanova, and Z. Popeska, 
“Bayesian posterior probability classification of colorectal 
cancer probed with Affymetrix microarray technology,” in 
Information & Communication Technology Electronics & 
Microelectronics (MIPRO), 2013 36th International Convention 
on. IEEE, 2013, pp. 959–964. 

86 




