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Abstract. According to the WHO research in 2008, colorectal cancer caused 

approximately 8% of all cancer deaths worldwide. Only particular set of genes 

is responsible for its occurrence. Their increased or decreased expression levels 

cause the cells in the colorectal region not to work properly, i.e. the processes 

they are associated with are disrupted.  This research aims to unveil those genes 

and make a model which is going to determine whether one patient is carcino-

genic. We propose a realistic modeling of the gene expression probability dis-

tribution and use it to calculate the Bayesian posterior probability for classifica-

tion. We developed a new methodology for obtaining the best classification re-

sults. The gene expression profiling is done by using the DNA microarray tech-

nology. In this research, 24,526 genes were being monitored at carcinogenic 

and healthy tissues equally. We also used SVMs and Binary Decision Trees 

which resulted in very satisfying correctness. 
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1 Introduction 

According to the World Health Organization and the GLOBOCAN project which 

provided research of the cancer incidence, mortality and prevalence worldwide in 

2008, colorectal cancer is responsible for nearly 608,000 deaths, or, it causes 8% of 

total cancer deaths. This fact makes the colorectal cancer the fourth most common 

cause of death from cancer [1].  

In this paper, the colorectal cancer is considered as a problem of particular genes 

which have increased or decreased expression levels in the colorectal region. The 

gene expression profiling is done by using the Illumina HumanRef-8 v3.0 Expression 

BeadChip microarray technology. This whole-genome expression array allows 24,526 

transcript probes.  

Gene expression data used in this paper is downloaded from the ArrayExpress, 

EMBL-EBI biological database [2]. It is collected according to the MIAME standard 

and can be accessed using the unique identity number E-GEOD-25070. 
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The paper is organized as follows: 2. Methods and methodology, where we give an 

overview of the related work and the developed original procedure for using the 

Bayes’ theorem, 3. Experiments and results and 4. Summary and conclusions. 

2 Methods and Methodology 

2.1 Related Work 

In this section we briefly review some of the research literature related to colorec-

tal cancer statistical and discriminant analysis. 

L. C. LaPointe [3] in his Ph.D. thesis describes the discovery and validation of bi-

omarker candidates for colorectal neoplasia. Some genes exhibit gene expression 

patterns which correlate with the neoplastic phenotype and these results enable inves-

tigation of the central practical aim: the identification from the pool of differentially 

expressed genes those candidate biomarkers which could serve as leads for clinical 

assay research and development in the future. He has given an overview to discrimi-

nant analysis, Bayes’ theorem, and machine learning algorithms in candidate bi-

omarkers identification.  

Gene expression data set used in our paper has also been used in other scientific re-

searches. The experiment authors in [1] together with Christopher P.E. Lange et al. 

[4] used this expression data to perform analysis of the aberrant DNA methylation in 

colorectal cancer. 

Another paper that used the same gene expression data and that can be helpful in 

comparing different methods for identification of colorectal cancer genes is the re-

search done by Bi-Qing Li, et al. [5]. In order to identify colorectal cancer genes, they 

used method based on gene expression profiles and shortest path analysis of function-

al protein association networks. 

In the Shizuko Muro’s, et al. [6] research, when making the classification model 

they assumed that the gene expression data is distributed according to a mixture of 

Gaussian distributions. 

2.2 The methodology 

In our research, we used Bayes’ theorem to classify the colorectal carcinogenic tis-

sue using the gene expression analysis. In order to achieve realistic results, we devel-

oped an original methodology that includes several steps – data preprocessing, statis-

tical analysis, modeling the a priori probability for all significant genes and the classi-

fication process itself. Furthermore, we used the Support Vector Machines and Deci-

sion trees to compare the obtained classification results. 

2.2.1 Data Preprocessing 

Gene expression profiling of 26 colorectal tumors and matched adjacent 26 non-

tumor colorectal tissues is retrieved for further analysis. The gene expression data 



consists of raw and processed data. Processed data is log2 transformed and normal-

ized using Robust Spline Normalization (RSN) method. 

Normalization methods. Our research aims to unveil the differential expression of 

the genes expression level. We assume that only a small set of genes are differentially 

expressed. In such cases Quantile normalization is a suitable normalization method. 

Quantile normalization (QN) makes the distribution of the gene expression as similar 

as possible across all samples [7]. However, Quantile normalization forces same dis-

tribution for intensity values across different samples which can cause small differ-

ences among intensity values to be lost [8]. Therefore, we also analyzed processed 

data which is normalized using the RSN method. RSN method combines the good 

features from the Quantile and the Loess normalization. Rather, it combines the 

strength of Quantile normalization and the curve fitting [9]. 

Filtering methods. Some genes may not be well distributed over their range of ex-

pression values, i.e. low expression values can be seen in all samples except one [10]. 

This can lead to incorrect conclusion about gene behavior. To remove such genes, we 

used an entropy filter. Entropy measures the amount of information (disorder) about 

the variable. Higher entropy for a gene means that its expression levels are more ran-

domly distributed [11], while low entropy for a gene means that there is low variabil-

ity [12] in its expression levels across the samples. Therefore, we used low entropy 

filter to remove the genes with almost ordered expression levels. 

Statistical tests. This model assumes that whole-genome gene expression follows 

normal distribution [13]; therefore, we used unpaired two-sample t-test for differential 

expression. The t-test is most commonly used method for finding marker genes that 

discriminate carcinogenic from healthy tissue. Here we have two independent groups, 

cancer vs. normal tissue. We expect that most of the genes are not differentially ex-

pressed. Thus, the null hypothesis states that there is no statistical difference between 

the cancer and the normal samples. The rejection of the null hypothesis depends on 

the significance level which we determine. In this paper we consider the genes as 

statistically significant for a p-value less than 0.01, which means that the chances of 

wrong rejection of the null hypothesis is less than 1 in 100. 

Using the t-test only, we confront with the problem of false positives. The term 

false positive refers to genes which are considered statistically significant when in 

reality differential expression doesn’t exist. To remove such genes from further analy-

sis, we used False Discovery Rate (FDR) method. FDR method is defined as a meas-

ure of the balance between the number of the true positives and false positives [14]. 

For a threshold of 0.01 we expect 10 genes to be false positive in a set of 1000 posi-

tive genes. The significance in terms of false discovery rate is measured as a q-value. 

It can be described as a proportion of significant genes that turn out to be false posi-

tives [14]. This method is supposed to reduce the number of significant genes sup-

plied from the t-test. 



The t-test and the FDR method identified differential expression in accordance 

with statistical significance values. However, these methods do not consider biologi-

cal significance. The biological significance is measured as a fold change which de-

scribes how much the expression level changed starting from the initial value. Fold 

change is measured as ratio between the two expression intensities and does not take 

into account the variance of the expression levels. Because of its simplicity it is usual-

ly used in combination with another statistical method [15]. Therefore, we used the 

volcano plot visual tool to display both statistically and biologically significant genes 

using a p-value threshold of 0.01 and a fold change threshold of 1.2. The genes that 

lie in the area cut off by the horizontal threshold, which implicates statistical signifi-

cance, and the vertical thresholds, which implicate biological significance, are the 

genes that are up or down regulated depending on the right and the left corner of the 

plot respectively. 

2.2.2 Modeling the a priori probability 

Using the histogram
1
 visual tool, we represented gene expressions at carcinogenic 

and healthy tissues. Observing the Fig. 1 and Fig. 2, which show the gene expression 

distribution in a carcinogenic and healthy tissue respectively, we perceived that their 

distribution substantially differs one from another. In order to confirm the visual as-

sumption of difference, we used the Kolmogorov-Smirnov test at which all genes 

rejected the null hypothesis of having the same distribution. Having the prior 

knowledge about gene expressions distribution, we can use the Bayes’ theorem to 

compute the posterior probability p (Ci | x ), where x  = {e1, e2, …, en} is a tissue 

vector containing the expression values for all significant genes, and Ci is one of the 

classes – carcinogenic or healthy. The posterior probability expresses how probable 

the class Ci is for a given tissue x . According to the Bayes’ theorem [16], in order to 

obtain this probability, we must determine the class-conditional densities p ( x  | Ci) 

for each class Ci individually, and the class prior probabilities p (Ci). 

 

Fig. 1. Gene expression distribution of the carcinogenic tissue samples  

                                                           
1  The histogram represents each sample (patient) with different color, putting its expression 

values on the x-axis and the number of genes on the y-axis. 



 

Fig. 2. Gene expression distribution of the healthy tissue samples 

Since the probability p ( x ) is calculated using the law of total probability and is 

the same for both cases it is usually ignored the Bayes’ theorem takes the form 

 p (Ci | x ) = p ( x  | Ci) p (Ci). (1) 

Estimating the class prior probabilities p (Ci) is simple in this case, because we 

have equal number of samples into both of the classes - carcinogenic and healthy. 

Thus, the prior probabilities are p (C1) = p (C2) = 0.5 for the carcinogenic and the 

healthy class, respectively. 

The class-conditional density p ( x  | Ci) is the probability density function for x  

given the particular class Ci. Unlike most of the models which assume Gaussian dis-

tribution, we followed generative approach and modeled class-conditional densities 

by ourselves. Thus, assuming independence of gene distribution we modified the 

class-conditional densities as 

 p ( x  | Ci) = Π ƒ1ƒ2...ƒn , (2) 

where ƒi is the continuous probability distribution of each gene distinctively. 

In order to determine the distribution of each gene, we needed to observe a large 

quantity of data. Therefore, using the holdout cross-validation technique, we involved 

¾ of the data in the training process. For each gene we performed statistical tests over 

the continuous and asymmetric Lognormal, Gamma and Extreme value distribution 

and we have chosen the one with the highest probability. Once we have modeled the 

class-conditional densities and the prior probabilities, we used the Bayes formulation 

to calculate the a posteriori probability to classify the tissues (1). 

2.3 Classification techniques 

As we revealed the genes whose differential expression is significant for the colo-

rectal cancer in the data preprocessing part, we can use supervised learning methods 

to diagnose whether the tissue is healthy or carcinogenic and choose the one that rec-

ognizes the carcinogenic tissues with highest precision. 



Bayes’ Theorem. Once we have modeled the class-conditional densities and the prior 

probabilities, we proceeded to calculate the posterior probability and to classify the 

tissues using (1), by the rule 

 If p (C1 | x ) > p (C2 | x ), then choose C1 (3) 

                    If p (C2 | x ) > p (C1 | x ), then choose C2. 

Support Vector Machines. SVM is a method that can classify high-dimensional data 

as are multiple genes’ expression levels. Given significant genes expression levels, we 

constructed tissue vectors x  for each patient. This binary classifier is supposed to 

choose the maximum margin separating hyperplane among the many [17] that sepa-

rates the carcinogenic from healthy samples in the m-dimensional expression space, 

where m is the number of significant genes. In order to investigate the expression data 

separability, we trained the classifier using three types of kernels: linear kernel, quad-

ratic kernel and radial basis function. To avoid over-fitting, we used hold-out cross-

validation technique which avoids the overlap between training data and test data, 

yielding a more accurate estimate for the generalization performance of the algorithm 

[18]. In addition, we also used bootstrapping method for accuracy improvement. 

Decision Trees. Decision tree is a hierarchical data structure implementing the di-

vide-and-conquer strategy. The tree codes directly the discriminants separating class 

instances without caring much for how those instances are distributed in the regions. 

The decision tree is a discriminant-based, whereas the statistical methods are likeli-

hood-based in that they explicitly estimate the likelihood before using the Bayes’ rule 

and calculating the discriminant. Discriminant-based methods directly estimate the 

discriminants, bypassing the estimation of class densities [19]. The reason for using 

this method is because it is easy to implement and it solves the classification problem 

using completely different approach from the SVM and Bayes’ theorem, which gives 

useful insight for methods efficiency comparison. 

3 Experiments and Results 

We retrieved colorectal microarray data from the ArrayExpress biological database 

[2]. To obtain realistic modeling of the specific genes gene expression probability 

distribution, we performed a series of analyzes according the methodology presented 

in 2.2 that leaded to these results. 

As far as we normalized gene expression levels (Table 1), we continued with genes 

reduction methods. Starting from the initial condition of 24,526 genes for 52 tissues 

we implemented a few statistical tests to separate the significant genes suitable for 

classification modeling, i.e., the data preprocessing. At first we removed the genes 

with low variability in their expression values using the low entropy filter (Table 2). 

Assuming the whole-genome distribution follows a normal distribution and most of 



the genes are not differentially expressed, we performed t-test statistics to find marker 

genes that discriminate carcinogenic from healthy tissue. The number of genes signif-

icantly reduced to approximately 3500 for up expression and 2900 for down expres-

sion. To remove the false positives, we used the FDR method which eliminated nearly 

400 genes at both up and down expression. Eventually, using the volcano plot visual 

tool, we cut off the genes considering both statistical and biological significance, 

which resulted in a set of nearly 200 genes, most of them down expressed. The results 

are given in Table 3. 

Table 1. Normalization results for the gene expression levels 

Tissue Statistics Before QN RSN 

tumor 

tissue 

Sample min. 6,3517 6,3884 6,5971 

1st Quartile 6,9229 6,9719 7,1066 

Median 7,6698 7,7381 7,7613 

2nd Quartile 9,4721 9,5295 9,3357 

Sample max. 13,2958 13,3551 12,6789 

Outliers 425 430 659 

normal 

tissue 

Sample min. 6,3624 6,4057 6,6123 

1st Quartile 6,9220 6,9618 7,0968 

Median 7,6770 7,7213 7,7439 

2nd Quartile 9,4879 9,5542 9,3498 

Sample max. 13,3289 13,4410 12,7262 

Outliers 460 417 676 

Table 2. Removing homogenous gene expressions 

Filter QN RSN 

Low entropy 22073 22073 

Table 3. Finding significant marker genes 

Norm. / Methods Т-test FDR Volcano Plot 

 up down up down up down sum 

QN 3515 2865 3108 2598 50 165 215 

RSN 3729 2968 3410 2736 41 151 192 

Once we discovered marker genes that discriminate carcinogenic from healthy tis-

sue, we used them to make a model according to which we can diagnose the patients’ 



health condition. Since we have the a priori knowledge such as the gene expression 

levels and the two possible health conditions, we used few supervised learning meth-

ods in order to choose the one with best performance.  

First, we used generative approach - modeling the prior distributions by ourselves. 

We modeled the prior distributions (Fig.1 and Fig.2) and used them in the Bayes’ 

theorem to calculate the posterior probability. Thus, we maintained very high correct 

rate, especially for the carcinogenic samples, which is very important in the diagnos-

ing process (Table 4).  

Table 5 represents the results obtained from the SVM classification. When training 

the classifier we used three types of kernels. We used hold-out cross-validation tech-

nique which involved ⅔ of the samples in the training set and ⅓ in the testing set. In 

addition, we used bootstrapping method, but it gave very poor results. The SVM 

method produced good results, but they vary in every subsequent trial depending on 

the chosen training set. 

Furthermore, we used Binary Decision Trees because of their simplicity and the 

different approach of discriminant calculation. The results in Table 6 show that it 

correctly classifies healthy tissues. 

According to the overall results, the Bayes’ theorem is the most accurate classifica-

tion method in the problem of classifying colorectal carcinogenic tissue. 

Table 4. Bayesian posterior probability classification 

Bayes’ theorem Cancer Healthy Total 

 all test all test all test 

QN 100% 100% 92.30% 83.33% 96.15% 91.67% 

RSN 96.15% 100% 96.15% 100% 96.15% 100% 

 
Table 5. Support Vector Machines classification 

SVM results Linear kernel Quadratic kernel GRB 

 cancer healthy cancer healthy cancer healthy 

QN 100% 87.5% 75% 87.5% 0% 100% 

RSN  87.5% 100% 87.5% 100% 100% 25% 

 total total total 

QN 93.75% 81.25% 50% 

RSN 93.75% 93.75% 62.5% 

Bootstrapping cancer healthy cancer healthy cancer healthy 

QN 20% 35% 10% 90% 70% 30% 

RSN 20% 45% 45% 70% 45% 35% 



Table 6. Binary Decision Tree classification 

BDT results Cancer Healthy Total 

QN 75% 100% 87.5% 

RSN 87.5% 100% 93.75% 

The ability of the test to correctly classify positive and negative samples is meas-

ured as sensitivity and specificity respectively. Sensitivity refers to the true positive 

rate; whereas specificity takes into consideration the true negative rate. This analysis 

also indicates that the Bayes’ theorem is the most suitable classifier in this case. 

Table 7. Classifiers’ Sensitivity and Specificity 

Results Bayes‘ theorem Linear kernel Quadratic kernel GRB BDT 

Sensitivity 1 1 0.8750 1 0.75 

Specificity 0.9231 0.8750 0.8750 0 1 

 

4 Summary and Conclusions 

As we are well introduced with the incidence and mortality caused by the colorec-

tal cancer worldwide, we used DNA microarray data to observe its gene expression 

behavior. We assumed that the responsibility for its occurrence lies in the disrupted 

gene expression levels, and therefore, we performed different statistical tests to unveil 

those genes. Those tests discovered approximately 200 marker genes that discriminate 

carcinogenic from healthy tissue, which we used to build an accurate diagnostic sys-

tem. Histogram representation confirmed different gene expression pattern at carcino-

genic and healthy tissues distinctively. Subsequently, we used few different classifica-

tion methods in order to choose the most accurate one. The best results were achieved 

using the Bayes’ theorem - we obtained over 90% correctness when classifying the 

tissues. We can conclude that the reason the Bayes learning model was most accurate 

for this problem is in the realistic modeling of the a priori probability.  

The results from this paper can be used for future research in upgrading the model 

in order to obtain even more accurate diagnostic system. Furthermore, the unveiled 

significant marker genes can be used in building ontology which can be very useful in 

developing new pharmaceutical molecules. 
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