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Abstract—Cloud service providers (CSPs) aim to preserve
infinite scalable and elastic computing resources. In addition,
user requirements for flexible cloud computing resources im-
pact the overall performance of the cloud. From the other
side, virtualization adds additional layer in cloud stack and
therefore decreases the service performance compared to on-
premise traditional hosting. It seems that the price to pay for
scalability and flexibility is not so small. Therefore, in order to
improve the overall cloud performance and make it sustainable
there is need for real-time resource orchestration. Considering
the heterogeneous architecture of the cloud, CSPs must de-
velop appropriate strategy to achieve maximum performance
minimizing the utilization of hardware resources and energy
consumption. In this paper, we propose a novel Low Level Load
balancing (L3B) approach applied to Infrastructure as a Service
(IaaS). Our approach preserves the cloud’s elasticity by dynamic
activation of cloud resources and load balancing the traffic over
the resources on low network level. In addition, our L3B balancer
tends to load the instances in the region where they provide
maximum performance. Introducing L3B improves the overall
cloud performance, reduces power consumption and customers’
cost for renting cloud resources, etc.

Index Terms—Cloud Computing, IP, Networking, Performance

I. INTRODUCTION

Cloud Computing is a new paradigm of on demand comput-
ing resources promised to be continuously scalable and elastic.
However, the virtualization in the cloud additionally decreases
the performance to approximately 70% of on-premise for both
memory demand and compute intensive web services [1]. The
performance drawback is emphasized for input / output bound
applications (more than 110% overhead) and a little (about
10% overhead) for CPU bound applications [2]. The large
amount of inconsistent traffic also drawbacks the performance
in the cloud compared to on-premise performance.

Many hypervisors exist to instantiate virtual machine (VM)
instances, using either full virtualization or para virtualization.
However, maximum resources that can be allocated to a certain
VM instance are determined by the resources that the physical
server has. This issue limits the maximum load that a VM
instance can handle without affecting the performance. One
mechanism to instantly orchestrate the cloud resources and
maximize the performance using minimum hardware resources
is to develop appropriate load balancing strategy [3]. Load
balancing is one solution to balance the requests between

two or more VM instances of client’s applications in a way
that they can be provisioned automatically without requiring
changes to the network or its configuration [4]. It increases
the service level agreement (SLA) and improves the resources
usage [5]. Balancing the load among ”tightly” VM instances
can optimize the performance, while balancing the load among
”loosely” VM instances can optimize the availability [6].

In this paper, we propose a novel load balancing approach to
IaaS cloud model in order to maintain balance with minimal
hardware resource utilization and achieve maximum perfor-
mance. Our dynamic load balancing approach is supposed
to handle the imbalance considering the heterogeneity of the
nodes. It is not profitable to have all of the nodes running
concurrently. The system should be elastic, i.e., to create
new nodes or shut down under-utilized nodes at any time to
optimize the customer performance and its own operation costs
[7]. Therefore, we introduce intelligence on the internet layer
of the TCP/IP model to balance the load among the active
instances using minimum hardware resources.

The rest of the paper is organized as follows. State of the art
in load balancing is presented in Section II. In Section III we
present the L3B system architecture and design. Performance
analysis of our proposed L3B balancer in the cloud is realized
in Section IV. L3B pros and cons are given in Section V. Con-
clusion and the future work are specified in final sections VI
and VII.

II. RELATED WORK

Different load balancing techniques exist. Their impact to
the performance and availability depends on a certain problem
and condition. Nuaimi et al. [8] presented a nice survey for
the performance of several load balancing algorithms in cloud
computing. Kuhn and Sesum-Cavic [9] proposed SILBA (Self
Initiative Load Balancing Agents) which exchanges pluggable
algorithms to select the best algorithm for a certain problem
and condition.

Load balancing techniques can be either centralized or
distributed. The centralized load balancing techniques are
controlled by a single central node and all the other nodes
communicate with this node. In distributed architecture the
load balancing algorithm is executed by all nodes present in
the system and the task of load balancing is shared among
them.
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Bhadani and Chaudhary [10] proposed Central Load Bal-
ancing Policy for Virtual Machines (CLBVM) to balance the
load evenly in a distributed VM/cloud computing environment
and migrates particular VM to lightly loaded server if its
performance is affected by other VMs. Radojevic and Zagar
[11] proposed an initial design of a centralized load balancer
which takes into consideration other parameters as server
load and application performance, rather than relying only on
network parameters. Their CLBDM module is an improvement
of Round Robin Algorithm [12]. This opposes the thesis which
states that using additional metrics will result in more process-
ing and additional communication overhead [13]. Randles et
al. [14] evaluate and compare three different distributed load
balancing approaches: Honeybee Foraging Behaviour, Biased
Random Sampling and Active Clustering. However, central-
ized approaches for load balancing and resource allocation in
cloud systems have design limitations as reduced scalability
and communication overhead which can easily result in a
bottleneck [15].

Wen et al. [16] stated that most load balancers assumed
homogeneous nodes, whereas dynamic and heterogeneous
systems are actually necessary to provide on-demand resources
or services; therefore, they propose a node interactive approach
which allocates and schedules resources in a reasonable way.
However, their solution does not increase the throughput
enough while utilizing the scaled system resources.

Sharma and Sharma [17] proposed a VM load balancer
implemented in the abstract cloud computing environment
CloudSim. They confirmed an increased performance and
decreased average response time. However, CloudSim is simu-
lating a cloud computing environment and the researcher does
not need to get concerned about the low level details related
to cloud-based IaaS [18], which would be a disadvantage in
our research.

Hu et al. [19] proposed a load balancing strategy based
on genetic algorithm, and historical data and current state of
the system. However, this solution lacks security and packet
routing since the cloud environment is dynamic and one VM
instance can have the same IP of the same VLAN with
recently turned off VM instance and many packets can be lost
or directed to wrong VM instance. Jin et al. [20] proposed
BAlance-Reduce (BAR) heuristic task scheduling algorithm
which dynamically adjusts the data locality according to
network state and cluster workload.

Several load balancers exist on the application layer. Ristov
et al. [21] proposed e-Assessment architecture in the cloud
creating one VM instance per assessment. Their solution
instantiate VM instances only during the assessments and each
VM instance works much faster with its own small database.
Tsai et al. [22] proposed a two-tier Software as a Service
(SaaS) architecture which increases the resources to bottleneck
components.

Velkoski et al. [23] have found an existence of superior
behavior meaning that cloud service performs much better
when executed on parallel resources. There is a particular
region which they refer to as superlinear, where web services

hosted in the cloud achieve speed up greater than the number
of scaled hardware resources. The reason lies in the fact that
VM instance with smaller resources (total number of CPUs
or amount of memory) saturates, while the VM instance with
more resources does not saturate for the same load. Therefore,
we aim to load the instances in the superlinear region in
order to get maximum performance. Achieving maximum
performance with minimum computing resources is profitable
both for the customers and the CSPs in terms of additional
costs for renting resources and power consumption costs,
respectively.

Balancing the load provides not only better performance, but
it can reduce the energy overhead, as well [24]. Power aware
load balancing algorithms can achieve significant cost savings
[25]. Adnan et al. [26] showed that load balancing algorithms
that migrate the workload using the future electricity price
prediction, can achieve significant cost savings compared to
greedy approach algorithms. Reducing the number of active
physical machines (nodes) in the cloud using balancing al-
gorithm reduces the overall cost for electricity and cooling
[27]. The load balancer proposed by Galloway et al. [28]
is an approach to IaaS cloud architecture that maintains the
utilization of all compute nodes and distributes virtual ma-
chines in a power efficient way. Similarly, Kasae and Oguchi
[29] focus on a hybrid cloud in cloud computing, which is
a combination of public and private clouds and propose a
method implemented as a middleware, that can both process
a large amount of data and control monetary costs, including
power consumption.

III. L3B SYSTEM ARCHITECTURE AND DESIGN

In this section, we present the L3B architecture and design.
The L3B is a centralized load balancer introduced between the
clients and the heterogeneous nodes in an IaaS cloud service
layer as depicted in Figure 1.

L3B

.

.

.

Fig. 1. L3B System architecture

L3B intermediates between the client’s requests for ser-
vices and the VM instances set in the cloud. This solution
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is designed to maintain load balance and gain maximum
performance using minimum computing resources.

Another important task for L3B is the cloud resource
provisioning. If the load increases in such a way that service
performance goes below a given threshold, then L3B will
automatically instantiate a new VM instance. If the load
decreases and service performance goes bellow the minimum
threshold, then L3B will automatically shut down one of active
VM instances.

In order to account the resource utilization when balancing
the load, we introduce two modules in L3B, i.e. Resource

Management Module (RMM) and Packet Management Module

(PMM) as depicted in Figure 2.

Cloud
Controller

Cloud Node

Virtual
Machine 1

Virtual
Machine N

L3B
Resource Management

Module

Packet Management
Module

...

Fig. 2. L3B modules

RMM’s main goal is to manage the provision of cloud
resources according to current load and active VM instances
utilization. It communicates with the cloud controller to create
a new VM instance or shut down some of the existing
VM instances hosted in cloud computing nodes. Additionally,
RMM informs PMM for active VM instances in order to
balance the load among them. PMM redirects the input packets
to some of the active VM instances and forwards the responses
to the exact client that sent the request.

Both modules consist of several internal agents and reposito-
ries depicted in Figure 3. The following two sections describe
their design in details.

A. Resource Management Module

RMM manages the cloud resources. This module commu-
nicates with PMM and the cloud’s controller. Therefore, it
regularly gathers information of the active resources utilization
and takes into consideration the client’s needs for more or less
resources.

Its goal is twofold:
• To minimize the cloud service provider costs, i.e. mini-

mize power consumption and resource utilization; and
• To maximize the service performance.
In order to obtain minimal resource utilization, we design

RMM with Resource Utilization Manager (RUM) and Re-

source Provisioning Agent (RPA).

Particularly, RUM manager is responsible for deriving in-
telligent decisions whether a new VM instance should be
instantiated or whether an existing active VM instance should
be released. RUM can observe the VMs and physical ma-
chine CPU utilization, service response times, memory usage
and other hardware utilization metrics for the running VM
instances and the host. Once a decision is derived, RUM
commits directive to RPA. RPA only executes RUM orders and
does not deduce any intelligent conclusions. It communicates
with Cloud controller for resource provisioning. The aftermath
of a good operating RMM is maintaining minimal computing
utilization that will guarantee the service performance thresh-
old and also achieving the best performance from the same
quantity of computing resources, thus reducing the cost for
power consumption.

B. Packet Management Module

PMM module is the core of the L3B and intelligently
manages all the inconsistent traffic coming from the clients.
The design of PMM module is also depicted in Figure 3. It is
used to manage the client’s requests, i.e. to forward particular
incoming packet to particular VM instance in order to balance
the load of all VM instances. When the target VM responses
back, PMM forwards the response packet to the client that has
sent the corresponding request.

PMM has two interfaces to communicate with the clients
and with the VM instances (Cloud Nodes), i.e. L3B Outside

Interface (OI) and L3B Inside Interface (II) correspondingly
as depicted in Figure 3.

L3B OI is an arbitrator between the clients and the PMM
inner agents. When a new packet arrives, OI instantly sends
information to the Input Packet Decision Agent (IPDA). IPDA
is the most important agent since its intelligent algorithm
derives smart decisions in assigning the requests to appropriate
resources. To determine which VM can handle the request
in order to preserve sustainable performance, IPDA uses
information from the Resource Utilization Repository (RUR)

and the Load Balancing Configuration (LBC). RUR is in
direct association with RMM, precisely with RUM. There-
from, IPDA receives real time information of the hardware
utilization actuality. Once IPDA acquires intelligent decision
based on previously mentioned metrics, it notifies the Packet

Translation (PT) agent. In a meantime, PT receives the packet
from OI and proceeds with translation of the IP header
using NAT/PAT (Network Address Translation / Port Address
Translation) functionality to translate between internal and
external network addresses. PT’s NAT/PAT translations are
then stored in the shared Packet Translation Repository (PTR)

and the transformed packet is forwarded to L3B II in order to
be forwarded to target VM instance using load balancing.

L3B II arbitrates between the inner L3B agents and the
cloud nodes, i.e. the target VM instances. Applying IPDA’s
decision, it forwards the IP packet with modified header to
a target VM instance in particular cloud node. Additionally,
L3B II has the ability to operate in the opposite direction. It
receives the responses from the VMs since the modified IP
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Fig. 3. L3B modules design

packet was previously encapsulated in data link frame with
II as source address (MAC Address since ethernet protocol is
used) and the target VM as destination MAC address. Thus,
the target VM will address the response with the address
of II as destination MAC address. Once L3B II receives a
reply, it informs the Output Packet Decision Agent (OPDA).
OPDA goes through the shared PTR and perceives the packet’s
PT instructions. As long as OPDA derives a decision based
on the obtained information, it informs the inverted PT. At
the time the response packet arrives, PT repeats the inverse
NAT/PAT procedure of translating the external IP address into
the original and the packet is sent to L3B OI. Then OI sends
the response to the client that has sent the original request.

IV. L3B PERFORMANCE ANALYSIS

In this section we perform L3B mathematical performance
analysis and discuss the possible performance enhancement in
the cloud.

A. Traditional Client-Server Scenario

Figure 4 depicts a traditional client-server scenario, where
WS denotes Web server and AS and DS denote application
and database server correspondingly.

t1

t3

Server 1

WS

AS

DS

 t2

Fig. 4. Traditional client-server design

The client sends a request to the server (Server 1). In a 3-
tier web application, the request is sent to the web server, then
forwarded to the application server and usually to the database
server. The response is forwarded back to the web server and
sent to the client.

The total response time tA of client-server communication
is defined in (1) as a sum of the time t1 necessary for the
packet to be delivered from the client to the server, the time
t2 necessary for the server to manage the request and compute
the response, and the time t3 spent for the response to be
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delivered from the Server 1 back to the client.

tA = t1 + t2 + t3 (1)

Let’s analyze the times t1, t2 and t3. Times t1 and t3
usually do not depend on service provider (Server 1) and its
hardware resources, but from the network path from the client
to the server. These times are usually different in range of
milliseconds to few seconds, but we can assume that they are
constant for each request and response since we are interested
to improve time t2. The time t2 substantially depends on the
size, the amount and the type of the requests, for example,
if security is implemented in the requests [30]. Moreover, the
requests can be static html, dynamic web application or web
service, or even additionally query to some database. All these
issues impact to the time t2. However, we can assume that
the time t2 is constant for the same client-server architecture
and client requests and server response similar to explanation
presented for the times t1 and t3.

B. L3B Scenario

When implementing L3B as an additional layer between
the clients and the server, additional latency is added to
the original response time. Figure 5 depicts the client-server
communication for proposed L3B scenario.

L3B Server 1

WS

AS

DS

 t2'
t11

t32

t12

t31

Δt1

Δt3

Fig. 5. Client-Server design with added virtualization

The client sends the request to the L3B instead of directly to
the end-point VM instance, which forwards the request packet
to the server as depicted. Introducing L3B imposes additional
delay Δt1 for the client’s request since L3B should determine
the target VM instance where the request should be forward
and to readdress the request packet to that VM instance.
Similarly, L3B imposes Δt3 delay for the response since L3B
should determine the client address where the response should
be sent and to readdress the response packet to that client. Both
times Δt1,Δt3 > 0. Hereupon, the total response time for this
L3B scenario client-server communication is defined in (2).

t′A = t11 + t12 +Δt1 + t32 + t31 +Δt3 + t′2 (2)

Let’s describe all times in (2). Time t11 denotes the time
needed for the client’s request to be delivered to L3B OI in
the PMM module. L3B OI receives the packet and notifies
the IPDA intelligent agent. Once IPDA derives its assign-
ment decision, it informs the PT agent. Meanwhile, the PT

agent receives the packet and does an appropriate NAT /
PAT translation to the packet header. Then the translated
packet is forwarded to L3B II, and the packet transformation
information is saved in the shared PTR. All these processes
are finished in time Δt1.

The translated request packet from L3B II arrives to the
server (target VM instance in some cloud node) in time t12.
Then the server processes the received packet in time t′2. This
time substantially depends on the size, the amount and the
type of the requests, similarly as in traditional client-server
scenario without L3B. After the request packet is processed,
the server sends the response packet back to L3B in time t31.
L3B II receives the response packet and notifies the OPDA
intelligent agent. OPDA accesses the shared PTR and reads the
information of the packet’s transformation previously saved. In
a meantime PT receives the packet and once OPDA makes its
decision, the packet is forwarded to L3B OI. The time Δt3
denotes the time for all processes inside L3B, i.e. moving the
response packet from II to OI. Finally, the response packet is
delivered to the client in time t32.

We can assume that the times t11, t12, t31 and t32 are
constant similar to explanation presented for the times t1 and
t3 in traditional client-server scenario. Similarly to traditional
client-server scenario, we can assume that the time t′2 is
constant for the same client-server architecture and client
requests and server response.

C. Response Time Improvements

In this section we analyze all times in (1) and (2) in order
to determine how to decrease t′A compared to tA, i.e. to speed
up the response time in L3B scenario, despite the additional
latency when introducing L3B.

In previous sections IV-B and IV-A we assumed that the
times t1, t3 in traditional client-server scenario, as well as the
times t11, t12, t31 and t32 in L3B scenario are constant for
particular request and response.

The relation for request times for traditional client-server
and L3B scenarios is given in (3) of Lemma 1.

Lemma 1: The time needed for the request packet to be
delivered from the client to the server in traditional client-
server scenarios is equal to the sum of times for the request
packet to be delivered from the client to L3B OI and from
L3B II to the server in L3B scenario, as defined in (3).

t1 = t11 + t12 (3)

Proof: The relation (3) is satisfied since the L3B is
introduced between the client and the server for the request
delivery and all L3B latency for the request packet is defined
as time Δt1.

The relation for response times for traditional client-server
and L3B scenarios is given in (4) of Lemma 2.

Lemma 2: The time needed for the response packet to be
delivered from the server to the client in traditional client-
server scenarios is equal to the sum of times for the response
packet to be delivered from the server to L3B II and from L3B
OI to the client in L3B scenario, as defined in (4).
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t3 = t32 + t31 (4)

Proof: The relation (4) is satisfied since the L3B is
introduced between the the server and the client for the
response delivery and all L3B latency for the response packet
is defined as time Δt3.

Using the equations (3) and (4) from lemmas 1 and 2, the
relation (2) can be simplified as shown in (5).

t′A = t1 + t3 +Δt1 +Δt3 + t′2 (5)

In order to have a benefit of L3B implementation, we must
perform a good trade-off between the increased latency and the
time t′2. That is, balancing the load with L3B among several
VM instances and their underutilization will improve the
service performance and thus reduce the time for processing
the request and generating the response on server side [31].

An enhanced performance can be obtained if the time t′2
is reduced. The time t′2 can satisfy the fixed-time speed-up
model, known as Gustafson’s law [32]. The authors in [33]
state that if the problem size is scaled up to maintain a fixed
execution time, the fixed-time speed-up is a linear function of
p, where p is the number of processors.

This means that using more resources will reduce the time
t′2 and thus the total response time t′A. Let’s analyze the
condition when L3B scenario will provide better performance
than traditional client-server scenario. Theorem 1 gives the
required condition.

Theorem 1: L3B scenario will provide better performance
than traditional client-server scenario if (6) is satisfied.

t2 − t′2 − (Δt1 +Δt3) > 0 (6)

Proof: Lets ΔtA denotes the difference between re-
sponse times of traditional client-server and L3B scenarios,
i.e. ΔtA = tA − t′A. Using the values for tA and t′A defined
in relations (1) and (5) correspondingly yields the condition
in (6).

Let’s explain the condition in Theorem 1. Introducing L3B
will impose additional latencies Δt1 and Δt3. Since L3B is
low level load balancer, i.e. on network layer, these latencies
are inconsiderable compared to server response time. On the
other side, using more resources in the cloud can reduce the
time t′2 up to p times (or more than p times if server works
in superlinear region [23]) where p is the factor of scaling the
resources.

V. L3B PROS AND CONS

We mentioned some benefits and detriments of introducing
L3B between the client and the server. In this section we
exhibit all the pros and cons of our proposed L3B approach.

A. L3B Pros

Although introducing L3B generates additional latency in
delivering the request and response packets in the direction
from client to server and vice versa, it provides several benefits
especially if the server is hosted in VM instances, as described
in Section III. In this section we will discuss the pros from
both customers’ and CSPs’ aspects.

Considering economic reasons, the customers need cost-
aware CSP. Most common CSPs offer charging model based
on utility consumption. The price doubles for double rented
resources [34], [35], [36]. Our L3B activates and deactivates
the computing resources on user demand and thus it prevents
additional customers’ costs for idle resources. Moreover, this
is also a CSP advantage in terms of maximizing hardware
resources utilization and therefore reducing the power con-
sumption costs. A simple reserve capacity model for dimen-
sioning the capacity of cloud based system in the presence
of time-varying customer demand [37] can be implemented
in our L3B in order to decrease even more the latency that
L3B imposes. After the research presented in [38] that 53%
of the data centers monthly costs go to power and cooling,
the authors in [39] present the fact that the IaaS providers are
under enormous pressure to reduce energy consumption and
even more meet environmental standards.

Another benefit from the proposed L3B approach apart from
cost and power awareness is increased number of the CSPs
customers. By implementing L3B, CSPs can offer value added
services with the facilitation of renting less computing re-
sources and in the same time get maximum performance. L3B
will also satisfy their service level agreements. For example,
Google and Microsoft guarantee 99.9% availability (uptime)
[40], [41] and Amazon guarantees 99.95% [42]. Availability
of 99.9% means maximum 8.77 hours of downtime per year
and 99.95% means 4.39 hours of downtime per year.

From a performance point of view L3B avoids congestion
since it works on a cloud customer service level. Also, failure
of one or more cloud nodes could decrease the performance,
but the system will remain active and available since the cloud
possesses unlimited resources and other VM instances will be
instantiated on another health cloud node.

B. L3B Cons

When introducing L3B we may confront the most common
issues initiated by the design of the centralized load balancers.
The election of a single central node reduces the reliability of
the L3B. Hence, if the central node fails, it will result in L3B
decline correspondingly.

Another negative issue for our L3B is the fact that all L3B
modules, agents and repositories require additional hardware
resources, i.e. computing, memory and storage capacity. L3B
adds additional latency both for requests and responses in
order to decide which VM instance to forward the packet and
to translate the request packets to that particular VM instance.
Additional latencies are produced when L3B determines which
client will receive the response and also for translation of the
response packet header for that particular client.
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The authors in [43] refer to the desire of handling the client’s
requests by the same node throughout the client’s session, as
session affinity, or, session stickiness. They state that while
distributing the load evenly among the available nodes, there
is no guarantee that all the requests coming from the users
will be handled by the same node from the pooled resources.
This issue implies another L3B drawback. Since the L3B is
implemented on the network level of the TCP/IP model, it is
acquiescent to the IP packet length constraint of up to 64KB.
Therefore if the request size is greater than IP packet size
(64KB), than two or more IP packets with different IDs will
be sent to two different nodes with greater probability than to
be handled by a same node and thus preserve from infinite
appealing of resending the packets.

Dynamic creation of VM instances is not a real time pro-
cess. Creating a new VM instance sometimes could be several
minutes. It is a period when the load can be significantly
changed and the VM instance should be deactivated even
before it is started completely.

VI. CONCLUSION

We have developed a new strategy to address the problem
of decreased performance of the cloud in comparison to on-
premise system due to additional virtualization layer. The new
strategy handles the increased service requests and manages
the CSPs computing resources. Since the IaaS cloud tends
to be heterogeneous environment, we proposed a mechanism
to retain optimal hardware utilization and achieve maximum
performance utilizing the same cloud computing resources
orchestrating differently.

We introduced a novel centralized approach implemented
on the network level of the TCP/IP model. Our L3B is
an intelligent agent which orchestrates the nodes resources
according to service requests. In order to achieve maximum
performance, we loaded the instances in the superlinear region,
where customers get more performance than expected.

Introducing L3B provides benefits both for cloud customers
and CSPs. Customers can achieve better performance for their
services hosted on the same resources for the same price.
CSPs will reduce the costs for power electricity, increase their
availability and reliability into their SLAs increase the number
of customers using the same resources etc.

Not only that we proved that introducing L3B in the cloud
will improve the performance of the client-server model, but
we also determine the condition how it can be achieved.

VII. FUTURE WORK

In this paper we have presented an implementation of the
proposed L3B architecture. Our further research will be fo-
cused on comparing the performances of real implementations
of traditional client-server scenario with the implementation of
L3B scenario in order to derive conclusions about the overall
performance improvements. However, cost analysis is also
important when scaling the resources.

We will continue our research in developing an intelligent
algorithm and compare it with the existing network load

balancing algorithms as round-robin, random-allocation, etc
and introduce a simple reserve capacity model for dimension-
ing the capacity of cloud based system in the presence of
time-varying customer demand. Moreover, we will proceed
to improve existing modules and will aim to overcome the
design obstacles. The goal is to upgrade our L3B to overcome
previously mentioned obstacles especially for greater request
message size which will produce several IP packets which
should be forward to the same target VM instance.
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