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Abstract-Link prediction is a common problem in many
types of social networks, including small Weighted Signed
Networks (WSN) where the edges have positive and nega-
tive weights. In this paper, we predict transactions between
users in Bitcoin OTC Network, where the links represent
the ratings (trust) that the users give to each other after
each transaction. Before predicting, we transform the
network where we convert negative weights into positive so
that the feature scores, calculated by existing algorithms
(such as Common Neighbours, Adamic Adar etc.) would
improve the models performance in our link prediction
problem. We consider two methods that will help us in our
link prediction: attributes estimation based on similarity
scores link prediction and link prediction as supervised
learning problem. The first method can be used more
as a way to determine which of the attributes (feature
scores) are more important in link prediction. The second
method is used for estimating attributes importance, but
even more for actual prediction using the calculated feature
scores as input to the machine learning and deep learning
models. The predicted links can be interpreted as possible
transactions between certain users.

Index Terms—Ilink prediction, weighted signed directed graphs,
network science, machine learning

I. INTRODUCTION

In the past several years, the Bitcoin and other cryptocurren-
cies emerged into the digital world of transactions. The ability
to transfer unlimited amount of money without paying fees to
a third party, like banks, and the idea of mining Bitcoin using
the blockchain technology, caught the users interest. Because
of that, a lot of platforms were created where people can make
these transactions based on certain market policy. When a user
registers on such platform and it has been authenticated, he
can later use it to buy or sell bitcoins. On some platforms,
when a transaction has been completed, users can rate each
other. That rating indicates how trustworthy the user is and
helps other users to estimate this user whenever they want to
make a transaction with him in the future.

In this paper, we use the Bitcoin OTC Network! in order to
predict whenever a possible transaction will be made between
two users in the network. In order to achieve this we use

IBitcoin OTC Network: https://www.bitcoin-otc.com/
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a plethora of methods and algorithms from network science
and machine learning. We represent this network as a graph,
where links indicate the user ratings. Since users usually rate
each other after transaction or several transactions, the links
also indicate that those users made a transaction, which comes
down to link prediction in a graph and/or predicting future
transactions in the network.

This research can be used on other similar trading markets
which are based on ratings. Also it can be used in order to
determine if there would be an interaction between users or
companies and who would initiate the interaction.

II. RELATED WORK

There have been many studies in the field of link prediction,
most of them focused on big social networks like Facebook
and Twitter [1], citation networks [2] and dynamic networks
(networks were edges are created over time) [3]. The problem
have been also addressed for multilayer online social networks
[4]. Most of these studies use methods from machine learning,
but on graphs where the edges are undirected and unweighted.
There also has been work on link prediction on directed
weighted graphs [5], where the weights are always positive.

In this work, we will present a plethora of algorithms and
methods used on our sparse network with negative weights and
evaluate them using ROC Curve and Precision-Recall Curve.

III. DATASET

We used the Bitcoin OTC network dataset [6, 7] that is
available in the Standford Large Dataset Collection.?

The dataset contains source and target nodes, where the
source node gives rating to the target node that is between
—10, which means that the user did not hold his end of the
bargain and that he is a fraud, and 10, which means that this
user is very trustworthy.

The Bitcoin OTC Network consists of 5881 users and 35592
links between users, which is a relatively small network. The
Average Clustering Coefficient is 0.151, which shows that
this network is clustered. We wanted to see the node degree
distribution (Fig. 1) in our network in order to determine if
the network is scale-free and follows a Power-Law distribution.
Additionally, we calculated the Power-law exponent: 'y =1.969
and Tail power-law exponent: Y, = 2.051. Comparing the two

2https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
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Fig. 1: Node degree distribution in the Bitcoin OTC Network.

exponents, we can see that the Bitcoin OTC Network is not a
typical scale-free network, since they are not almost equal.
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Fig. 2: Ratings given in the Bitcoin OTC Network.

We also examined what rating was most often given by the
users (Fig. 2) in order to have a rough estimation of how much
of the transactions were successful. We see that most of the
ratings are positive, which probably indicates that most of the
transactions were successful.

IV. RESEARCH METHODOLOGY

By definition, the term Weighted Signed Network means a
directed, signed graph G = (V,E,W) where V is the set of
users, E CV xV is the set of edges in the graph and W : E —
[—n,+n] is weight value between some -n and n assigned to
an edge. In our graph, a W(u,v) means how much the user
u “’likes” or “trusts” user v. In the following, we describe the
methods used for link prediction and define the attributes used
by these methods.

A. Methods

In our paper, we use two methods that will help us in our
link prediction. In both of these methods we consider two

graphs G and G, where G is used as a training graph and
G, is the graph in which we predict links. The methods are:

« Attribute estimation based on Similarity Scores link
prediction

o Link Prediction as a Supervised Learning Problem.

1) Attribute estimation based on Similarity Scores link
prediction: Let u and v denote two nodes in G who are not
connected in G1, but are connected in G,. Then we can assign
similarity measurement score(u,v) for the node pair (u,v).
Thus, we assign score value Ve ¢ Gy, S : score(e) where e is the
edge (node pair) that does not exist in the graph G and create
a list in decreasing order. Then we select the top M high scored
edges and see how many of them are in G;. Furthermore, we
will show how the accuracy changes for different sizes of M.
The more the accuracy increases, the more valuable is the
feature score in our link prediction.

There are mainly three groups of similarity measurement
scores, where each gives different results based on the prob-
lem. Those are:

o Local Measurement Scores - where we calculate the
score mostly based on the information depending on
nodes u and v.

« Global Measurement Scores - where we use all paths
in the graph to calculate the score. These measurement
scores usually give good results, but depending on the
graph it may take very long time to compute.

e Quasi-Local Measurement Scores - which are in-
between measurement scores, that balance the trade-off
between accuracy and computing complexity.

We must emphasize that in this work we focus only on local
measurement scores and estimate their importance for link
prediction.

2) Link Prediction as a Supervised Learning Problem:
From the original graph G we choose node pairs (u,v) that
do not exist in the graph. We choose equal number of non-
existing edges and existing edges in order to solve the problem
with class imbalance while training. Whenever there is a



present edge in the graph, we label it as positive, whereas
the non-present edges are labeled as negative. This is crucial
pre-processing step before we split the original graph in two
subgraphs G; and G;.

For each sample, we use a variety of attributes, such as:
topological (global), neighbourhood-based (local) etc. in order
to form a dataset for training and test, which is then fed into
the machine learning and deep learning models. In the next
subsection, we will give an insight of the types of attributes
used by our models.

B. Attributes - Feature Scores

As we mentioned before, in each of our methods we will
use attributes (feature scores) that will help us build models
and evaluate them later on. All of these attributes represent
some score for a given pair of nodes u and v.

1) Common Neighbors Score: The idea of common neigh-
bours comes from social networks where it states that if two
strangers who have a friend in common a more likely to be
introduced to each other than those who do not have any
friends in common. For our problem, we use Laishram’s [5]
variation of Common Neighbours in directed weighted graphs:

Z w(z,u) +w(z,v)
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where u and v are the nodes, I'; are the predecessors of a given
node and I', are the successors of a given node and w(x,y) is
the link’s weight.

2) Preferential Attachment Score: Preferential attachment
is measure to compute the closeness of two nodes based on
their neighbours. If both of the nodes u# and v have more
neighbours, the chance is bigger for them to connect. We will
use Laishram’s [5] weighted variation:
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3) Adamic Adar Score: Adamic Adar score [8] is based on
a concept that if a person has a lot of friends, and he is a
common friend or acquaintance of other two people, then it
is less likely to introduce the two people to each other, other
than when he would have very few friends [9]. We will use
Laishram’s [5] weighted variation of Adamic Adar:
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4) Shortest Path Score: Shortest path score is a global
measurement score that calculates reciprocal of the length of
all shortest paths from u to v. We use Laishram’s [5] weighted
variation of Shortest Path:
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where |p (u,v|lmin)| are number of paths between u and v with
length [, and [, is the length of the shortest path.

5) Fairness and Goodness: The Fairness and Goodness
algorithm [6] is an extension of HITS [10] for directed signed
graphs. The fairness attribute of a node is a measure of how
fair is the node in giving ratings to other nodes (users). The
goodness attribute of a node measures how much the other
nodes “like” him and what is his true quality. Fairness and
Goodness are calculated as follows:
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where R is the maximum difference between an edge weight
and goodness score [6]. The full algorithm is described in
Kumar’s paper [6].

6) Jaccard Similarity: Jaccard Similarity is a measure that
shows us how similar are two nodes in a graph by calculating
how many common neighbours they have from all their
neighbours. The Jaccard Similarity for directed graphs will
be calculated as follows:
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7) Cosine Similarity: Cosine Similarity in a directed graph
is calculated as follows:
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8) Katz Score: Katz score is similar to Shortest path score,
however instead of taking only the shortest paths, it takes
all paths in the graph. The Katz score in directed graph is
calculated like this:

KS(u,v) = i]ﬁ’ “ ()],

where |p(u,v|l)| are the number of paths between u and v with
length [ and B is damping factor between 0 and 1. We used
the unweighted variation of Katz score since the weighted one
was computationally expensive.

9) PageRank Score: The PageRank Score is a node based
feature and is calculated as follows:

1
Let PR(u) = IR YueV,
PR(v)
PR(u) = ,
&)

where B, are the links that u is connected to and L(v) are the
number of links that node v points to.

10) HITS: HITS [10] or Hubs and Authorities was initially
created for rating Web pages. Authorities in our case will be
the users who participated in most of the transactions, while
hubs are those users that can point us to the authoritative users.
HITS is calculated as follows:

Let u=(1,...,1),

v=ATu, u=Ay,

where A is the adjacency matrix, # is the hub weight vector
and v is the authority weight vector. Since we use Fairness
and Goodness as weighted variation of HITS, we also wanted
to use the unweighted variant for comparison and determine
which one is more valuable in the prediction.

V. RESEARCH STUDY

In this section, we study the problem of link prediction in
Weighted Signed Network. There are many studies on link
prediction focused on the big online social networks, which
prompted us to experiment on smaller networks with the
previously mentioned approaches and attributes.

Before we explain how we used the methods, we need to
point out that certain weight mapping was used in order to
calculate the feature scores. For all attributes except Shortest
Path Score, the mapping used is [—10,10] — [1,20], while in
Shortest Path a mapping of [—10,10] — [20,1] is used. The
mapping was not used for the Fairness and Goodness attribute,
since the algorithm itself can handle negative weights.

In the first method (i.e. Attribute estimation based on Sim-
ilarity Scores link prediction), we find the maximal strongly
connected component and we split it in two subgraphs G| and
G, where we take 15% of the edges in the maximal component
to the subgraph G, and the rest to G;. We mentioned above
that we will use different sizes for M which is the number
of top high scored edges that do not exist in graph G;. M
takes values lo52', Vi €[0,1,...,k], where k is a number which

satisfies the condition /,g2% equals 15% of the number of
all possible edges in G and [,y is the number of edges in
graph G,. We also mentioned that for this method we will use
only local feature scores. Those are Common Neighbours,
Adamic Adar and Preferential Attachment. With each of
these measures, we calculate the score for all edges that do
not exist in graph G| and we select the top M high scoring
edges and see how much of them belong in G, as we change
M.

Algorithms Prediction Comparison
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Fig. 3: Algorithms accuracy based on top M edges selected
TABLE I: Accuracy for each algorithm
Algorithms
Value of M Common Neigh. Adarr%ic Adar | Preferential Attach.
5019 0.099 0.105 0.0
10038 0.144 0.153 0.0
20076 0.2 0.213 0.0
40152 0.264 0.28 0.0
80304 0.339 0.363 0.001
160608 0.418 0.439 0.001
321216 0.477 0.512 0.002
642432 0.534 0.564 0.006
1284864 0.66 0.674 0.016
2569728 0.724 0.724 0.06

From the results above, we can see that Adamic Adar gives
the best results. Common Neighbours has similar accuracy
results compared to Adamic Adar in the beginning and same
accuracy in the end. However, Preferential Attachment gave
very poor result. These results gives us a rough estimate about
which local features are more significant for link prediction
when using the second method, i.e. Link Prediction as a
Supervised Learning Problem.

In the second method, we select edges whose links are not
present in the original graph G. Since the graph is very sparse,
the number of selected non-present edges will be very high
which will produce very high class imbalance. For the edges
that exist in the graph, we label them as positive, while the
other as negative. Next, we split our main graph G with the
generated edges into G, which is used for training and has
equal amount of existing and non-present edges in order to
solve the problem of class imbalance while training, and G»,



which is used for test and uses 15% of the existing edges
and 15% of the non-present edges, which makes it highly
unbalanced. For each of these graphs, we generate a dataset
where the attributes are all the feature scores we previously
mentioned along with their node pair whose feature scores are
calculated. Afterwards, we remove the node pairs from the
dataset in order to prevent the machine learning algorithms
to be biased based on the edges. These datasets were used
for training and evaluating several machine learning and deep
learning models, which are shown in the following figures.

For evaluation metrics, we used ROC Curve and Precision-
Recall Curve for each of the models. We used 5-fold Cross
Validation with Grid Search in order to find the optimal hyper-
parameters for our machine learning models.

For our deep learning model, we used classical Feed For-
ward Network with the idea of Residual Networks [11] by
using only the skip connections. For simplicity, we called it
SkipConnNet. We used 3 hidden Linear layers, each with 100
neurons. The optimizer used was Ranger [12] with learning
rate of 0.0001. We used validation split of 10% and batch
size of 128. The loss function we used was Mean False Error
(MFE) [13]. The model was created using Pytorch[14] and
Poutyne [15].
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As we mentioned above, we have a highly imbalanced test
set for evaluation, where the dominant class is the negative
one (ratio of around 1:1000). From Fig. 6 we can see that the
SkipConnNet has the best ROC curve than the other models.
However, in Fig. 7 is hard to distinguish which model performs
better. All of them vary significantly for certain precision and
recall, however for recall above 0.5, all of them converge to
a certain precision value.

We also used Random Forest and XGB (Fig. 4 and Fig. 5) to
see which features impacted their prediction the most. On both
plots, on the x-axis, we see two formats of labeling our features
Xxx_s/xxx_t, which means that this feature was calculated
individually for both Source and Target nodes respectively, and
xxx Out/xxx In, which means that this feature was calculated
based on the successors and predecessors of both Source and
Target nodes respectively. It can be seen that Common Neigh-
bours and Adamic Adar have bigger impact than Preferential
Attachment, which is what we roughly estimated with the first
method.



VI. CONCLUSION

In our research we have shown:

how we use the problem of link prediction to predict a
possible transaction in Bitcoin OTC Network,

that certain weight mapping from negative to positive can
improve the score from Common Neighbours, Adamic
Adar etc. and with that, the overall model performance,
that link prediction using similarity scores can also be
used to give a rough estimation of how much each feature
is important in the prediction,

that link prediction as supervised learning problem with
machine learning models can give decent result on a
sparse network with very big class imbalance like the
one we used.

In the future we will extend this work by using state-of-the-
art networks like Node2Vec to generate additional features and
improve the performance of our models even more.

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

REFERENCES

Peng Wang et al. “Link Prediction in Social Networks:
the State-of-the-Art”. In: CoRR abs/1411.5118 (2014).
arXiv: 1411.5118. URL: http://arxiv.org/abs/1411.5118.
Mohammad Al Hasan et al. “Link prediction using
supervised learning”. In: 2006.

Catherine A. Bliss et al. An Evolutionary Algorithm Ap-
proach to Link Prediction in Dynamic Social Networks.
2013. arXiv: 1304.6257 [physics.soc-ph].

Haris Mandal et al. “Multilayer Link Prediction in
Online Social Networks”. In: 2018 26th Telecommuni-
cations Forum (TELFOR). IEEE. 2018, pp. 1-4.
Laishram Ricky. “Link Prediction in Dynamic Weighted
and Directed Social Network using Supervised Learn-
ing”. In: (2015). Dissertations - ALL. 355. URL: https:
//surface.syr.edu/etd/355/.

Srijan Kumar et al. “Edge weight prediction in weighted
signed networks”. In: Data Mining (ICDM), 2016 IEEE
16th International Conference on. IEEE. 2016, pp. 221-
230.

Srijan Kumar et al. “Rev2: Fraudulent user prediction
in rating platforms”. In: Proceedings of the Eleventh
ACM International Conference on Web Search and Data
Mining. ACM. 2018, pp. 333-341.

Lada A. Adamic and Eytan Adar. “Friends and neigh-
bors on the Web”. In: Social Networks 25 (2001),
pp- 211-230.

Fei Gao et al. “Link Prediction Methods and Their
Accuracy for Different Social Networks and Network
Metrics”. In: Scientific Programming (2015), p. 172879.
ISSN: 1058-9244. por1: 10.1155/2015/172879. URL:
https://doi.org/10.1155/2015/172879.

Jon M. Kleinberg. “Authoritative Sources in a Hyper-
linked Environment”. In: J. ACM 46.5 (Sept. 1999),
pp. 604-632. 1SSN: 0004-5411. por: 10.1145/324133.
324140. URL: https://doi.org/10.1145/324133.324140.
Kaiming He et al. Deep Residual Learning for Image
Recognition. 2015. arXiv: 1512.03385 [cs.CV].

Michael R. Zhang et al. Lookahead Optimizer: k
steps forward, 1 step back. 2019. arXiv: 1907.08610
[cs.LG].

Shoujin Wang et al. “Training deep neural networks on
imbalanced data sets”. In: July 2016, pp. 4368—4374.
DOI: 10.1109/1JCNN.2016.7727770.

Adam Paszke et al. “PyTorch: An Imperative Style,
High-Performance Deep Learning Library”. In: Ad-
vances in Neural Information Processing Systems 32.
Ed. by H. Wallach et al. Curran Associates, Inc., 2019,
pp. 8024-8035. URL: http://papers.neurips.cc/paper/
9015- pytorch- an-imperative- style- high- performance-
deep-learning-library.pdf.

Frédérik Paradis. Poutyne: A Keras-like framework for
PyTorch. https://poutyne.org. 2018.



