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Abstract—The numerical simulation of the mould filling step
in casting is crucial since it provides a complete set of detailed
information. However, the mesh based methods usually used
to model this processes have some drawbacks when dealing
with this kind of problems. In order to overcome some of
these limitations in this work the application of an innovative
meshfree computational tool based on the Finite Pointset Method
is proposed. The main features and details of its implementation
are presented and finally, the accuracy and robustness of this
scheme is assessed through the numerical simulations of three-
dimensional test problems in mould filling processes.

Index Terms—casting, meshless method, Finite Pointset
Method, FPM

I. INTRODUCTION

Many industrial applications require the production of
aluminum alloy and metal matrix components with precise
shapes, dimensions and surface fineness, which could be very
complex in general. Shape casting processes as lost foam
casting, die casting, stir casting and sand casting are among the
most widely used procedures to manufacture aluminum alloy
products. Such processes begin with a step in which a mould’s
cavity is filled with molten material followed by a cooling
and solidification step. The features in the manufactured
components and the number of defects are the result of the
coupling of the physical phenomena involved in these steps.
Therefore, in order to get homogeneous casting components
with the desired characteristics and an acceptable low amount
of defects, it is necessary to know and control all the physical
phenomena involved in the selected process and to conduct a
proper design procedure [1].

Currently the foundry industry is interested in the best pos-
sible performance at the lowest cost. The required performance
can be achieved only when the desired microstructure and
an acceptable low number of defects are obtained in the end
product. For a specific alloy, this can be achieved only by
knowing and understanding the selected casting process so that
it can be optimized. Moreover, nowadays the industrial casting
product development is shifting from traditional heuristic and
experience-based trial-and-error design procedures to a deep
scientific proof-of-concept design procedure.

Numerical simulation is commonly used to analyze and
improve different casting processes since it provides a large
amount of information that cannot be obtained through other

techniques. It is the most technologically efficient, cost ef-
fective and powerful technology for the evaluation, analysis
and prediction of the quality in the end products and the
number of defects since it models the entire casting process
and shows all the details and the dynamic behavior of the
casting system in real working conditions. Therefore, the root
causes of the quality in the end products and the casting
defects are pinpointed and the possible solution routes to avoid
them and to improve the overall quality could be determined,
evaluated and analyzed with this tool [2].

Mesh-based methods such as the Finite Element Method
(FEM), Finite Difference Method (FDM), Finite Volume
Method (FVM), and more recently, meshless methods as
Smoothed-particle hydrodynamics (SPH) have already been
used to analyse mould filling processes [3]–[6]. The advan-
tages of meshless methods over mesh-based methods are that
they use a set of nodes to discretize the problem domain and its
boundaries without requiring any information about the rela-
tionship between nodes such that they do not form an element
mesh which lets to model deformations and discontinuities
in the domain without the mesh-based methods drawbacks.
Moreover, they have the flexibility to add or remove nodes
wherever and whenever needed and it lets to easily develop
adaptive schemes [7].

The so called Finite Pointset Method (FPM), member of
the family of generalized finite difference methods (GFDM),
is a meshfree method that has proven to be far superior to
traditional mesh-based and some other meshfree methods to
treat fluid dynamics problems involving complex geometries
and heat transfer problems [8]–[12]. It has many advantages
over other methods since it is able to naturally and easily
incorporate any kind of boundary conditions without requiring
any special treatment or stabilization and it is really simple to
implement. Therefore, in this work we propose the application
of this novel meshfree formulation for the numerical simula-
tion of mould filling processes. The current paper is organized
in the following manner: Section II shortly describes the
governing equations and the numerical procedure used to solve
them. Section III describes the basic ideas behind the meshfree
formulation for the mould filling problem followed by the
numerical test presented in Section IV with its corresponding
results. Finally some conclusions are given in last section.



II. GOVERNING EQUATIONS AND NUMERICAL PROCEDURE

The governing equations for mould filling processes are the
incompressible Navier-Stokes equations which in Lagrangian
form read

Dv

Dt
= −1

ρ
∇p+ ν∇2v + f , (1)

∇ · v = 0, (2)

where ρ is the density, p is the pressure, ν is the kinematic
viscosity, f is the acceleration vector due to the body forces
and v is the velocity. This system of equations is completed
with the following initial and boundary conditions

v|t=0 = v0, (3)
v|∂Ω1

= 0, (4)
v · n|∂Ω2

= 0, (5)
∂ (v · ti)

∂n

∣∣∣∣
∂Ω2

= 0, (6)

(τ − Ip)n|∂Ω3
= σκn, (7)

tTi τn
∣∣
∂Ω3

= 0, (8)

where ∂Ω1 is a solid wall boundary with no-slip condition,
∂Ω2 is a solid wall boundary with free-slip condition, ∂Ω3 is a
free surface, v0 is the initial velocity over the entire domain Ω,
τ is the viscous stress tensor, σ is the surface tension, κ is the
free surface boundary curvature, n is an outward orthonormal
vector and ti is a tangential unitary vector to the boundary,
for i = 1, 2.

In order to solve the system of equations (1) and (2) with the
boundary and initial conditions (3) - (8) in a natural and simple
way, a semi-implicit Chorin-Uzawa’s projection formulation of
first order of accuracy will be used [13] which consists of the
following steps [12]:

1) Explicitly update the nodes positions through

rn+1 = rn +∆tvn. (9)

2) Implicitly solve for the intermediate velocities

v∗ −∆tν∇2v∗ = vn +∆tfn+1, (10)

with the boundary and initial conditions (3) - (8).
3) Implicitly solve for the artificial pressure

∇φ =
ρ

∆t
∇ · v∗, (11)

which must satisfy the following boundary conditions
∂φ

∂n

∣∣∣∣
∂Ω1,∂Ω2

= 0, (12)

φ|∂Ω3
= 0. (13)

4) Correct/Update the velocity field

vn+1 = v∗ − ∆t

ρ
∇φ (14)

5) Correct/Update the pressure field

pn+1 = φ− ρν∇ · v∗. (15)

where rn and vn are initially given and they denote the nodes
positions and its velocities at time tn, respectively.

III. THE FINITE POINTSET METHOD (FPM)

In this section we describe the main ideas of the FPM
method proposed by [14]. The FPM is a member of the family
of the GFDM and it is based on the WLSM. Following [8]:

Let Ω be a given domain with boundary ∂Ω and suppose
that the set of points r1, r2, . . . , rN are distributed with
corresponding function values f(r1), f(r2), . . . , f(rN ). The
problem is to find an approximate value of f at some arbitrary
location f(r) using its discrete values at particles positions
inside a neighbourhood of r. To define the set of nodes and the
neighbourhood of r, a weight function w(r−ri) is introduced

wi = w(r− ri) =

{
e−γ∥r−ri∥2/h2

, if ∥r−ri∥
h ≤ 1

0 else
(16)

where h is the smoothing length, γ is a positive constant whose
value is considered to be 6.5, and ri is the position of the i−th
point inside the neighbourhood. A Taylor’s series expansion
of f(ri) around r reads

f (ri) = f (r) +
3∑

k=1

fk (rki − rk)

+
1

2

3∑
k,l=1

fkl (rki − rk) (rli − rl) + ϵi, (17)

where ϵi is the truncation error of the Taylor’s series
expansion, rki and rk represent the k−th components of the
position vectors ri and r, respectively. fk and fkl (fkl = fkl)
represent the set of first and second spatial derivatives at
node position r. The values of fk and fkl can be computed
minimizing the error ϵi for the np Taylor’s series expansion of
f (ri) corresponding to the np nodes inside the neighbourhood
of r. This system of equations can be written in matrix
form as e = Ma − b, where e = [e1, e2, e3, · · · , enp ]

t,
a = [f, f1, f2, f3, f11, f12, f13, f22, f23, f33]

t,
b = [f(r1), f(r2), · · · , f(rnp)]

t, M = [s1, s2, · · · , snp ]t,
si = [1, ∆r1i , ∆r2i , ∆r3i , ∆r11i , ∆r12i , ∆r13i , ∆r22i ,
∆r23i , ∆r33i ]

t, ∆rki = rki − rk, ∆rkli = (rki − rk)(rli − rl)
and ∆rkki = 0.5(rki − rk)(rki − rk), for k, l = 1, 2, 3 and
k ̸= l. The unknown vector a is obtained through WLSM by
minimizing the quadratic form

J =

np∑
i=1

wiϵ
2
i , (18)

which reads (M tWM)a = (M tW )b, where
W = diag(w1, w2, · · · , wnp). Therefore, a =
(M tWM)−1(M tW )b. In this way we automatically
get the values of f and its derivatives at points r.

A. FPM formulation for the semi-implicit Chorin-Uzawa’s
scheme

Poisson equations as (11) and coupled vector boundary
value problems as (10) have been already studied in [12],
[15]. Following such works we present, for completeness, the
corresponding FPM formulation to solve the equations (9 -



Fig. 1. Numerical filling patterns at different time steps.

15). Equation (11) is an elliptic partial differential equation,
which can be written in the following general form

Af +B · ∇f + C∇2f = D (19)

and the boundary conditions take the general form

Ef +G∇f · n = H. (20)

In the FPM representation of the above problem, equation
(19) must be taken together with the system of np Taylor’s
series expansion of f(ri) around r. In this case, the
matrices we need to compute by each particle in Ω take the
following form: b = [f(r1), f(r2), · · · , f(rnp), D]t, M =
[s1, s2, · · · , snp , sE ]t and W = diag(w1, w2, · · · , wnp , 1),
where sE = [A,B1, B2, B3, C, 0, 0, C, 0, C]t and
B = [B1, B2, B3]t. If ri ∈ ∂Ω, additionally we have to add
the general boundary condition (20). Therefore, in this case,
the matrices we need to compute by each particle in ∂Ω take
the following form: b = [f(r1), f(r2), · · · , f(rnp), D, F ]t,
M = [s1, s2, · · · , snp , sE , sB ]t and W =
diag(w1, w2, · · · , wnp , 1, 1), where sB =
[E, n1, n2, n3, 0, 0, 0, 0, 0, 0]

t.
If we define q = [q1, q2, · · · , q10]t as the first row of

(M tWM)−1 and the terms in the moving least squares

solution a = (M tWM)−1(M tW )b are worked out, we can
see that the following linear equations arises

f (rj)−
n(j)∑
i=1

wi (q1 + q2∆r1i + q3∆r2i + q4∆r3i + q5∆r11i

+q6∆r12i + q7∆r13i + q8∆r22i + q9∆r23i + q10∆r33i) f (ri)

= [Aq1 +B1q2 +B2q3 +B3q4 + (q5 + q8 + q10)C]D

+(n1q2 + n2q3 + n3q4)E,

where f(rj) denotes the unknown function value at particle
j and n(j) the number of j−th particle neighbours. Since
equation (III-A) is valid for j = 1, 2, · · · , N , this can be
arranged in a full sparse system of linear equations LF = P
which can be solved by iterative methods. In the same way,
coupled vector boundary value problems as (10) are treated
similarly. For further information on this kind of problems,
we refer to [12]. Therefore, all kind of problems as (9 - 15)
can be solved with this formulation, just adding appropriate
entries in the corresponding systems of equations [12], [15].

IV. NUMERICAL EXAMPLE

In this section the suitability and feasibility of this FPM
formulation in order to simulate 3D mould filling processes
in metal casting will be evaluated considering the filling
of a pump cover. In this example, the problem domain
was discretized with approximately 180000 points with a



mean spacing of 0.0015 m. The inlet velocity was taken
as v = [−0.1, 0, 0]t m/s. The pressure in all particles as
well as the atmospheric pressure were considered as zero.
The surface tension forces and the gravitational acceleration
vector were neglected. The density and viscosity of the fluid
were considered as ρ = 6964 kg/m3 and µ = 0.0143 Pa∗s,
respectively. These parameters corresponds to the physical
parameters of the molten cast iron. Finally, the smoothing
length used in the simulation was h = 0.0045 m, a slip
boundary condition was used at solid walls and the time step
was chosen as ∆t = 0.004 s.

Two perspective views of the filling patterns at different
time steps are depicted in Figure 1. There, the picture on the
left shows the view exactly from the top whilst the second one
shows the view from the top at some angle to the right. As it
is shown in this figure, the leading material is divided in four
liquid fronts when it impacts the two annular central sections
of the die. Two central jets partially merge forming a single
liquid front which is split again when it impacts the central
cylindrical obstacle. The emerging jets move backwards and
starts filling the rear part of the mould. Splashing droplets and
liquid fragmentations are visible in this part. The remaining
two jets flow around the curved outsides of the die until they
collide with the fronts coming from the rear and central parts
of the mould. In the two annular central sections of the mould,
the liquid flow up into the upper extensions. At this point the
rear part of the mould is substantially filled and the fluid flow
is towards the front part of the mould. Afterwards, almost all
the mould cavity is filled and the biggest voids are principally
behind two of the cylindrical obstacles near the inflow jets.
They are uniformly filled until the filling process finishes.

These pictures show the robustness of this FPM formulation
for the simulation of complex 3D mould filling processes since
the splashing into droplets, the fluid fragmentation into jets
and the fronts collisions observed in this example are well
reproduced and predicted by this approach.

V. CONCLUSIONS

Based on the numerical performance shown in the numerical
example we can conclude that the current approach is suitable
and feasible for the simulation of 3D mould filling processes.
It is stable and it has enough accuracy in order to capture the
splashing into droplets, the fluid fragmentation into jets and
fronts collisions which are observed in this kind of processes.
Since this formulation is a truly meshfree method it could be
used for the study and analysis of complex problems involving
high deformations and domain fragmentations with a great
computational advantage since it does not need to compute
any numerical quadrature and it does not need remeshing
approaches. Further, it is able to naturally and easily handle
any kind of boundary conditions without requiring any special
treatment or stabilization and it is really simple to implement.
Therefore, it could be a promising numerical tool for the
simulation of industrial processes involving complex flows
and other phenomena described by elliptic partial differential

equations as heat transfer. Consequently, it depicts a rich
source of research opportunities.
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