

Precision Apiculture – IoT System for Remote
Monitoring of Honeybee Colonies

Riste Poposki
Ss. Cyril and Methodius University

Faculty of Computer Science and Engineering
Skopje, Macedonia

riste.poposki@students.finki.ukim.mk

Dejan Gjorgjevikj
Ss. Cyril and Methodius University

Faculty of Computer Science and Engineering
Skopje, Macedonia

dejan.gjorgjevikj@finki.ukim.mk

Abstract— Beekeeping practice, being very environmentally
dependent, requires the temperature and the humidity in the
hive to be in some regular ranges for optimal beehive health and
productivity. Since most of the plants and flowers required for
beehive prosperity and honey production are usually outside
inhabited areas, the beekeeper must travel to the bee colonies to
check them, which can be time and resource consuming. In this
paper, an end to end remote monitoring and control system for
a bee colony is presented. The system is consisted of a web-based
system for monitoring and control of the conditions of the hives
and IoT system for collecting the sensor measurements and
transferring the data. The IoT system is composed of hardware
units that are mounted on the beehives, containing temperature,
humidity, weight sensors, actuators, and a microcontroller
responsible for collecting the measurements and sending the
data to the web system. The communication between the
hardware unit and the web system uses WiFi or LoraWAN
technology, that enables running the device on batteries. The
system enables remote monitoring of multiple beehives and can
be configured to alert the user via email or push notification if
some sensor value is outside of predefined range. The system
also enables sending commands to the unit controlling the
actuators that can intervene on the beehive closing or opening a
ventilation lid.

Keywords—beekeeping, IoT, monitoring, LoraWAN, WiFi

I. INTRODUCTION
The constant progress in the area of internet of things

contributes to creating various systems for remote monitoring
and control in different areas like agriculture [1], the health
sector, smart cities, smart homes, transport etc. The apiculture
or beekeeping is organized care and management of bee
colonies in human made hives [2].

For the beehive prosperity and successful production of
honey, it is very important the hive’s internal and external
environmental conditions to be in some regular ranges.
According to [3] and [4], the hive’s internal temperature and
humidity are one of the main factors for increased honey
production. Honeybees have some natural ways of regulating
the temperature and humidity but despite that, sometimes an
intervention from the beekeeper is required in order to balance
the values. On the other hand, the bee colonies are usually
placed outside of areas inhabited with people, preferably in the
rural areas and most of the time the beekeeper is not living
near the beehives. The threats of animal attack on the hives, as
well as possibility of other people stealing the hives are
common. Also, when the period for harvesting the honey
comes, the beekeeper must manually inspect all the hives and
check which ones are ready.

Several monitoring systems that would contribute to the
beekeeping process and increase the honey production have
been suggested by different researchers. Balta and Dogan in
[5] show example of a software architecture for a system that

monitors the internal conditions (temperature, humidity) in a
beehive. In a similar study [6] Dineva and Atanasova propose
a system for monitoring the conditions with focus on different
communication technologies for transferring the sensor
values. Despite monitoring the internal conditions of the
beehive, the authors in [7] propose adding a weight scale to
periodically measure the beehive weigh. This weight values
help in recognizing which hive has honey to be gathered, or if
the hive has been stolen or destroyed by animals.

The aim in this paper was to develop an end to end system
for remote monitoring and control of a beehive colonies. An
embedded hardware unit with connected sensors would be
mounted on the beehives and will periodically send data to a
web system. The beehive state including the temperature,
humidity and weight of the beehive can be monitored using a
web application. The system also provides an option for
sending commands to the beehive like changing the data
transfer interval. The system can be configured to send alerts
to the user if some sensor value is out of range. Special focus
will be given to low powered wide area communication
technologies like LoraWAN [8] since the device should be
able to operate on batteries.

The remainder of the paper is organized as follows: in
Section 2 the system architecture is described, with
subsections about the general structure, the detailed structure,
as well as explanation of the communication between
components. In Section 3 the initial implementation of the
web system and the prototype of the hardware unit is
presented and discussed. Finally, in Section 4 a conclusion and
remarks on the future work is given.

II. SYSTEM ARCHITECTURE
The architecture and intercommunication of the

components of the beehive monitoring system should be
carefully thought out since the whole system should meet
some important requirements such as:

• The user should access the system from any device and
from anywhere where internet access is available

• The data from the hives should be available near real
time, with possibility to notify the user of some critical
conditions

• Many areas where the beehives reside do not have
electricity so the hive monitoring system should be
operational in these areas

• Operation of the hive monitoring system should not be
dependent on constant internet access

• Monitoring the conditions in the hives without altering
the natural workflow of the bees, meaning the system
should be minimally invasive

A. General Structure
Based on these requirements, the general system

architecture is presented on Fig. 1. The beehive monitoring
and control system is composed of two subsystems: a web-
based system and an IoT system. The web-based system is
hosted on a web server, while the IoT system is placed onsite
where the actual beehives are located.

The web system is the main entry point for user
interaction. To access and use this system the user only needs
to have a device with internet connection and a web browser.
Generally, it can be perceived like a traditional rich web
application hosted on a web server. Upon visiting the
application, the user can interact with the beehive monitoring
and control system. Some of the functionalities and modules
are:

• Monitoring the beehives’ data. This includes viewing
the sensor values sent from the devices mounted on the
beehives. A tabular and graphical presentation of the
data is available.

• Listing and managing all the devices mounted on the
beehives. This includes registering new devices,
editing their basic information, and adding the device
on a dashboard.

• Sending commands to the devices. This is a module
where the user can send commands to a device
mounted on a particular beehive. The commands can
be used to configure the sampling rate and the data
transfer interval, or to control actuators as servo motors
to increase the ventilation in the beehive. There is also
a history view where the status of whether the device
executed the command is presented.

• Setting rules and alerts. In this module the user can
define rules regarding the sensor values of each
beehive. If the rule is valid, the system can send an alert
to the user via email or push notification.

The IoT system is composed of the beehives that have
smart device mounted on it. The smart device contains a
general-purpose microcontroller (MCU) connected to various
sensors for measuring some physical parameters of the
environment. Some of the sensors monitor the internal
conditions inside the beehive and some of them the external
conditions around the beehive.

The sensor values are periodically sent to the web-based
system on a predefined period. The primary set of parameters
that are measured are:

• temperature

• humidity

• pressure

• beehive weight

If the device has WiFi access to the internet, the data can
be sent directly to the web system using the HTTP transfer
protocol. However, considering the mentioned requirements,
constant power supply or internet connection are not always
guaranteed. LPWA (Low Power Wide Area) technology like
LoraWAN can be very suitable for transferring slow changing
data on long ranges using very low power. Devices with LoRa
connectivity can generally send long range data to gateways
in a 2-5km radius while running on batteries for an extended
period of couple of months. Currently we use the LoraWAN
wireless technology for transferring the data to the web-based
system, but other LPWA technologies can be integrated to the
system in the future.

Despite only sending data to the web-based system, the
IoT System can also receive some predefined commands from
the user. Some of the commands are:

• Changing the interval between taking measurements
and data transfers. Most of the time the smart device
can remain in low power mode saving the batteries.
The most power is used while reading the sensors and
transferring the data back to the web-based system.

• Controlling actuators like servo motors to physically
move some parts of the beehive. An example can be
opening a lid in order to decrease the humidity in the
beehive.

Each command is followed by an acknowledgement
offering an insight in the commands that have not been
delivered, are not executed yet on the device, or have failed.

B. Detailed Structure
The detailed view of all the components, the external

systems and communication between them is given on Fig. 2.

The internal components of the beehive monitoring and
control system is composed of web client application, web

Fig. 1.General structure of the system

API, NoSQL database and IoT devices mounted on the actual
beehives.

To implement the LoraWAN support, the system is
integrated with the “The Things Network” cloud service [9]
while for the alerting module, integration with a mail server
and the Blynk IoT platform [10] is used. These are third party
external services that provide some functionalities that do not
need to be implemented inside the beehive monitoring and
control system.

1) Web Client App
This is a single page web application developed using

HTML, CSS and the ReactJS framework. It implements the
user interface of the system, and exposes the following
modules and functionalities:

• Beehive Dashboard - a module where the user can
view summary information for the beehives. It
includes a section showing the corresponding
beehive’s minimum, maximum and average sensor
values. Underneath this section there is a beehive
section where each beehive is represented as a donut
chart displaying some sensor values. The last section
is a detailed view for the selected beehive revealing all
sensor values in detail and displaying a line chart with
historical data.

• Control Dashboard - a module where the user can view
compact information for some beehives of interest.
The view consists of section displaying the basic
information of the beehive, section displaying the
sensor data as a table and a line chart and section
displaying the commands that can be sent to the device.

• Devices Module - a module where all registered
devices (beehives) in the system are listed. Some
functionalities in this module include creating new

devices or adding existing devices to the control
dashboard.

• TTN Integration Module - a module where the
integration with The Things Network is configured.
The user can view all the registered devices on the
network and can add new ones. For every TTN device
the corresponding beehive device is presented, or if no
device is assigned a connection to a device can be
configured.

• Alerts Module - a module that is shown in the device
detailed view is used for defining rules for each sensor.
The predefined rules are:

o value greater than - the system will send alert if the
sensor value is greater than user specified value.

o value lower than - the system will send alert if the
sensor value is lower than user specified value.

o maximum time without data transfer - the system
will send alert if the device has failed to send data
for more than prespecified amount of time.

2) Web API
This is a backend RESTful web API developed using the

NodeJS express framework. It is a central place where the
business logic of the system resides. Each independent
module is written in a separate endpoint. The following
endpoints are available:

• Device Endpoint - This is an endpoint for managing
devices. It has CRUD methods for the beehive devices.
There is also a method for changing the connected
TTN device.

• Data Endpoint - This is an endpoint for the sensor data.
It has methods for posting sensor values from the WiFi
enabled devices as well as methods for getting and
filtering sensor data for some specified device.

Fig. 2. Detailed structure of the system

• Command Endpoint - This is an endpoint for the
device commands. It has methods for sending a
selected command to a specified device as well as
getting the already sent commands (history). There is
also a method for getting only the not acknowledged
commands for a particular device. This method is used
by the beehive devices that pool the server on a
predefined interval.

• Alerts Endpoint - This is an endpoint for managing the
rules and alerts for each device. There are methods for
creating alerts for certain sensors, as well as defining
the rules when this alert will be activated. There is also
alerts history endpoint where the last sent alerts with
the triggered rules can be retrieved.

• Beehive Summary Dashboard Endpoint - This
endpoint offers data summary retrieval for the beehive
dashboard.

• TTN Endpoint - This is an endpoint for managing the
devices registered on The Things Network. There are
CRUD methods for managing each TTN device and a
method for getting the TTN application info.

Beside the REST endpoints, the Web API has integration
with The Things Network’s data endpoint via the MQTT
(Message Queue Telemetry Transport). This is the place
where actual communication with the LoraWAN devices
mounted on the beehives is happening. When a beehive
transfers data to the TTN cloud service, the same data gets
decrypted and sent to the Web API to be stored in the database.

There is also another integration with the Blynk IoT cloud
for sending alerts via push notification and with the google
mailing server for sending alerts via e-mail.

3) NoSQL Database
The database used by the Web API is NoSQL Mongo

database. The data is persisted and queried using the
mongoose library for NodeJS which is an ORM (Object
Relational Mapper) that eases the whole data related process.
The models (entities) created for the system are device, data,
command, alert, alert history, and beehive summary
dashboard.

4) Beehive IoT Devices
The beehive IoT devices are consisted of a microcontroller

and sensors connected to it, programmed on the Arduino
platform. These devices are mounted on the beehive and
measure the conditions inside and outside the hive. Two types
of devices have been used:

• Lora32U4 - a development board based on
ATmega32u4 microcontroller with a built in Lora 868
MHz Radio module. This module has support for
battery-based power supply which can last for a couple
of months. On this board, the following sensors and
actuators are connected: DHT11 (temperature and
humidity sensor), SG90 Micro Servo (minimal servo
motor), HX711 (analog to digital converter module
connected to 4 strain gauge sensors composing a
weight scale). The MCU is periodically reading the
sensor values and is transfers the readings using the
LoraWAN technology. The data transfer is a broadcast
to all accessible TTN gateways nearby. The gateways
are transferring the data to the TTN cloud service via
the internet. The TTN cloud then sends this data to the

web API which saves it in the database making it
available to the user. After each transmission there is a
small window where the TTN cloud can send some
downlink message to the device. This window is used
for sending commands to the device.

• NodeMCU ESP8266 - a development board based on
the ESP8266 WiFi module. On this board, a BMP280
temperature and pressure sensor is connected. The
sensor values are transferred to the web API
periodically on a certain interval via HTTP to the data
endpoint. The commands are queried via pooling i.e.
sending HTTP request on a certain period and
checking the command endpoint for commands
waiting to be executed on that device.

5) External Systems
The external systems used in this solution include The

Things Network cloud service, the Blynk IoT platform and a
mail server.

The Things Network is a global public network offering
easy integration for the devices that support the LoraWAN
protocol. In order to be used, one needs to create a TTN
application in the TTN service, after which the registration of
the devices can be performed. These devices are called TTN
devices, and as described in the previous sections, they can be
connected to the already registered devices in the beehive
system. For the full communication to work, a gateway is
required to be in the reach of the device. A gateway is a
hardware device which has permanent internet and power
connection equipped with software for capturing the incoming
LoraWAN messages and dispatching them via internet to the
TTN Network.

The Blynk IoT platform is a large and multi feature
platform for developing and implementing different IoT
solutions, but in our application only the notification module
is used. The user needs to have the Blynk mobile app installed,
which enables receiving push notifications from the web
application. Whenever an alert is triggered in the system, a
notification including information about the alert that was
triggered and the device that triggered it is received on the
user’s smartphone.

For the mail integration, any SMTP server can be used.
We have used the Google’s Gmail SMTP server, that upon
triggering an alert, an email message including the
information about the device and the rules that triggered the
event is composes and sent to the configured e-mail address.

C. Communication between components
The user starts the interaction with the system from his

web browser visiting the web client application. The client
application requests resources from the web API using the
HTTP protocol. These resources include information for the
devices, the actual sensor values, commands history etc. The
web API validates the requests and executes some business
logic to load the data from the MongoDB database. The
payload is returned in JSON format.

The IoT devices can use different communication
protocols based on the actual device. The WiFi based devices
send their data and query the available commands with HTTP
directly with the web API. The LoraWAN based devices use
LoraWAN protocol and communicate with the nearby
gateways. The gateways than transfer the data to the TTN
cloud service, that sends that data further to the web API using

MQTT protocol. The commands for the LoraWAN devices
are first sent from the web API to the TTN cloud service that
queues all commands and sends them to the appropriate
gateways that forward them to the actual LoraWAN devices
on their next data transfer.

III. PROTOTYPE AND INITIAL IMPLEMENTATION
The beehive monitoring and control system described in

the previous section has been partially implemented and
prototyped.

A. Software System
The beehive dashboard module is shown on Figure 3. The

first section shows the total number of beehives monitored and
the user can select which beehives and which sensors are
shown on the page. Next to it is the Min-Max-Avg section
showing the information for each sensor. Underneath this is
the devices section showing donut gauges for each device. The
data shown here can be selected from the Min-Max-Avg
section. At the bottom of the screen the device detail section
is shown where all the data values for the selected device are
shown, as well as line chart showing the variation of the values
for the selected sensor.

B. IoT System
A photo of the principal prototype of the beehive device is

shown on Figure 4. It shows the Lora32U4 development board
connected to the sensors and actuators on a breadboard. The
connected sensors are:

• DHT 11 temperature sensor

• LDR light sensor

• HX711 module connected to a weight sensors

• SG90 Micro Servo actuator

• LED diode for status signaling

The MCU is programmed using the Arduino platform and
its main cycle is reading the values from the sensors and
sending them to the TTN network. The data transfer interval
is initially set to 3 minutes based on the TTN fair access
policy. After each data transfer the device checks for possible
messages sent back from the TTN network in the downlink
window. If downlink message has been received, the MCU
decodes the command and executes it. It can be for example

moving the servo actuator to open/close a ventilation lid or to
control another device.

IV. CONCLUSION
In this paper, an end to end system for monitoring and

control of a beehive colonies is presented. It contains a web-
based solution that exposes a web application where the user
monitors and controls the conditions of the bee colonies. The
application shows different graphical and tabular
representations of the sensor values for each beehive, beehive
groups, summary view of the minimum, maximum and
average values across all available beehives. There is also
possibility to define rules for beehive parameters that enable
sending alerts via mail or push notification. The other part of
the system is the hardware IoT units containing sensors. The
sensors measure some crucial parameters for the beehive like
the internal and external temperature and humidity and the
beehive weight. These values are sent via the LoraWAN or
WiFi connection to the web system where they are persisted.
Such system will enable the beekeeper to have near real-time
information about the state of his bee colonies, reducing the
need for travel to physically inspect the beehives.

For the future work, this prototype will be mounted on a
real beehive adequately protected from the external influences
(rain, sun) and we plan to perform experiments with real
beehive colonies. Use of additional sensors that can give some
insight of intensity of the bee activity, like microphones and
light sensors that can count the bees that leave or enter the hive
will also be considered. Extending the system to support other
LPWAN technologies like NB-IoT or SigFox and even the
GPRS network communication is also planned. As for the
web-based system, a standalone mobile application can be
developed and integrated with the web API. This will
eliminate the need for the integration with the Blynk platform
and will also provide easier way for the user to interact with
the system through its mobile device.

ACKNOWLEDGMENT
This research was partially funded by the Faculty of

Computer Science and Engineering, Ss. Cyril and Methodius
University in Skopje.

Fig. 4. Prototype of the beehive sensor device

Fig. 3. Beehve dashboard from the Beehive System

REFERENCES
[1] Z. K. Aldein Mohammeda and E. S. Ali Ahmed, “Internet of Things

Applications, Challenges and Related Future Technologies”, World
Scientific News, vol. 67, No. 2, pp. 126-148, 2017.

[2] S. E. McGregor, “Beekeeping”, Encyclopaedia Britannica,
https://www.britannica.com/topic/beekeeping, [Accessed March
2020].

[3] E. E. Southwick, G. Heldmaier, “Temperature Control in Honey Bee
Colonies”, BioScience, vol. 37, no. 6, pp. 395–399, June 1987.

[4] H. F. Abou-Shaara, A. A. Al-Ghamdi, A. A. Mohamed, "Tolerance of
two honey bee races to various temperature and relative humidity
gradients", Environmental and Experimental Biology, vol. 10, pp. 133–
138, 2012.

[5] A. Balta, S. Dogan, G. O. KOCA and E. Akbal, “Software Modeling
of Remote Controlled Beehive Design”, International Conference on

Advances and Innovations in Engineering (ICAIE), Elazig, Turkey,
May 2017.

[6] K. Dineva and T. Atanasova, “Model of Modular IoT-based Bee-
Keeping System”, The 2017 European Simulation and Modelling
Conference, Lisbon, Portugal, October 2017.

[7] S. Gil-Lebrero, F.J. Quiles-Latorre, M. Ortiz-López, V. Sánchez-Ruiz,
V. Gámiz-López, J.J. Luna-Rodríguez, “Honey Bee Colonies Remote
Monitoring System”, Sensors, vol. 17, no. 55, 2017.

[8] “LoRaWAN 1.1 Specification”, LoRa Alliance Technical Committee,
October 11, 2017.

[9] “The Things Network”, [Online] https://www.thethingsnetwork.org/,
Accessed: March 2020.

[10] “Blynk IoT”, [Online], https://blynk.io/, Accessed: March 2020.

https://www.thethingsnetwork.org/
https://blynk.io/

	I. Introduction
	II. System Architecture
	A. General Structure
	B. Detailed Structure
	1) Web Client App
	2) Web API
	3) NoSQL Database
	4) Beehive IoT Devices
	5) External Systems

	C. Communication between components

	III. Prototype And Initial Implementation
	A. Software System
	B. IoT System

	IV. Conclusion
	Acknowledgment
	References

