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Chapter 1

Conduction Electrons
and Fermi Surfaces

Conduction electrons are described by the one-electron band theory
in which the electron-electron interactions (correlations) are simply
neglected at the start. The Schrödinger wave function is solved for
an electron moving in a potential which varies periodically with dis-
tance. The corresponding Bloch state with a band width of a few
eV develops in the whole crystal. The conduction electrons are thus
well described in momentum (k) space. The conduction electrons
have energies up to a Fermi energy εF, which is simply expressed by
εF = 1

2mv
2
F = (�kF)2/2m. The Fermi surface is thus defined as a

constant energy surface in k space of which the energy is equal to
εF. Even though the electron-electron interactions may change the
topology of the Fermi surface, the volume of the Fermi surface is kept
invariant. It is the boundary of the electronic momentum distribu-
tion in the ground state, dividing k space sharply into two regions
which electrons occupy or do not occupy. Note that the mass of the
correlated conduction electron is changed from the bare mass m or
the band mass mb to an effective mass m∗.

1.1 Non-interacting conduction electrons
-Fermi gas-

Strong magnetism described in the present text is present in the com-
pounds containing the first-line series of transition metals (Ti, V, Cr,
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2 Physics of Heavy Fermions

Mn, Fe, Co, Ni, Cu), lanthanoids (lanthanides) (Ce, Pr, Nd, Sm, Eu,
Gd, Tb, Dy, Ho, Er, Tm, Yb), and actinoids (actinides) (U, Np, Pu,
Am, Cm). Their electron configurations are as follows

transition metals [Ar core] 3dn4s2 (n = 0 − 10)

lanthanides [Kr core] 4fn5s25p65d16s2 (n = 0 − 14)

actinides [Xe core] 5fn6s26p66d17s2 (n = 0 − 14).

Three series of elements play a fundamental role in magnetism
because 3d, 4f , and 5f shells can remain unfilled, leading to
magnetism in the crystal. Note that 4d, 5d, and 6d electrons are
rather delocalized, participating in the conduction band, and their
contribution to magnetism is generally very weak. The 4s2 electrons
in transition metals, 5d16s2 electrons in lanthanides, and 6d17s2

electrons in actinides contribute to the energy band, and partially
become the conduction electrons.

First, we consider the conduction electrons based on a free elec-
tron model; that is, we consider N number of conduction electrons in
a cubic crystal of length L, as shown in Fig. 1.1(a). The Schrödinger
wave equation is [

− �
2

2m
∇2 + V (r)

]
Ψ(r) = εΨ(r), (1.1)

where the conduction electrons move freely in the crystal, as in an
ideal gas. The one-particle wave function Ψ is expressed as Eq. (1.1),
where the position r = (x, y, z), the wave vector k = (kx, ky, kz), the
potential energy V (r), and

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

If we assume V (r) = 0,

Ψ(r) =
1

L3/2
eik·r (1.2)

ε =
�

2k2

2m
=

�
2

2m
(
k2

x + k2
y + k2

z

)
(1.3)
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Conduction Electrons and Fermi Surfaces 3

(a)

(b) (c)

Γ
Γ

Figure 1.1: (a) Cubic crystal with a length L and the lattice constant a, (b)
the corresponding spherical Fermi surface, and (c) the cross-section of the Fermi
surface.

The wave function is conveniently required to be periodic in x, y, z
with the length L, so that

Ψ(x, y, z + L) = Ψ(x, y, z), Ψ(x, y + L, z) = Ψ(x, y, z),

Ψ(x+ L, y, z) = Ψ(x, y, z), (1.4)

which is called a periodic boundary condition. The wave vectors in
x, y, z become

kx =
2π
L
nx, ky =

2π
L
ny, kz =

2π
L
nz

nx, ny, nz = 0, ±1, ±2, · · · .
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4 Physics of Heavy Fermions

The conduction electrons with number N occupy the energy
states in momentum k-space, as shown in Fig. 1.1(b). Note that one
energy state corresponds to a volume of (2π/L)3 in k-space and is
occupied by two electrons with the up and down spin states (↑, ↓).
The number of energy states Ω and the density of states D(ε) in a
Fermi sphere of radius k are expressed as

Ω =
4
3πk

3(
2π
L

)3 =
V

6π2

(
2mε
�2

)3/2

(1.5)

D(ε) =
dΩ
dε

=
V

4π2

(
2m
�2

)3/2

ε1/2 (1.6)

where

V = L3, ε =
�

2k2

2m
.

The electronic specific heat coefficient γ, which is obtained experi-
mentally by measuring the specific heat C, is related to the density
of states D(εF) at the Fermi energy εF as

γ =
2π2

3
k2

BD(εF). (1.7)

Note that γ = (π2/3)k2
BD(εF) is often written in the text. In such a

case, the density of states D(εF) contains a factor of 2 based on the
up and down spin states. The present density of states in Eq. (1.6)
does not contain the factor of 2.

We now consider N conduction electrons in the cube V (= L3).
The number of conduction electrons per unit volume, n, is given as

n =
N

V
=

1
V

∫ εF

0
2D(ε)dε

=
∫ εF

0

1
2π2

(
2m
�2

)3/2

ε1/2dε

=
1

3π2

(
2m
�2

)3/2

ε
3/2
F (1.8a)

or

εF =
�

2

2m
(3π2n)2/3. (1.8b)
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Conduction Electrons and Fermi Surfaces 5

Here, we consider the simple cubic structure with a lattice
constant a(=4 Å), and assume one atom possesses one conduction
electron, which is confined in the crystal of the cube of length
L(=1 cm). The carrier number n(= 1/a3) is 1.6 × 1022 cm−3, which
leads to εF = 2.3 eV from Eq. (1.8b), or the Fermi temperature
TF(= εF/kB) = 27000 K, and the Fermi velocity vF(= �kF/m =√

2εF/m) = 9.0 × 107 cm/s, where m is assumed to be m0 (the
electron rest mass).

Next, we consider the Schrödinger wave equation in Eq. (1.1)
when the potential V (r) exists but is weak. Both the wave function
Ψ and potential V are periodic over a and therefore are expressed by
Fourier expansions as

Ψ(r) = eik·ru(r) = eik·r
∑
n′
un′e−iGn′ ·r (1.9)

V (r) =
∑
m

Vme
−iGm·r (1.10)

where Gm is the reciprocal lattice vector. From Eqs. (1.1), (1.9)
and (1.10), we can obtain the wave function Ψ and the eigen-
value ε as

Ψ(r) = u0e
ik·r +

∑
n �=0

Vn

�2k2

2m − �2

2m (k − Gn)2
u0e

i(k−Gn)·r (1.11)

ε =
�

2k2

2m
+ V0 +

∑
n �=0

|Vn|2
�2k2

2m − �2

2m (k − Gn)2
(1.12)

where V−nVn = |Vn|2.
When �

2k2/2m = (�2/2m) (k − Gn)2 in Eq. (1.12),

ε = V0 +
1
2

{
�

2k2

2m
+

�
2

2m
(k − Gn)2

}

±
√{

1
2

[
�2k2

2m∗ +
�2

2m∗ (k − Gn)2
]}2

+ |Vn|2. (1.13a)
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6 Physics of Heavy Fermions

(a) (b)

Figure 1.2: (a) Simplified energy band structure and (b) the corresponding one
in the reduced zone scheme.

If we simplify the expansion by setting Gn = (2π/a)n or k = (π/a)n,

ε = V0 +
�

2

2m

(π
a
n
)2 ± |Vn|. (1.13b)

Figure 1.2(a) shows the simple energy band structure, where the
energy band in the region of k = −π/a to π/a is called the first
Brillouin zone, while that in the region of k = −2π/a to −π/a
and π/a to 2π/a is the second Brillouin zone. The energy gap at
k = (π/a)n is 2|Vn|, which is expressed by the Fourier expansion
coefficient Vn of the potential V (r). The usual band structure is
expressed in the reduced zone scheme, as shown in Fig. 1.2(b).

Note that the energy gap or the band gap is produced by the
periodicity of the potential, which is called the Bragg reflection.
The condition of the Bragg reflection, �

2k2/2m = (�2/2m)(k−Gn)2,
is expressed as

|Gn|
2

= k · Gn

|Gn| . (1.14)

This means that the zone boundary is normal to Gn at its midpoint.
For example, the primitive lattice vector in the simple cubic crystal,
as shown in Fig. 1.1(a), is

a1 = ai, a2 = aj, a3 = ak
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Conduction Electrons and Fermi Surfaces 7

where i, j, and k are orthogonal unit vectors. The reciprocal lattice
vector bi is defined as ai · bj = 2πδij , which leads to

b1 =
2π
a

i, b2 =
2π
a

j, b3 =
2π
a

k.

The reciprocal lattice vector becomes G = n1b1 + n2b2 + n3b3

(where n1, n2, n3 are integers). The zone boundaries of the first
Brillouin zone in Fig. 1.1(b) are thus planes normal to ±(π/a)i,
±(π/a)j, ±(π/a)k, as shown in Figs. 1.1(b) and (c). The volume
of the primitive reciprocal space is b1 · b2 × b3 = (2π/a)3. The
volume of the Fermi surface is (2π/a)3/2 if one atom possesses
one conduction electron, as in alkali metals of Li, Na, K, Rb, Cs
and Fr.

Figure 1.3 shows the Fermi surfaces, based on the Harrison’s
free electron model, for the monovalent metal (Cu), divalent metal
(Ca), trivalent metal (Al) and tetravalent metal (Pb) with the face-
centered cubic structure [1]. The exact Fermi surfaces are slightly
different from the Harrison’s free electron model. For example, the
neck Fermi surface exists along the 〈111〉 direction in Cu. The elec-
tron pocket Fermi surfaces in the fourth band of Pb do not exist.
The first band of Pb is fully occupied by two of the electrons, and a
closed Fermi surface in the second band is illustrated by the unoc-
cupied (hole) Fermi surface, where another of its electrons occupies
the second band. The last electron occupies the third band, revealing
a “jungle gym” Fermi surface. In this case, the volume of the hole
Fermi surface Vh in the second band is equal to the volume of the
electron Fermi surface Ve in the third band. Pb is thus a compen-
sated metal (Vh = Ve). On the other hand, Al is an uncompensated
metal (Vh �= Ve).

1.2 Crystal structure, crystal, and Fermi surface

For real metallic compounds, we will describe the framework of
band theory. The usual band theory is based on the density func-
tional formalism originating from the work of Hohenberg, Kohn and
Sham [2, 3]. The wave function Ψi and the eigenvalue εi of an electron
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Figure 1.3: Fermi surfaces of Cu(valence 1), Ca(valence 2), Al(valence 3), and
Pb(valence 4) with the face-centered cubic structure on the basis of the Harrison’s
free electron model, cited from Ref. [1].

in state i is given as a solution of the equation{
− �

2

2m
∇2 + U(r) + e2

∫
n(r′)
|r − r′|dr

′ + vxc(r)
}
Ψi(r) = εiΨi(r)

(1.15)

where n(r) is the electron density, given by

n(r) =
N∑

i=1

|Ψi(r)|2 . (1.16)
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In the left-hand side of Eq. (1.15), the first term is the kinetic
energy, the second term the nuclear potential, the third term a
direct Coulomb potential, and the fourth term vxc(r), the exchange-
correlation potential defined by

vxc(r) =
δExc[n]
δn(r)

(1.17)

where Exc is the exchange-correlation energy, which should be a
complicated functional of the electron density n. Its exact form is
unknown. The most essential point is how a reasonably good and
simple form of the functional for the exchange-correlation poten-
tial can be found. The local density functional or the local density
approximation (LDA) proposed by Gunnarsson and Lundqvist [4] is
a drastic approximation. This is based on the assumption that the
electron density is a slowly varying function of space. The exchange-
correlation potential is thus expressed as

vxc(r) = αe2
[

3
π
n(r)

]1/3

(1.18)

where α is constant, for example α � 0.7.
In order to calculate the energy band structure of rare earth

and uranium compounds, relativistic effects should be taken into
account because the extremely strong nuclear potential extends into
the core region of the atom. Note that lanthanides and actinides
have high atomic numbers. In this case, the spin-orbit interaction is
taken into account self-consistently for all the valence electrons as in
a second variational procedure. Alternatively, we can use the Dirac
one-electron wave function instead of Eq. (1.15). Some standard
techniques to calculate the band structure self-consistently within
a required accuracy are the Green’s function or Korringa-Kohn-
Rostoker (KKR) method, the linearized muffin-tin orbital (LMTO)
method, and the augmented plane wave (APW) method or linearized
APW (LAPW) method, etc [5].

Here, we show the exact Fermi surfaces. The topology of the Fermi
surface changes as a function of the number of valence electrons.
This is well known as the Harrison’s free electron model mentioned
above. A compensated metal (Ve = Vh) is extremely different from
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an uncompensated metal (Ve �= Vh) in topology. Here, Ve refers to the
volume of an electron Fermi surface and Vh is the volume of a hole
Fermi surface. For example, Fermi surface properties of rare-earth
and actinide compounds with the AuCu3-type cubic and HoCoGa5-
type tetragonal crystal structures have been shown to be functions
of the number of valence electrons. See ref. [6] for details.

The dimensionality of the electronic state is another factor that
changes the topology of the Fermi surface. If conduction electrons
can move freely in real space, the topology of the Fermi surface is
spherical, and this can be described as εF = (�2/2m∗)(k2

x + k2
y + k2

z),
as shown in Fig. 1.4(a). If conduction electrons can move only in the
x-y plane and not along the z-axis, the topology of the Fermi surface
changes from a sphere to a cylinder: εF = (�2/2m∗)(k2

x+k2
y), as shown

in Fig. 1.4(b), revealing a two-dimensional electronic state. High-Tc

cuprates are typical examples. If instead, the conduction electrons
can move only along the z-axis [εF = (�2/2m∗)k2

z ] the topology of the
Fermi surface can be changed into two plates, as shown in Fig. 1.4(c).
This is one-dimensional in the electronic state. In this case, the
well-known Peierls instability is realized, and a one-dimensional
conductor becomes an insulator. Organic conductors are typical
examples.

When the electronic state at k is transferred by a propaga-
tion vector q, the electronic or Fermi surface instability occurs at
εk = εk+q. Here, εk and εk+q are the electronic energies at k and
k+q, respectively. An overlapping region is, however, only one point
for the spherical Fermi surface, as shown in Fig. 1.4(d), and one line
along the kz-axis for the cylindrical Fermi surface. In these cases, the
Fermi surface instability is not realized. The overlapping of the Fermi
surface for the propagation vector q is called “nesting”. The nesting
of the Fermi surface occurs for a characteristic two-dimensional com-
pound, 1T-TaS2, for example. Figure 1.4(e) shows the characteristic
cylindrical Fermi surface in 1T-TaS2 [7, 8]. The nesting is realized
in a wide region of the Fermi surface. The overlapping region of the
Fermi surface disappears in the two-(or three-)dimensional case of
the Fermi surface instability, which is called “charge density wave”
(CDW) instability. Correspondingly, the lattice is distorted with a

 P
hy

si
cs

 o
f 

H
ea

vy
 F

er
m

io
ns

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 7
7.

28
.1

23
.2

35
 o

n 
04

/0
1/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



February 9, 2018 8:12 Physics of Heavy Fermions 9in x 6in b3095-ch01 page 11

Conduction Electrons and Fermi Surfaces 11

(a) (b)

(d)

(e)

(c)

Figure 1.4: (a) Three-, (b) two-, and (c) one-dimensional Fermi surfaces, (d)
nesting of the spherical and cylindrical Fermi surfaces, and (e) nesting of the
Fermi surface in 1T-TaS2, cited from Refs. [7, 8].

wavelength 2π/q. A metallic state of 1T-TaS2 at high temperatures
with a carrier number of 1022 cm−3 is changed into an insulator
at low temperatures with a carrier number of 1018 cm−3 (carriers
of impurities), demonstrating an incommensurate CDW at 350 K
with a partial disappearance of the Fermi surface, and a commen-
surate CDW at 180 K with a complete disappearance of the Fermi
surface [9]. In this case, the term “commensurate” applies to the case
where there is an integer number ratio of the reciprocal lattice vec-
tor a∗ to the propagation vector q, such as 3q = a∗. A relation of
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(a) (b) (c) (d)

Figure 1.5: (From top to bottom) The tetragonal crystal structure, a single
crystal, and corresponding Fermi surface in (a) V2Ga5, (b) CoGa3, (c) TiGa3,
and (d) ZrGa3 and ZrAl3, cited from Ref. [10].

3q1 − q2 = a∗ is realized in 1T-TaS2, where qi (i = 1, 2, 3) is the
propagation vector in the hexagonal lattice of 1T-TaS2.

A change in Fermi surfaces based on the dimensionality of the
electronic states can occur when the c/a ratio of the tetragonal
structure is continuously changed. Figure 1.5 shows several dif-
ferent tetragonal structures in T-Ga (T: transition metal) binary
compounds [10]. The following is a main point in this study:
the smaller the tetragonal c-value, the more enhanced the one-
dimensionality of the electronic state; the larger the c-value, the
more enhanced the two-dimensionality. We expect that nearly one-
dimensional characteristic Fermi surfaces can be realized in V2Ga5

(space group No. 127, a= 8.936 Å, c= 2.683 Å, formula units per
cell Z= 2), and two-dimensional Fermi surfaces in ZrGa3 (No. 139,
a= 3.965 Å, c= 17.461 Å, Z =4) and ZrAl3. Fermi surfaces in CoGa3

(No. 136, a= 6.230 Å, c= 6.431 Å, Z =4) are three-dimensional
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because the c-value is almost the same as the a-value. In contrast to
these compounds, TiGa3 (No. 139, a= 3.789 Å, c= 8.734 Å, Z = 2)
crystallizes in a typical tetragonal structure as in ThCr2Si2.

Single crystals of these compounds have been grown by the Ga
(Al) self-flux method, and de Haas-van Alphen (dHvA) experiments
carried out, together with the full-potential linearized augmented
plane wave (FLAPW) energy band calculations.

The characteristic shapes of single crystals in these compounds,
as shown in Fig. 1.5, are interesting. The characteristic features of
crystal structures and their corresponding single crystals are sum-
marized below:

1) In V2Ga5, the crystal structure is flat along the tetragonal [001]
direction (c-axis), and the corresponding single crystal is of needle
shape along the [001] direction.

2) CoGa3 is tetragonal in the crystal structure, but is approxi-
mately cubic, as shown in Fig. 1.5(b). Correspondingly, CoGa3

is of pyramidal shape, which is characteristic of the crystals
with the fcc structure, and also with the diamond-type struc-
ture. The flat plane of the pyramid corresponds to the (111)
plane.

3) The shape of a single crystal in TiGa3 is typically tetragonal.
The flat plane of a rectangular single crystal corresponds to the
tetragonal (001) plane (c-plane).

4) In ZrGa3 and ZrAl3, the crystal structure is elongated along the
tetragonal [001] direction, and the corresponding single crystal is
of thin-plate shape, of which the flat plane corresponds to the
tetragonal (001) plane.

Reflecting the crystal structures or the corresponding Brillouin
zones, the Fermi surfaces have characteristic properties which have
been clarified through dHvA experiments and energy band calcula-
tions. They are summarized as follows:

1) A nearly one-dimensional plate-like Fermi surface is obtained
in the band calculation, as shown in Fig. 1.5(a). The plate
is, however, wavy in shape, and the electronic state is not
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Table 1.1: Electronic specific heat coefficients γ in
V2Ga5, CoGa3, TiGa3, ZrGa3, and ZrAl3 and the cor-
responding theoretical values γb, cited from Ref. [10].

γ mJ/(K2·mol) γb mJ/(K2·mol) γ/γb

V2Ga5 16.7 10.41 1.60
CoGa3 2.5 2.32 1.08
TiGa3 3.6 3.57 1.01
ZrGa3 2.5 2.41 1.04
ZrAl3 2.7 2.50 1.08

one-dimensional but nearly three-dimensional. Therefore, Peierls
instability is not realized in this compound.

2) The Fermi surfaces in CoGa3 are very similar to those of Ni3Ga
with the AuCu3-type cubic structure. The band 109th electron
Fermi surface is typical between the two compounds, as shown in
Fig. 1.5(b).

3) The Fermi surfaces in TiGa3 are also very similar to those of
YCu2Si2 with the ThCr2Si2-type tetragonal structure. The band
25th hole Fermi surface is typical between the two compounds, as
shown in Fig. 1.5(c).

4) The flat Brillouin zone often produces the cylindrical Fermi sur-
face, which is realized in ZrGa3 and ZrAl3. The band 52nd electron
Fermi surface is typical, possessing concave and convex shapes in
the cylinder.

Finally, we summarize in Table 1.1 the γ values of these
compounds and the corresponding theoretical γb values. The γ

value of 16.7 mJ/(K2·mol) of V2Ga5 is slightly larger than γb of
10.41 mJ/(K2·mol), which is characteristic in the 3d-electron system.
The experimental and theoretical values of the others compounds are
approximately the same under consideration of a small mass enhance-
ment based on the electron–phonon interaction.

1.3 Interacting conduction electrons

-Fermi liquid-

The concept of the Fermi surface has already been introduced
earlier in the one-electron band theory of metals in which the
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electron-electron interactions (correlations) are treated to some
extent. It is important to check experimentally the magnitude of the
electron-electron interaction in metals. This was obtained by mea-
suring the electrical resistivity below 1.5 K, for example, for Al [11].
The resistivity ρ is expressed as

ρ = ρ0 +AT 2.

The term AT 2(= ρe-e) is due to the electron-electron scattering.
The corresponding two electrons are occupied within a small energy
region of kBT from the Fermi energy εF. This is because the ini-
tial states of two scattering electrons are occupied in a Fermi surface
while the final states after the electron-electron scattering correspond
to two unoccupied states by the Pauli principle. The AT 2 term is
simply obtained from a relation of ρe-e ∼ τ−1 ∼ (kBT/εF)2 ∼ T 2,
where εF ∼ m∗ −1 from Eq. (1.8b) and τ is the scattering lifetime.
Note that the mass of Eq. (1.8b) is m. This is changed to the effec-
tive mass m∗, considering the mass enhancement of the electron-
electron interaction. The low-temperature (below 1.5 K) electrical
resistivity is of the form ρ = ρ0 + AT 2 (A = 3 × 10−7 μΩ·cm/K2)
in Al. This is very small in value. Experimentally, it is very diffi-
cult to detect the electron-electron interaction in the usual metal.
In the heavy fermions of some rare earth and uranium compounds,
the AT 2 term is extremely large and not negligible — for example,
A = 102 μΩ·cm/K2 in YbCo2Zn20, which is shown later. Note that√
A is proportional to m∗, or A ∝ m∗2.

Landau investigated the interacting fermion system of 3He. The
theoretical results are known as Landau’s Fermi liquid theory, which
are applied to interacting electrons in metals [12]. Landau arrived
at a surprising conclusion. A system of interacting electrons can be
attained when we start from a system of non-interacting electrons
and slowly turn on the interaction. The ground state and low-
lying excitations of Fermi liquid are therefore in one-to-one corre-
spondence to those of the non-interacting Fermi gas. Note that the
distribution function in the ground state for the interacting elec-
trons n(kσ) is changed, shown schematically in Fig. 1.6(a), which
is compared with the usual Fermi-Dirac distribution function of
n(k) = 1/[(εk − μ)/kBT + 1] in Fig. 1.6(b). Here, μ is the chemical

 P
hy

si
cs

 o
f 

H
ea

vy
 F

er
m

io
ns

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 7
7.

28
.1

23
.2

35
 o

n 
04

/0
1/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



February 9, 2018 8:12 Physics of Heavy Fermions 9in x 6in b3095-ch01 page 16

16 Physics of Heavy Fermions

1

0.5

0.5 1
0

0

T = 5

T = 0

100
10

5

n
( k

)

µk /

µ / k B

kF

1

ε

n 0
(k
σ)

k

(a)

(b)

Figure 1.6: (a) Distribution function in the ground state for interacting electrons
and (b) the Fermi-Dirac distribution function as a function of temperature.

potential. However, a sharp step at kF remains from the one-to-one
correspondence mentioned above. A change in the energy δE caused
by a change in the distribution function of n(kσ) = n0(kσ)+δn(kσ)
is given by

δE =
∑
k

∑
σ

εkδn(kσ) +
1
2

∑
k

∑
σ

∑
k′

∑
σ′

× f(k, σ,k′, σ′)δn(k, σ)δn(k′, σ′) (1.19)

where the function f(k, σ,k′, σ′), which was introduced by Landau,
is unknown, but characterizes the electron-electron interaction. The
theoretical results obtained from Landau’s Fermi-liquid theory are
as follows. The effective mass m∗ of the interacting electrons is
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enhanced as

m∗ = m

(
1 +

F s
1

3

)
. (1.20)

The interacting electrons are called “quasiparticles” in Landau’s
Fermi-liquid theory, where names correspond to “dressed electrons”.
F s

1 is the interaction parameter derived from f(k, σ,k′, σ′), together
with F a

0 shown later. The electronic specific heat coefficient γ is
given as

γ =
2π2k2

B

3
D∗(εF). (1.21)

The spin susceptibility χs is

χs =
2μ2

BD
∗(εF)

1 + F a
0

. (1.22)

The factor 1/(1+F a
0 ) corresponds to the Stoner enhancement factor

shown in Chap. 4.
The effective mass m∗

c determined by the de Haas-van Alphen
experiment is usually different from the band mass mb, particularly
in Ce, Yb, and U compounds. Here, the experimental γ andm∗

c values
are usually larger than the theoretical γb and mb values, which are
obtained by the energy band calculations. The mass enhancement
factor λ is defined as:

γ

γb
=
m∗

c

mb
= 1 + λ.

Origins for λ are ascribed to the many-body effects, which cannot be
taken into account in the usual band theory. As for most probable ori-
gins, the electron-phonon interaction and the magnetic interactions
are considered, and their contributions are denoted by λp and λm,
respectively. Therefore, λ is expressed as a sum of two contributions

λ = λp + λm.

The electron-phonon term λp in normal metals such as Pb,
including its temperature dependence, is well understood at present.
Its magnitude is smaller that 1. If it were large, it might cause
lattice instability. In contrast to this small value of λp, the magnetic
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contribution λm can take a large value in some Ce, Yb, and U com-
pounds.

The magnetic contribution λm can be divided into two cases
according to its origins. The first case occurs in many lanthanide com-
pounds in which the 4f electrons are localized at lanthanide ions and
their spin fluctuations enhance the effective mass of the conduction
electrons via c–f interactions such as the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction, where c stands for conduction electrons
and f for 4f electrons. A small mass enhancement of λm = 1−2 is
observed in lanthanide compounds.

Another magnetic contribution to λm occurs when the 3d elec-
trons in the ion-series transition metal compounds are itinerant and
their spins are fluctuating. The magnitude of λm is, however, not
extremely large; λm = 1−5 in the 3d electron system. In some Ce,
Yb, and U compounds, λm is extremely large; λm = 60 in CeRu2Si2,
for example, which is described later. The f electrons in these Ce,
Yb, and U compounds are localized at temperatures higher than
room temperature, but become itinerant at low temperatures, via
the Kondo effect. The heavy f -electron system is a main theme in
this text.
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