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Abstract 
The short and long-term variability characterizing operational Wind Turbine (WT) structures 
limits applicability of existing Structural Health Monitoring (SHM) strategies for diagnostics 
and condition assessment. In this paper, a novel modeling approach is proposed delivering 
global models able to account for a wide range of operational conditions of a WT System. The 
approach relies on the merging of environmental and operational variables into the modeling 
of monitored vibration response via a two-step methodology: a) implementation of a 
Smoothness Priors Time Varying Autoregressive Moving Average (SP-TARMA) method for 
modeling the non-stationary response, and b) implementation of a Polynomial Chaos 
Expansion (PCE) probabilistic model for modeling the response uncertainty. The bi-
component tool is applied on long-term data, collected as part of a continuous monitoring 
campaign on a real operating WT structure located in Dortmund, Germany. The delivered 
statistical model of the structure yields a robust representation of the underlying structural 
dynamics, distinguishing actual structural damage from performance shifts attributed to 
environmental and operational agents.  
  

1 INTRODUCTION 

The most significant challenge in developing SHM strategies for civil infrastructure lies in 
the uniqueness of each structure, which effectively dismisses the possibility of generalizing 
baseline data obtained from type-testing or pre-established standardization procedures [1]. In 
this context, it becomes imperative to introduce and validate the applicability of various 
damage detection schemes [2, 3], which are so far limited to simulation and laboratory studies 
within a controlled testing environment, into the field, i.e., on actual operational civil 
structures. To a certain extent, this is so far achieved within the framework of Operational 
Modal Analysis (OMA) techniques, which have proved quite attractive for practical SHM 
applications, especially for large civil infrastructure [4]. The OMA set of methods is oriented 
towards Linear Time Invariant (LTI) systems, while more refined schemes pertaining to 
systems that deviate from the traditional linear elastic regime, e.g. non-stationary systems, are 
less frequently applied onto civil systems [5, 6]. 
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WT structures interestingly hold a symbolic role in system identification since as early as 
the 1990s, when in pioneering research the well-known NExT framework was proposed and 
applied for the first time on WTs [7]. This later laid down the foundation of what OMA 
represents today, albeit subsequently research focus shifted to other civil structures (e.g. 
bridges, towers, stadiums). However, with Europe’s current strategic planning focusing on 
renewable energy management, WTs are resurging as a focal point for both the industrial, and 
the research communities [8]. In that context, the growing demands for higher productivity and 
reduced downtime of modern WT structures, calls for improved and automated SHM 
strategies, ensuring early-stage damage detection and structural diagnostics, reliability in 
power supply, as well as optimal operation and maintenance ([9] to [12]). 

The recent emergence of relevant technologies on one side, and the complexity of WT 
structures on the other side, renders the implementation of existing SHM regimes and solutions 
into practice a rather challenging task. Indeed, the difficulty in developing appropriate 
maintenance strategies may be attributed amongst others sources to: limited knowledge of the 
loading conditions (presence of considerable aeroelastic effects and altering rotational 
components in the excitation forces), the complexity of the multiparty WT system, varying 
operational regimes and environmental factors, as well as the typical uncertainties related to 
incomplete and imperfect sensor data, modeling errors, complex and unique to the location 
soil-structure interaction effects [13].  

However, the major challenge for an efficient performance-based structural framework lies 
in the time varying nature of WT structures, linked to the changing operational regimes and 
varying environmental agents, and the misinterpretation of this variability [14]. The latter may 
result in false alarms hindering effective operation of associated damage detection and 
intervention control systems.  

One possible approach to address the aforementioned challenge is implementation of 
strategies which may describe the structure in its complete operational spectrum, incorporating 
the uncertainties related to various sources in suitable prediction models. Research studies in 
this field are mainly based on two general approaches, namely methods based on filtering out 
the influence of environmental factors from estimated performance indices [15], and methods 
based on merging the measured environmental variables into models of measured vibration 
response (extracted performance indicators, e.g. modal parameters) [16] to [18]. It is worth 
noting that a thorough investigation of the environmental and operational effects on the modal 
parameters of the tower of an operational 5 MW prototype wind turbine is presented in the 
recent work of Hu et al. [15]. Following the first approach, in the same study, the authors 
extract a structural health index of the operating WT by removing temperature effects from 
selected natural frequency estimates based on a principal component analysis method. 

The research study presented herein will follow the second approach via implementation of 
a bi-component SHM framework on an operating WT structure located in Dortmund, Germany 
[19]. The two step methodology is based on the idea of modeling the relationship between 
measured output-only vibration response data and measured operational variables by 
employing: i) a system identification model for the adequate description of structural dynamics, 
and ii) a PCE model  for the projection of these estimates on the probability space of the 
measured environmental and operational conditions. The described framework was introduced 
and successfully applied for the purpose of damage detection of the benchmark SHM project 
of the Z24-bridge in Switzerland by Spiridonakos & Chatzi in [16], [17]. Spiridonakos et al. 
in a recent study [18] implemented this approach together with the time varying autoregressive 
modeling of the short term dynamics for tracking of the performance of an actual operating 
WT tower located in Lübbenau, Germany.  
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The results of the presented study herein demonstrate the effectiveness and high potential 
of the proposed method for automated condition assessment of large real world structures, 
operating in a wide range of conditions. 

2 THE BI-COMPONENT FRAMEWORK 

The fundamental concept of the proposed strategy evolves around two separate time-
window scales: i) a short-term time framework, and ii) a long-term time framework, both 
governed by the specifics of the actual operating structure. 

The complexity related to the interacting subsystems of the structure (namely the rotating 
blades, moving yaw mechanism, and pitch angle changes) and the alternating aerodynamics 
loads affecting the type of operational regime, result in a complex vibrating system 
necessitating adoption of efficient time-tracking estimation methods. In this context, the 
proposed short-term framework aims at accurately modeling this temporal variability 
charactering the system, while observing the structure as an isolated system (a structure on its 
own). In contrast to the short-term framework, the “zoomed out” long-term framework is 
focused on the tracking of the evolution of the variability in a longer time horizon. This is 

herein accomplished by a bi-component tool, which combines the parametric SP-TARMA 

method, for identifying structural performance indicators (short-term framework), with a PCE 

probabilistic model, for quantifying the uncertainty in the identified structural performance 

indicators (long-term framework). This enables the tracking of uncertainty evolution in 

structural response due to the randomness of environmental and operational parameters. The 

proposed framework aims at delivering a stochastic model that represents a “symbiotic 
relationship” between output-only vibration response data and measured operational variables 

(Fig. 1).  

 

Figure 1. A conceptual overview of the proposed bi-component framework 

3  THEORY BACKGROUND AND APPLICATION CASE STUDY 

The SHM bi-component framework introduced in the previous section is presently applied 
on a WT structure located in the vicinity of Dortmund, Germany. The monitored structure 
under study is a 63m high real WT under operation (Fig.2), approaching its 20 year design 
lifespan. It therefore represents a valuable research specimen for investigating applicability of 
the developed tools in an actual scale. 
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An extensive monitoring system has been installed to continuously record structural 
response (ambient vibration acceleration and displacement), environmental (wind velocity and 
direction, ambient and structural temperature) and operational data of the WT structure for a 
period of four years, from October 2010 to October 2013. A more detailed overview of the 
complete acquisition system can be found in [19]. 

For the purpose of developing a time-sensitive tool capable of tracking long-term variability 
in the WT dynamics, the measured ambient vibration accelerations along the WT tower are 
utilized herein, along with environmental and operational data. The output-only vibration is 
monitored at five different positions along the WT shaft (Fig. 2) by means of triaxial 
accelerometers (PCB-3713D1FD3G MEMS sensors). All aforementioned parameters are 
recorded at a sampling frequency of 100 Hz in hour-long data sets, during the complete 
monitoring period. 

 

3.1 WT under parked conditions 

When employing output-only vibration data, corresponding to parked conditions of the WT 
structure, the modal properties of the system may be inferred via implementation of common 
OMA techniques, based on the key assumption of time invariance.  

The present case study utilizes the stationary ARMA method (prediction error method) for 
estimating the dynamic properties of the structure for selected data records corresponding to 
parked conditions during an emergency stop test event of the structure (Sensor B3, Fig. 2). In 
Fig.3 the ARMA based stabilization plot is presented, together with results of a stochastic 
subspace identification method, based on a canonical variate algorithm (appended in the 
background). Furthermore, the plotted spectrogram (Short Time Fourier Transform; Hamming 

data window; NFFT = 512; overlap 98%), which is provided on the right subplot of the same 
figure, clearly demonstrates the stationarity of natural frequencies within the explored time 
frame. 

 
 

 

        

Power 500 kW 

Tower height 63 m 

Height of the rotor 
center  

65 m 

Number of blades  3 

Length of blade 19.13 m 

Rotor speed  variable, 18-36 
rpm 

Blade material  GRP 

Tower material  steel 

Construction year  1997 

 

Figure 2. Schematic overview of acceleration sensors (left), WT structure characteristics (right) 
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3.2 Short-term framework 

In contrast to the stationary response of a parked WT structure, a spectrogram of an 
operating WT reveals nonstationary dynamics, varying even within the range of few minutes 
(Fig 4).  

The compact parametric formulation provided by the Smoothness-Priors Time-varying 
AutoRegressive Moving Average (SP-TARMA) models has proven a suitable tool for tracking 
the changing structural dynamics [5]. Within the specific subclass of the Smoothness Priors 
models, the unknown AR and MA parameters of a general TARMA model are constrained by 
stochastic difference equations, which govern the evolution of the time varying ai[t]  and ci[ t]  
parameters. Therefore, the full SP-TARMA model may be completely described by  i) a model 
for the system response y[t]  (Eq. 1) and ii) a model which “controls” the time evolution of the 
AR and MA parameters of the first model (Eqs. 2 and 3): 

[�]ݕ               + ∑ ��[�] ∙ �]ݕ − �] = ݁[�] + ∑ ܿ�[�] ∙ ݁[� − �],      ��
�=ଵ

��
�=ଵ ݁[�] ∼ ���ሺͲ, �௘ଶ[�]ሻ              ሺͳሻ 

                                   
2(1 ) [ ] [ ], [ ] ~ NID(0, [ ])

i i ai a a wB a t w t w t t                                        (2) 

                                  
2(1 ) [ ] [ ], [ ] ~ NID(0, [ ])

i i ci c c wB c t w t w t t                                        (3) 

 
where t  designates discrete time (with � = ͳ,ʹ, … , � ) of the observed nonstationary signal ݕ[�], ݁[�] is the residual sequence (i.e., the unmodeled part of the signal, assumed to be normally 
identically distributed with zero mean and time-varying variance ݁[�]~���ሺͲ, �௘ଶ[�]ሻ ) and ��[�], ܿ�[�]  the time-varying AR and MA parameters, respectively, for AR/MA order equal to 
n. � is the backshift operator ሺ��ݔ[�] = �]ݔ − �]ሻ,  � designates the difference equation order, 
and ݓ�[�] zero-mean, Gaussian sequences with time-dependent variance, uncorrelated, 
mutually uncorrelated and also uncrosscorrelated with ݁[�]. 

The user-defined parameters, i.e., the AR/MA order n, the ratio of the residual 
variances  ߥ = ��ଶ [�]/�௘ଶ[�], and the order of the stochastic difference equations κ, should 

 

 

Figure 3.  Dynamics of the parked WT. Left: Stabilization plot for the stationary ARMA and SSI methods 
(model orders from 2 to 50). Right: Spectrogram and ARMA(18,18) estimates  
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provide the best fitting model for the actual structure. Statistical based “penalty” approaches 
provide a selection tool for the range of values, which ensures adequate modeling precision 
without overfitting the modeled signal [5]. Thus, for given orders n, k and residual variance 
ratio v, the SP-TARMA model parameters from [Eqs. (1) to (3)] are obtained via the Kalman 
Filter scheme. The latter is combined with an Extended Least Squares-like algorithm to 
alleviate the nonlinear state estimation problem, which is typical for the full SP-TARMA case 
[18].   

The previously described short-term framework is herein applied to recorded signals 
[sensor B3 (Fig.2)] corresponding to normal operating conditions of the monitored WT 
structure. For the purposes of the SP-TARMA simulation, the one-hour acceleration time 
histories were low-pass filtered and down-sampled to 12.5 Hz (cutoff frequency at 6 Hz) and 
observed as 10-min long data sets. The selected complete one-month period (June 2013) 
resulted in 4242 10-min long datasets, which after a preliminary tuning phase was utilized in 
an automated fashion within the short-term framework. When compared to the spectrogram 
(Short Time Fourier Transform; Hamming data window; NFFT = 512; overlap 98%), which is 

plotted in the background, Fig. 4 clearly indicates the capability of the fitted SP-TARMA 
(��=18, �௖=18, κ=1, ν=0.0001) model in tracking the evolution of the estimated frequencies 
of the monitored structure. The stationary ARMA approach on the contrary simply reports the 
averages of the nonstationary frequencies. In the same figure, a zoomed view of the Bayesian 
statistical criteria for the selected range of user-defined parameters is presented (right plot).  

3.3 Long-term framework 

In casting this problem in the probability domain, various uncertainty quantification 
methods may be employed for delivering the relationship between outputs (structural response 
estimates) and inputs (environmental and operational loads)  to the system. 

Let us assume a system S, comprising M random input parameters represented by 
independent random variables, e.g. measured wind velocities or temperature values, gathered 
in a random vector Ξ of prescribed joint Probability Density Function (PDF)  �Ξሺߦሻ . A PCE 

model may be employed to generate a mathematical expansion of the model’s random output 

   

 
Figure 4. Left: ARMA(18,18) versus SP-TARMA(18,18) model estimates (spectrogram in the 
background). Right: Zoomed view of Bayesian Criterion plot for model order selection (10 to 35) 
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variable � = �ሺΞሻ on multivariate polynomial chaos basis functions �ௗሺΞሻ, constructed 

through tensor products of the corresponding univariate functions and appropriately related to 

the model’s random input data vector Ξ. Namely, the univariate polynomials may be chosen in 

accordance to the PDF of the random input variables  �Ξሺߦሻ, and thus straightforwardly 

associated to a well-known family of orthogonal polynomials [18]. Then, for an output variable 
of finite variance, the PCE model assumes the form [20]: 

                                                            
M

Y  


   d d
d

Ξ ΞS
N

                                              (4) 

where �ௗ are unknown deterministic coefficients of projection, and ݀  is the vector of multi-

indices of the multivariate polynomial basis with total maximum degree ,
1

M

j j m
m

d P


 d  for 

every single index  j. In this case, the number of terms in Eq. (4) is equal to: 

                                                            
 !

! !

M P
p

M P

                                                               (5) 

where M designates the number of random variables and P denotes maximum basis degree. 
The truncated PCE model to the first p terms yields a finite parameter vector �ௗ which  may 
be estimated by solving Eq. (4) in a least squares sense. 

For the current case study, as a preliminary step before utilizing the PCE model, the 

selected input parameters are transformed to independent and uniform variables. In Fig. 5 (right 

plot) the 10 minute averages of the selected SCADA parameters, corresponding to the 4242 

acceleration measurements, are plotted. In the same figure the correlation plots for each pair of 

chosen output variables is presented (left plot). Several pairs (marked red) are correlated with 

correlation larger than 0.5 (the largest correlation is 0.86). In order to transform the input data 

to independent variables, thus satisfying the PCE method requirement, the Independent 

Component Analysis (ICA) method is applied. The ICA tool extracts independent 

unobservable (latent) variables by exploiting higher order statistics (maximizing non-

Gaussianity of the unobserved sources). Furthermore, ICA provides the possibility for reducing 

data inputs. A concise overview of the method, as well as a comprehensive flowchart of the 

ICA algorithm is presented in [16].  

 
 

Figure 5. Left: Scatter plots of selected PCE input variables and estimated correlation values.  
    Right: Time history plots of  selected PCE input variables for 4242 datasets. 
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Inspection of the eigenvalues of the covariance matrices of the four SCADA variables        

Fig. 5 (left plot), reveals three independent components. The corresponding ICA-based latent 

variables are presented in Fig. 6. For the purpose of constructing the random vector Ξ of 
prescribed joint PDFs  �Ξሺߦሻ, the ICA estimates are further transformed into uniformly 

distributed variables via use of the non-parametrically estimated cumulative distribution 

functions.  

 
Figure 6. Scatter plots of ICA-based input variables and estimated correlation values 

As a last step, the SP-TARMA model output variables and the PDFs of the measured 

operational input data are fed into the PCE (long-term) framework (Fig. 7). The standard 

deviation (std) of the SP-TARMA (18,18) residuals for the 10 minute intervals are selected as 

the PCE output parameter. In accordance with the uniform PDFs of the input data, the Legendre 

polynomials are selected as the PC functional basis [18]. The maximum polynomial order is 

selected equal to five, as further increasing the maximum order does not significantly improve 

the accuracy of the expansion. 
 

 

 

 

 

Figure 7. Schematic overview of the last step: input/output data fed into the long-term framework 

The std of the residuals for each dataset and the PCE model estimates are plotted in Fig. 8. 

A total of 4242 data sets, which correspond to four weeks of measurements, are divided into a 

three-week estimation period and a one-week validation period. The PCE errors are plotted in 

the lower part of the figure, along with the corresponding 95% confidence intervals calculated 

for the fitted Gaussian distribution of the estimation set errors. It may be observed that the PCE 

model is capable of simulating the std(e) output variable with very good accuracy, and the 

model residual falls within the 95% confidence intervals for both sets. For the actual structure 

under study no damages were observed, with results verifying the applicability of the proposed 

framework for the continuous monitoring period of one month.  

The assessment capabilities of the method will be further tested over a more extended time 

frame and a broader set of input/output parameters during the continuous 4 year monitoring 

campaign. This will further allow us to link typical operating regimes to specific structural 

Output  PCE (long-term) 

framework 
std(SP-TARMA  

residual) 
ICA-based  

SCADA variables 
Input  
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behavioral patterns of the WT system. The end goal is to furnish an autonomous diagnostic 

tool, capable of tracking and diagnosing structural condition during the WT life-cycle. 

4 CONCLUSIONS 

In order to identify a comprehensive dynamic model of WT systems two aspects need to 

be addressed: the non-stationarity present in collected response data and the temporal 

variability of the identified model parameters. By merging environmental and operational 

variables into the modeling of vibration response, the proposed framework serves as the first 

step towards automated condition assessment. Successful implementation of the devised 

strategy on an operating WT structure in Dortmund (Germany) verifies the robustness of the 

approach. The outcomes of this study demonstrate the potential of the proposed bi-component 

tool for incorporation within a holistic SHM damage detection framework, further extended 

via statistical hypothesis testing (to be explored next).  
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