
Comparative Analysis for the Influence of the Tuning 
Parameters in the Algorithm for Detection of Epilepsy 

Based on Fuzzy Neural Networks 
 

Marjan Stoimchev, Vesna Ojleska Latkoska 
Faculty of Electrical Engineering and Information Technologies, 

 “Ss. Cyril and Methodius” University in Skopje, 
1000 Skopje, Republic of Macedonia 

vojleska@feit.ukim.edu.mk 
 

Abstract—This study presents a comparative analysis for the 
influence of the tuning parameters in our previously published 
algorithm for detection of epilepsy [2]. As the algorithm in [2] is 
generated using wavelet transform (WT) for feature extraction, 
and Adaptive Neuro-Fuzzy Inference System (ANFIS) for 
classification, the comparison in this paper is based on the 
different data splitting methods, the different input space 
partitioning methods in the ANFIS model, the usage of the 
different wavelet functions in the WT, the effects of normalization, 
as well as the effects of using different membership functions. The 
model was evaluated in terms of training performance and 
classification accuracies, and it was concluded that different 
combinations of input parameters differently classify the EEG 
signals. 
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I.  INTRODUCTION 
Epilepsy is chronic brain disorder, characterized by 

seizures, which can affect any person at any age. It is 
characterized by recurrent convulsions over a time-period. 
Clinical diagnosis of epilepsy requires detailed history and also 
neurological examinations [1]. There are many techniques to 
investigate the recurrent epileptic convulsions (namely, 
Computer Tomography-CT, Magnetic Resonance Imaging-
MRI and Electroencephalogram-EEG). As it is stated in [1], the 
most common effective diagnostic method for the detection of 
epilepsy is the analysis of EEG signals, which can be based on 
different types of approaches [10], [22], [23]. 

Although it is possible for experienced neurophysiologist to 
detect the epilepsy by visually scanning of the EEG signals, for 
a more objective analysis and reproducible results, it is always 
advantageous to detect these activities from the EEG signals 
through some computer methods by extracting relevant features 
from the signals [1], [22], [23]. In order to solve this, there are 
many proposed methodologies. In general, all of the techniques 
consist of several steps, i.e. from data preprocessing as the first 
step, through feature extraction as a second step, to 
classification as a third step. 

In the first step, EEG signal de-noising is done, and it can 
be based using conventional filtering methods [4], [5], or 
filtering through wavelet analysis [7], [21]. For the second step, 
there are many different methods (based on frequency domain 
analysis, or time domain analysis, or both), whereas the results 
of the studies in the literature have demonstrated that the WT is 
the most promising method to extract relevant features from the 
EEG signals [22], [23], [9]. For the final step there are also 
different ways for classifying the EEG signals [22], (feature 
extraction using genetic algorithms [24], the wavelet-based 
support vector machine (SVM) classifier [25], wavelet-based 
feed forward artificial neural network-FFANN [19], [20], fuzzy 
rule-based detection [26], Adaptive Neuro-Fuzzy Inference 
System-ANFIS [9], [10], [3], [2], and many others). 

In our previous study [2] we have proposed an algorithm for 
classification of EEG signals, that combines FIR filtering for 
artefact removal [4], [5], [3], WT for feature extraction [8], [9], 
[10], [22], [23], and ANFIS for classification [8], [9], [10]. 

This study is a continuation of the study reported in [2], i.e. 
we make various modification to the parameters of the 
algorithm (proposed in [2]), in order to make a comparative 
analysis for the influence of the tuning parameters on the overall 
accuracy. Firstly, we made an initial simulation analysis over 
the grid partitioning method [11] by dividing the dataset into 
various ways (using 70%-30% and 50%-50% ratio of the 
training and testing dataset, and using K-Fold cross validation 
technique) [15]. The second comparative analysis (again by 
using the grid partitioning method [11]) was based on the use 
of different types of wavelets (Daubechies of order 1, 2 and 6 – 
db1, db2, and db6; and Coiflets of order 4 - coif4) [13], [23]. 
The next comparison was made by analyzing the ANFIS model 
through different input space partitioning methods (grid 
partitioning versus fuzzy c-means clustering, versus subtractive 
clustering) [11], [12], [16]. The fourth comparative analysis is 
based on the influence of normalization [14]. Lastly, we 
explored how the different membership functions (MFs) in the 
ANFIS model affect the accuracies. 

This paper is organized as follows. In Section II we give a 
brief introduction to the algorithm proposed in our previous 
study [2]. In Section III we analyze the influence of the different 
splitting methods for the used dataset. In Section IV we made 



the comparative analysis, i.e. how the different wavelet 
families, different types of input space partitioning, the effect 
of normalization, as well as the different MFs, affect the 
accuracies. And lastly, in Section V we give the necessary 
conclusions. 

II. USED ALGORITHM FOR EPILEPSY DETECTION WITH 
FUZZY-NEURAL NETWORK 

This work is a continuation of our previous work, published 
in [2], where the algorithm for detection of epilepsy with fuzzy-
neural networks was presented. Here we only give a short 
insight of the algorithm, presented in [2], in its basic form, in 
order to continue with a comparative analysis (i.e. how the 
different tuning parameters of the algorithm, influence the 
system performance). The algorithm for detection of epilepsy 
with fuzzy-neural networks for classification of EEG signals 
consists of three main steps [2]: 

1) Filtering of the EEG signals with FIR filter 
2) Feature extraction and dimensionality reduction with 

discrete wavelet transform (DWT) 
3) Classification using ANFIS 
The general steps of the used algorithm are given in Fig. 1, 

with more details presented in Fig. 2 (both figures are adopted 
from [2]). 
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Fig. 1 Block scheme for the proposed algorithm. 

Below we present a brief introduction for the used 
methodologies in the algorithm, adapted from [2]. 

A. Input Data and De-noising of the EEG signals 
One of the major difficulties in analysis of EEG signals is 

the presence of artefacts [2], [3]. This disturbance represents 
serious obstructing factor that prohibits further processing to 
identify useful diagnostic features [2], [3]. 

In our case, as a first step in the algorithm, presented in [2], 
we used the band-pass Finite Impulse Response (FIR) filter 
with the Hamming windowing method [4], [5]. The FIR filter 
is defined by two cutoff frequencies (in case of band-pass 
filtering), stopband attenuations and passband attenuation. The 
overall band of frequencies is defined by the Nyquist frequency, 
i.e. Fs/2 [4]. In our case we use 1 Hz and 60 Hz, respectively. 
Below 1 Hz are the artefacts that are coming from the human 
body, and above 60 Hz is the power line noise [7]. 

The EEG data in this study was taken from the database of 
the university hospital in Bonn, Germany [6]. It consists of EEG 
signals that are recorded from three different events, namely, 
healthy subjects, epileptic subjects during seizure-free intervals 
(known as interictal states) and epileptic subjects during a 
seizure (ictal states). 
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Fig. 2 Detailed analysis for the overall algorithm from Fig. 1. 

The overall data consists of five subsets namely, O, Z, F, N 
and S. Each subset contains 100 segments along with 4097 
samples with sampling frequency of 173.61 Hz, each with 
duration of 23.6 seconds. We restrict ourselves to subsets S and 
Z, where the subset S denotes for epileptic subjects during 
epilepsy, whereas subset Z denotes for healthy subjects with 
eyes open. The dimension of our dataset is 200 segments by 
4097 samples [6]. 

B. The use of Discrete Wavelet Transform for Feature 
Extraction 
As a second step in the algorithm, presented in [2], we used 

the Discrete Wavelet Transform (DWT), which analyses the 
signal at different frequency bands, with different resolutions, 
in terms of approximation and detail coefficients [8], [23]. 



The DWT was used for feature extraction [9], [10] where 
each EEG signal was decomposed into 4 levels, resulting in 4 
detail coefficients and one final approximation coefficient. 
They are related to the EEG sub-bands, namely, 𝛼, 𝛽, 𝛾, 𝛿 and 𝜃 [10]. After the DWT procedure, the dimension of the initial 
dataset was reduced. The wavelet coefficients were calculated 
using Daubechies wavelets of order 2 (db2) in MATLAB [13]. 

For further dimensionality reduction, statistics over the 
extracted wavelet coefficients were made, namely maximum, 
minimum, mean value and standard deviation of the wavelet 
coefficients [10]. We represented the initial dataset into more 
compact representation, i.e. dataset with dimension of 200×20 
(4 statistical measuremets × number of extracted coefficients = 
20 features for each EEG segment). Now, those feature vectors 
were used as an inputs to the ANFIS model [9], [10]. 

C. Adaptive Neuro-Fuzzy Inference system (ANFIS) 
ANFIS is an adaptive neural network that is based on a 

fusion of ideas from fuzzy control and neural networks and 
possesses the advantages of both [11]. ANFIS is used as a third 
step in the algorithm, proposed in [2], in order to make the final 
classification of the EEG patients.  

Before the process of training and testing on the ANFIS 
classifier, all the columns of our dataset, i.e. the features, were 
normalized within the range from 0 to 1, in order to achieve 
stable convergence on the weighted factors of the neural 
network during the training process [14]. 

As it is detailed in [2], the ANFIS classifier was trained with 
the hybrid learning algorithm [8], [10], [11], whereas the 20 
features were used as input patterns which represented the EEG 
signals, and output vector as the 21st column (epileptic patients 
are labeled with ones, and the healthy patients are labeled with 
zeros) which represented the desired response. In [2], we 
performed the simulation analysis by dividing the dataset into 
ratio of 70%-30% for training and testing dataset, respectively. 

In the previous study [2], the ANFIS model used the grid 
partitioning method [11] for input space partitioning, and we 
showed the way of manipulating 20 inputs (with 3 MFs each) 
by partitioning the ANFIS model on sub-ANFIS models, as 
shown in Fig. 5 (a), surpassing the major obstacle of “curse of 
dimensionality” [11]. 

The ANFIS classifier in [2], which was trained with 60 
epochs, reached 98.3% accuracy on the test set, and 99.5% 
classification accuracy on the overall dataset. 

III. COMPARATIVE ANALYSIS FOR THE INFLUENCE OF THE 
TRAINING AND TESTING DATA  

In this section we present different approaches on dividing 
the dataset, i.e. how the size of the training and testing data 
influence the accuracy. In the initial simulation analysis, given 
in [2], we used 70%-30% split ratio between the training and 
testing data, respectively. Here we will compare that splitting 
method with the splitting method that uses dataset divided into 
50%-50% ratio, as well as using the splitting method based on 
cross validation [15]. This initial comparative analysis is 
obtained using grid partitioning method. 

 
Fig. 3 Comparison of the test set RMSEs over the three data split 

methods, using grid partitioning. 

 
Fig. 4 Test set accuracies for the different data split methods using 

grid partitioning. 

When using the conventional splitting methods (70-30, or 
50-50 ratio of training and testing data, respectively) we simply 
divide the data into 2 appropriate sets. On the other hand, the 
K-Fold cross validation uses different approach.  

With K-Fold cross validation, the available data is 
partitioned into K separate sets of approximately equal size 
[15]. The procedure involves K learning iterations, where for 
every iteration K-1 subsets are used for training, and the 
remaining set is used as the testing data. Every iteration leaves 
out a different subset, which means that each subset is used as 
test subset only once. In the end, all accuracies obtained from 
each iteration (testing fold) are averaged in order to obtain a 
reliable estimate of the model performance [15]. In our case we 
use 3-Fold cross validation.  

Fig. 3 presents the test set Root Mean Square Errors 
(RMSEs) when using the grid partitioning method during 100 
epoch period, by applying the three different data split methods 
(70-30; 50-50; 3-Fold). 

As we can see from Fig. 3 the lowest RMSEs are obtained 
in different number of epochs during the three partitioning 
methods. In order to give an appropriate comparison between 
the methodologies used in the further analysis, we will train the 
ANFIS model with 40 epochs for all the data split methods. In 
Fig. 4 the test set accuracies are given, where the black bars 
represent the highest possible accuracy, and the red bars 
represent the accuracies obtained during 40 epoch of training 
for each data split method. It can be concluded that the 3-Fold 
cross validation splitting method gives the most promising 
results. 

IV. INFLUENCE OF THE DIFFERENT PARAMETERS FOR 
ALGORITHM TUNING 

A. Different wavelet families 
As a second comparative analysis (again by using the grid 

partitioning method [11]) we examine the influence of different 
types of wavelet functions, used for feature extraction, namely: 



Daubechies of order 1 (db1), Daubechies of order 6 (db6) and 
Coiflets of order 4 (coif4) in MATLAB [13]. Table 1 presents 
the test set accuracies for different data splits when trained with 
40 epochs. As we can see, with 3-Fold cross validation method 
for all the wavelet families we reached highest accuracies. This 
was another comparison to prove that the cross validation 
method gives more satisfying results. 

Table 1 Accuracies for the different types of wavelet functions 

Grid partitioning 
Filter Wavelet 70%-30% 50%-50% 3-Fold 
FIR  db1 95 90 98 
FIR  db2 95 87 95.51 
FIR  coif4 93.33 85 96.67 
FIR  db6 91.67 88 95.97 

B. Different types of input space partitioning 
This section presents different methods of input space 

partitioning in the ANFIS model and the overall overview is 
given in Fig. 5. In the previous study proposed in [2], we used 
only the grid partitioning method as shown in Fig. 5 (a), where 
in order to reduce the number of rules, sub-ANFIS models are 
formed. As we can see from Fig. 5 (a), sub-ANFIS models from 
1 to 6 accept 3 inputs and the last sub-ANFIS model accepts 2 
inputs. In this section we present two new approaches for input 
space partitioning, namely, Fuzzy c-means (FCM) clustering 
and subtractive clustering [11]. The resulting ANFIS structure 
in this case is shown on Fig. 5 (b), where all the 20 inputs are 
passed at once, i.e. the number of rules is equal to the number 
of clusters, thus we do not face the problem called “curse of 
dimensionality” as presented in the previous study [2]. 
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Fig. 5 The structure of the model generated using different input 

space partitioning methods: a) Grid partitioning; b) FCM/Subtractive 
clustering. 

Clustering is the process of grouping a set of objects in such 
a way that objects in the same group are more similar in some 
particular manner to each other than to those in the other groups 
[11], [16]. 

FCM is a data clustering algorithm in which each data point 
belongs to a cluster to a degree specified by a membership grade 
(i.e. given data point can belong to several groups with the 
degree of membership between 0 and 1). The cluster centers are 

manually specified, where the performance depends on the 
initial cluster centers [11]. 

Subtractive clustering, on the other hand, considers each 
data point as a potential cluster center, where the measure of 
potential is based on the distance of the data point from other 
data points (a data point located in a mound of different data 
points has a greater chance of being a cluster center) [11], [12]. 

Adequately to Fig. 3, Fig. 6 and Fig. 7, present the test set 
RMSEs for FCM clustering and Subtractive clustering, 
respectively, using different data split methods. The initial 
number of clusters for FCM clustering is 2, and the radius of 
coverage (influence) for the subtractive clustering is 0.8 (for 
more information of the parameters in these clustering 
algorithms see [11], [13]). In both cases we use Gauss MFs [13]. 
As we can see form Fig. 6 and Fig. 7, same as for the grid 
partitioning method (Fig. 3), we get satisfying results when 
trained with 40 epochs approximately (as for higher number of 
epochs, some of the methods over fit, we chose 40 epochs for 
all further calculations). 

 
Fig. 6 RMSE values for FCM clustering for different data split 

methods. 

In the case of FCM clustering (Fig. 6) we get the best results 
for the 3-fold cross validation method. For the 50%-50% 
method we tend to over fit the model when trained with large 
number of epochs [17]. 

 
Fig. 7 RMSE values for Subtractive clustering for different data split 

methods. 

In the case of subtractive clustering (Fig. 7), we also get the 
best results for the 3-Fold cross validation method, but for all 
the three cases of data splitting, the model tends to over fit when 
trained with large number of epochs [17], i.e. there is a slight 
growth in the RMSE values, after nearly 40 epochs (smallest in 
case of 3-fold cross validation). 

C. The effect of normalization 
In this section we present how the normalization affect the 

accuracies during the testing process over 200 epoch period. 
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We use min-max normalization, i.e. we are normalizing the 
feature column vectors in the range from 0 to 1 [14], [18]. This 
method is also called “feature scaling”, and represents a 
preprocessing technique [18]. On Fig. 8, Fig. 9 and Fig. 10 the 
RMSE values before and after normalization are shown, when 
grid partition, FCM clustering and Subtractive clustering are 
used, respectively.  

 
Fig. 8 RMSE values for grid partitioning before and after 

normalization. 

 
Fig. 9 RMSE values for FCM clustering before and after 

normalization. 

 
Fig. 10 RMSE values for Subtractive clustering before and after 

normalization. 

We can notice that in all three methods, the RMSEs after the 
normalization have changed considerably, i.e. we get better 
results when using normalized data set for classifying the EEG 
segments. For the best of our knowledge, in all the relevant 
papers on this topic [3], [8], [10], [19], [20], [21], [24], [25], 
[26], we did not find results where normalization technique was 
used, which further emphasizes the significance of this result.    

D. The effect of using different number of clusters, different 
radius of coverage, and different types of membership 
functions 
Our next goal is to see how the number of clusters in FCM 

clustering and the radius of coverage in Subtractive clustering 
affect the accuracies of the model (Fig. 11). As shown on Fig. 
11-a) we get the highest accuracy possible for 3 clusters in FCM 
clustering, compared to our initial guess of 2 clusters (Section 
IV, subsection B). Fig. 11-b) presents the different radius sizes 
used in Subtractive clustering. We can see that 0.6 radius size 

gives the best results, compared to our initial guess of 0.8, used 
in Section IV, subsection B. 

a) b)  
Fig. 11 Influence of: a) Different number of clusters in FCM 

clustering; b) Different radius sizes in Subtractive clustering. 

Before we make the last comparison analysis (influence of 
the membership functions), we will conclude which input space 
partitioning method gives the best results, whereas we will use 
that method for the latest comparison. As we have already 
presented the influence of using different wavelet functions and 
different data split methods [15] for the grid partitioning 
method (Table 1), Table 2 shows the generated accuracies for 
different wavelets and data split methods, when FCM and 
Subtractive clustering are used. Compared to the initial results 
(Table 1), we get a maximum possible accuracy of 99.59% in 
Subtractive clustering when using the db2 wavelets and the 3-
Fold cross validation method. 

Table 2 Accuracies obtained for FCM and Subtractive clustering. 

Fuzzy c-means clustering 70%-30% 50%-50% 3-Fold
Filter Wavelet  
FIR db1 96.73 94.87 98.29 
FIR db2 98.25 95.41 96.39 
FIR coif4 98.32 97.12 99.03 
FIR db6 97.59 98.91 98.11 

Subtractive clustering 70%-30% 50%-50% 3-Fold 
Filter Wavelet  
FIR db1 98.80 99.45 99.40 
FIR db2 98.07  99.45 99.59 
FIR coif4 98.43 99.18 99.01 
FIR db6 98.52 99.50 99.02 

The last comparison is based on the different types of MFs 
used for the Subtractive clustering method. As all the results in 
Section III and Section IV are based using Gauss MFs, here we 
present how the model accuracy is influenced by using other 
types of MFs, such as: psigmf, zmf, sigmf, gbellmf and dsigmf 
as defined in MATLAB [13]. Fig. 12 presents the test 
accuracies when different types of MFs are used.  

 
Fig. 12 Influence of the different types of MFs, when Subtractive 

clustering is used. 

By this we conclude that our initial guess was correct, i.e. 
we get highest possible accuracy for the Gauss MFs. 
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As in our previous study [2], we have concluded the paper 
giving comparison of different relevant works, that have also 
used the Bonn database [6], here we expand that comparison 
(Table 3 in [2]). The results are shown on Table 3. 

We have to note that the authors in [10], also use WT and 
ANFIS, but our approach differs as we use FIR filtering, as well 
as normalization. Our approach gives similar, or even better 
results (they get 98.63% test accuracy of the test set Z (healthy), 
and 98.25% test accuracy on the test set S (epileptic) patients, 
whereas we get 99.59% accuracy on the test set containing both 
healthy and epileptic patients). However, they make 5 class 
classification, which differs from our 2 class classification, for 
we did not summarize their results in Table 3. 
Table 3 Comparison between accuracy in this study and other related 

studies. 

Related studies Test set Accuracy (%)  
This study-Subtractive clustering 99.59 

Previous study-Grid partitioning [2] 98.33 
E.Juarez-FFANN [19] 

(WT and NN, using six features. Several filters 
and wavelets were used, namely, Haar, Db2 and 
Db4, getting 93.23% as the highest accuracy) 

93.23 

I.Overhodzic-Wavelet+NN [20] 
(Wavelet and NN. DWT with Multiresolution 
analysis (MRA), based on db4 was used) 

94 

V. CONCLUSION  
This paper presents a continuation of the study presented in 

[2]. Here we made a comparative analysis through modification 
in the ANFIS parameters. Several comparisons were made: the 
usage of different wavelets, different data split methods, 
different MFs, the effect of normalization as well as the 
different types of input space partitioning methods (grid 
partitioning, versus FCM clustering, versus subtractive 
clustering). We concluded that the combination of db2 
wavelets, the Gauss MFs and the 3-Fold cross validation 
method, using subtractive clustering, gives the best results, with 
accuracy of 99.59 when trained with 40 epochs. We also 
concluded that the effect of normalization made the biggest 
difference in our performance. 
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