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Interacting dynamical systems are widespread in
nature. The influence that one such system exerts on
another is described by a coupling function; and the
coupling functions extracted from the time-series of
interacting dynamical systems are often found to be
time-varying. Although much effort has been devoted
to the analysis of coupling functions, the influence of
time-variability on the associated dynamics remains
largely unexplored. Motivated especially by coupling
functions in biology, including the cardiorespiratory
and neural delta-alpha coupling functions, this paper
offers a contribution to the understanding of effects
due to time-varying interactions. Through both
numerics and mathematically rigorous theoretical
consideration, we show that for time-variable
coupling functions with time-independent net
coupling strength, transitions into and out of phase-
synchronization can occur, even though the
frozen coupling functions determine phase-
synchronization solely by virtue of their net coupling
strength. Thus the information about interactions
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provided by the shape of coupling functions plays a greater role in determining behaviour
when these coupling functions are time-variable.

This article is part of the theme issue ‘Coupling functions: dynamical interaction
mechanisms in the physical, biological and social sciences’.

1. Introduction
Many dynamical systems, both natural and man-made, are composed of interacting parts.
Examples include Josephson junctions [1,2], neuronal networks [3–5], the cardiorespiratory
system [6–8], cardiorespiratory–brain interactions [9–12], and systems occurring in social sciences
[13,14], communications [15,16] and chemistry [17–19]. Such systems often have external
influences leading to time-variability in their mathematical description, e.g. time-varying
frequency or a time-varying form of coupling function [20–24]. Dynamical systems whose
evolution law is time-dependent, as opposed to temporally homogeneous, are said to be
non-autonomous [25].

In a differential equation or stochastic differential equation describing a system of interacting
components, the terms on the right-hand side arising from the interactions between the
components are referred to as coupling functions. Coupling functions can be reconstructed from
time series recorded from the interacting components, as a result of which one can obtain
information about the interactions. For example, from cardiac and respiratory time series one can
obtain the phase at which the cardiac beat is most susceptible to respiratory drive, from which
one can extract the respiratory-related component of heart rate variability [26]. Another example
is that general anaesthesia can lead to important changes in the forms of coupling function
between brain waves [11]. Several studies show that the possession of time-varying coupling
functions typifies the behaviour of interacting systems in real situations [27–29], and that such
time-variations can play a major role in the dynamics [30–32].

The coupling function can be described by its net coupling strength, and its form [33]. By the
net coupling strength, we mean the norm of the coupling function; its form, on the other hand,
defines the functional law specifying the interactions, and it thereby introduces a new dimension
and perspective [28,29,33]. Thus the net coupling strength quantifies only one aspect of the
coupling. Many recent studies of interactions are designed for, and focus exclusively on, the effect
of the net coupling strength of interacting systems. This approach is often found in information-
theoretic methods for the detection of directionality and causality of influence between time-series
including, for example, methods for Granger causality, transfer entropy, mutual information and
symbolic transfer entropy [34–37]. From this perspective, time-variability of coupling strength
was observed in cardiorespiratory interaction in [36].

In this paper, we extend [23] by studying theoretically the effects of time-varying coupling
functions that induce a transition to synchronization, while keeping the net coupling strength
constant. In particular, we will analyse numerically a model of two coupled oscillators with time-
varying coupling functions while maintaining a constant net coupling strength. We will thus
obtain information about synchronization epochs and phase slips in terms of the dynamics of the
phase difference of the oscillators. Then we will set out theoretical considerations and theorems
for quantifying these phenomena. For all of this, we will consider unidirectional coupling, i.e. the
master-slave configuration. We will demonstrate that fixing a constant value for the net coupling
strength does not necessarily enable one to predict whether or not synchronization transitions
will occur, even though for the same set-up in the absence of time-variability, the value of the net
coupling strength would have been sufficient to determine synchronization.

The paper is organized as follows. To set the context and to provide some motivation for the
study, §2 describes an experiment on the time-variability of biological interactions. Section 3
presents a typical model of two coupled phase oscillators. Some basic concepts regarding
coupling functions are presented in §4. Section 5 is devoted to the numerical simulations of
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the model. Theoretical consideration of the results, together with theorems formalizing these
considerations, and their proofs, are given in §6. Discussion of connections to related work is
presented in §7. Finally, we draw conclusions in §8.

2. Motivation from time-variability of biological interactions
Much of the motivation for studying time-varying coupling functions has come from biology.
In particular, numerous situations arise where there are inherent time-variations, not only in the
internal parameters and the quantitative characteristics of components of the system but also in
the physical laws and functions that define the interactions between these components.

For example, the coupling functions of cardiorespiratory interactions were found to vary in
time in [27], where it was shown that not only the coupling strength but also the form of the
coupling function varies over time. Similarly, human delta-alpha neural coupling functions in the
resting state also vary in time [28]. To illustrate, we now consider an example of time-varying
cardiorespiratory and delta-alpha neural coupling functions, calculated using simultaneous
recordings from the same subject. More specifically, the cardiorespiratory interactions were
analysed from an ECG signal and a respiration-belt signal, while the delta and alpha brainwaves
were extracted from an EEG signal, measured on the left forehead (equivalent to an FP1 electrode
in the 10-20 EEG standard). These particular relationships were chosen for analysis, as they had
previously been found significant when tested against surrogates. During recordings, the subject
was resting in a supine position. The data are drawn from an earlier study of the effects of general
anaesthesia on physiological oscillations [11]. Here, in order to demonstrate the time-variability
properties, we consider data from only one of the earlier subjects.

Coupling functions were extracted from the phase dynamics using the dynamical Bayesian
inference method [27,38,39], which involves the use of a sliding time-window to reveal the time-
dependence. It was assumed that within each time-window, the phases φ1(t) and φ2(t) of the two
interacting oscillators are governed by coupled differential equations of the general form (3.3, see
§3 below) with the addition of Gaussian white noise, i.e.

φ̇1 =ω1 + q1(φ1,φ2) + ξ1(t)

and
φ̇2 =ω2 + q2(φ1,φ2) + ξ2(t),

where ωi and φi are the natural frequency and phase of oscillator i, ξi(t) is Gaussian white
noise, and qi is the coupling function describing the influence of oscillator j on the phase of
oscillator i. First, from the recorded time-series the phases of the cardiac φh, the respiratory φr,
the delta brainwave φδ and the alpha brainwave φα oscillations were extracted using the Hilbert
protophase-to-phase procedure [40]. The coupling functions were then inferred within each time-
window up to a second order of Fourier expansion on the 2-torus. In this way, we inferred the
time-evolving cardiorespiratory coupling function qh(φr,φh) for the influence of the respiration
on the heart, and the time-evolving neural cross-frequency coupling function qα(φδ ,φα) for the
influence of δ brainwaves on α brainwaves.

Figure 1 shows the results for cardiorespiratory interactions in (a–c) and for interactions in the
neural delta and alpha waves in (d–f ). We show the time-variations in quantitative measures of
the coupling functions (figure 1a), namely the coupling strength ε(t), and the similarity index
ρ(t) ∈ [−1, 1] between the form of the coupling function and the form of the time-averaged
coupling function. The coupling strength ε(t) is the norm (with respect to L2) of the coupling
function at time t, as described in §4a; the similarity index ρ(t) [26,29,33,41] is the cosine similarity
(again with respect to L2) between the coupling function at time t and the time-averaged
coupling function. Note that both ε(t) and ρ(t) are time-varying, but they often vary differently,
reinforcing the argument that the strength and form of the coupling represent two separate
dimensions of the coupling function, often carrying different information about the interactions.
By observing the time-variability of the cardiorespiratory coupling functions across different time
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Figure 1. Time-variability of cardiorespiratory and delta-alpha neural interactions. Here, panels (a–c) show results of phase
coupling from respiration to cardiac oscillations, while panels (d–f ) show results of phase coupling from delta brainwaves to
alpha brainwaves. Panel (a) plots the time-variability of the similarity of formof coupling functionsρ(t) (blue line, left ordinate)
and the net coupling strength ε(t) (green line, right ordinate) for the cardiorespiratory interactions. The similarity indexρ(t) is
calculated with respect to the time-averaged coupling function. The five plots in (b) show the changes in the cardiorespiratory
coupling function at different times; the time of each is indicated by a small arrow from the time axis in (a). For comparison,
Panel (c) presents the time-averaged cardiorespiratory coupling function. Panels (d–f ) follow the same logic of presentation,
but for delta-alpha neural coupling functions.

windows (figure 1b) it is evident that there are smaller or larger variations in the form of the
function when compared, for example, to the time-averaged coupling function (figure 1c).

Similarly, the delta-alpha neural coupling functions exhibit variations in form over time.
Namely, the quantitative measures ε(t) and ρ(t) in figure 1d show different and even greater
variability. The coupling functions calculated in different windows (figure 1e) vary abruptly and
are not very similar to the time-averaged coupling function (figure 1f ). It seems possible that even
greater variations of the separate coupling functions may have occurred within individual time
windows, but that these variations were largely averaged out.
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Comparing the cardiorespiratory and neural interactions shows that the former exhibits the
more stable and invariant form, in that it varies less between different time windows, arguably
implying greater determinism as described in the time-averaged coupling function. On the other
hand, the neural coupling functions vary more and are individually less similar to the time-
averaged coupling function. (These findings are consistent with previous results for the resting
state in the multi-subject studies [11]). Common to both of the interactions is that they are
time-varying, to a lesser or greater extent, and that the coupling strength and the form of the
function often vary over time quite differently from each other. Hence, these characteristics can
have correspondingly different effects on the outcome and the possible transitions caused by the
interactions—a phenomenon worth exploring further theoretically.

3. Model
Rhythmic phenomena can be described by a stable periodic dynamics. Consider two weakly
coupled oscillators described by the dynamical system

dx1

dt
= f1(x1) + εg1(x1, x2)

and
dx1

dt
= f2(x2) + εg2(x1, x2),

(3.1)

where f1,2 represent the unperturbed dynamics of the first and second oscillators, g1,2 represent
the effects of one oscillator on the other and ε is a small parameter which represents the strength
of the perturbations. We assume that fi has an exponentially stable limit cycle γi of period Ti for
i = 1, 2; and that the phase of the ith oscillator φi is defined on the limit cycle γi in such a way that
it grows monotonically with time, satisfying the phase equation

dφi

dt
=ωi, (3.2)

for i = 1, 2, where ωi = 2π/Ti is the natural frequency of the ith oscillator.
One can apply the phase reduction method to reduce the dynamics of the high-dimensional

system equation (3.1) to lower-dimensional phase equations [42–46]. Small external perturbations
to each oscillator xi, such as its interaction with the other oscillator xj, may force xi off the limit
cycle γi of fi. Therefore, for phase reduction of equation (3.1), one needs to define the phases
outside the limit cycles. Using the concept of ‘isochrons’ [43,47,48] which are the level sets of
phases, one can extend the definitions of the phases φ1 and φ2 of the oscillators to the whole basins
of the corresponding limit cycles γ1 and γ2 in such a way that they rotate uniformly according to
equation (3.2), not only on the cycle, but also in their corresponding neighbourhoods. With this,
the model (3.2) of interacting oscillators can be reduced to a phase model taking the form

dφ1

dt
=ω1 + q1(φ1,φ2)

and
dφ2

dt
=ω2 + q2(φ1,φ2),

(3.3)

where the functions q1(φ1,φ2) and q2(φ1,φ2) are 2π -periodic with respect to their arguments. We
refer to these functions q1 and q2 as the coupling functions for the phase-reduced model (3.3). When
considering time-variable interactions, the coupling functions will be time-dependent functions
q1

t (φ1,φ2) and q2
t (φ1,φ2).

In what follows, we will specifically consider unidirectional coupling, meaning that q1 = 0. But
first, before we carry out our numerical and theoretical analysis of the model, we will in the next
section introduce the concepts of net coupling strength and synchronization transitions.
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4. Basic concepts

(a) Net coupling strength
Because each coupling function q is 2π -periodic in both arguments, we can identify it on a torus
of the form T

2 = S
1 × S

1, where S
1 ∼= R/2πZ. Hence, the torus T

2 can be identified by the square
[−π ,π ]2 or [0, 2π ]2. We define the inner product in L2(T2, R) [49] by

〈f , g〉 = 1
4π2

∫π
−π

∫π
−π

f (φ1,φ2)g(φ1,φ2) dφ1 dφ2 and the norm ‖f‖2
2 = 〈f , f 〉.

If the coupling function q is smooth, then we can decompose q into a Fourier series on the square
[−π ,π ]2, using Parseval’s identity [49] to compute the norm in terms of Fourier coefficients.

In applications, the coupling functions can be well approximated by using a finite number of
Fourier terms. Each coupling function is typically of the diffusive type

qt(φ1,φ2) = c1(t) sin(φ1 − φ2) + c2(t) cos(φ1 − φ2)

= (c1(t) + c2(t)) sin(φ1) cos(φ2) + (c2(t) − c1(t)) cos(φ1) sin(φ2), (4.1)

where c1(t) and c2(t) are time-varying parameters. With the second expression for qt in
equation (4.1) being a finite sum of Fourier components, Parseval’s identity gives

‖qt‖2 = 1√
2

√
c2

1(t) + c2
2(t). (4.2)

This norm provides a quantitative measure of the net coupling strength between the linked
systems. For any specified (time-dependent) form of coupling function, this norm represents the
scaling parameter of the coupling function.

(b) Intermittent synchronization
A mark of the level of adjustment of rhythmic behaviour due to interaction is whether it is
sufficient to cause synchronization of the oscillators [42]. For time-variable coupling functions,
the time-variability can cause transitions into or out of synchronization, i.e. it can cause there to be
both epochs of synchrony during which the phase difference remains nearly constant and epochs
of phase slipping during which the phase difference changes rapidly. An example to illustrate
these behaviours is shown in figures 2 and 3 which plot time series of the phase difference
between two coupled oscillators. We will sometimes refer to this behaviour as intermittent
synchronization. We emphasize that these transitions into and out of synchronization are not the
same as the intermittency of apparent synchronization often occurring in autonomous systems
with parameters close to or on the boundary of a region of synchronization or chaos [42].

Transitions into and out of synchronization occurring due to time-variability of the coupling
functions in equation (3.3) correspond physically to dynamical consequences of the openness
of a coupled-oscillator system to time-variable external influences. An example of intermittent
synchronization induced by such non-autonomicity of models of open systems is the focus of this
present paper. It is also known that for closed systems, transitions into or out of synchronization
can occur due to the time-evolution of slow variables within the system representing internal
adaptation based on the current or previous state of the oscillators, as exemplified in [50] for a
large network with slowly adaptive coupling via time-delays. The intermittency in this latter case
is similar to intermittency induced by non-autonomicity, but represents a very different physical
cause of the exhibited dynamical behaviour.

5. Numerics
Our main goal is to establish numerically the effect of time-variation in the coupling functions
between two-phase oscillators. Our focus will be on the case where the coupling exists in one
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Figure 2. Synchronization transitions in themodel equation (5.1), due to a time-varying coupling function qt in equation (4.1).
Specifically, c1(t)=

√
2α cos(f (t)t) and c2(t)=

√
2α sin(f (t)t) as in equation (5.3),where f (t) is the periodic function defined

in equation (5.4). In red is shown the phase differenceψ (t)= φ1(t) − φ2(t) as governed by equation (5.2), and in blue is
shown f (t). The parameters ε and k were set to ε= 0.01 rad s−1, k = 100 rad s−1, and the net coupling strength was set
to α= 1.55/

√
2 s−1. The inset shows the transition to synchronization. The dynamics of the phase difference is shown to

alternate between synchrony states and phase slips (indicated by bold arrows in the plot ofψ (t)), due to the time-variability of
the coupling function qt in equation (4.1) via the parameters c1(t) and c2(t) while the net coupling strength remains constant.

direction only, sometimes known as unidirectional coupling, or the master-slave configuration.
We choose this configuration because it provides the clearest case where time-varying coupling
functions can lead to synchrony and phase slips, while the net coupling strength remains constant.

Consider the master-slave configuration

dφ1

dt
=ω1

and
dφ2

dt
=ω2 + qt(φ1,φ2),

(5.1)

where the coupling function qt(φ1,φ2) is equal to the expression in equation (4.1) and ω1,ω2
are the natural frequencies of the oscillators. The presence of the coupling term qt(φ1,φ2) could
cause the fundamental frequency of the driven oscillator (whose phase is represented by φ2(t))
to become different from its natural frequency ω2, and to become time-dependent as qt varies
over time.

From the previous section, the net coupling strength of the master-slave configuration qt in
equation (5.1) can be defined as

‖qt‖2 = α(t) = 1√
2

√
c2

1(t) + c2
2(t),

where c1(t) and c2(t) are the time-varying coupling parameters of the coupling functions [23]. In
the autonomous case, where the coupling parameters c1 and c2 are constant, if the net coupling



8

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A377:20190275

................................................................

0
0 0

80

160

240

0

80

160

240

800

1600

2400

0

800

1600

2400

20 40
time (min)

60 80 0 20 40
time (min)

60 80

0 20 40 60 80 0 20 40 60 80

y
(t

)

0

800

1600

2400

0

800

1600

2400
y

(t
)

f(
t)

 (
s–1

)

0

80

160

240

0

80

160

240

f(
t)

 (
s–1

)

y (t)

f(t)

(a) (b)

(c) (d)

Figure 3. Synchronization transitions due to a time-varying coupling function, like in figure 2, with different values of the
parameters ε and k for the function f (t) in equation (5.4). In all four plots, in red is shown the phase differenceψ (t), and in
blue is shown f (t). The parameters ε and k were set to (a) ε= 0.01, k = 100, (b) ε= 0.001, k = 10, (c) ε= 0.0001, k = 10
and (d) ε= 0, k = 1 (all in rad s−1). In all four plots, the net coupling strength was set toα = 1.176/

√
2 s−1. The plots of the

phase difference reveal synchronous and asynchronous states due to the time-variability of the coupling function while the net
coupling strength remains constant.

strength ‖q‖2 = α > 1√
2
|ω1 − ω2| then the oscillators will synchronize [23]. In the present study,

unlike the autonomous case, the oscillators are not guaranteed to be synchronized all of the time.
With constant net coupling strength ‖qt‖2 = α > 1√

2
|ω1 − ω2|, we will show that the oscillators can

undergo transitions between synchrony and phase slipping.
To analyse whether the two oscillators synchronize or not, we consider the phase difference

ψ(t) = φ1(t) − φ2(t)

between them. From equation (5.1) with qt as in equation (4.1), the phase difference ψ(t) obeys
the equation

dψ
dt

=Ω − c1(t) sin(ψ) − c2(t) cos(ψ), (5.2)

whereΩ =ω1 − ω2 is the natural frequency difference (sometimes called the frequency mismatch,
or detuning) between the oscillators. For numerical investigation of synchrony in our coupled
oscillator model, we simulate the differential equation (5.2), taking the time-dependent coupling
parameters c1(t) and c2(t) as

c1(t) =
√

2α cos(f (t)t) and c2(t) =
√

2α sin(f (t)t), (5.3)
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where f (t) is a T-periodic function defined by

f (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε 0 ≤ t ≤ T1

ε(T/2 − t) + k(t − T1)
T/2 − T1

T1 ≤ t ≤ T
2

k T/2 ≤ t ≤ T2

k(T − t) + ε(t − T2)
T − T2

T2 ≤ t ≤ T

(5.4)

with k> ε≥ 0, and with the values of ε, (T/2 − T1)/T and (T − T2)/T being small. The expression
for the function in equation (5.4) has been chosen to exhibit the existence of synchrony epochs
and phase slips in the dynamics of the phase difference. Note that, from equation (5.3), we obtain

‖qt‖2 = α,

showing that the net coupling strength is constant for all time.
In all our simulations, the length of the simulated time series is set to 5000 s and the sampling

step is set as h = 0.001 s, and we use the following parameter values: Ω = 1.08 rad s−1, T = 1000 s,
T1 = 490 s, T2 = 990 s. We will consider different possible values for the remaining parameters k,
ε and α. We simulate equation (5.2) via its simplified form equation (6.1) with ϕ(t) := f (t)t, taking
the initial value of the phase difference as ψ(0) = 0.

Figure 2 presents a time series of the phase difference ψ(t) (red) and the function f (t) (blue),
and the zoomed figure (top-left inset) shows the transition to synchrony. Further numerical
simulations were carried out using different parameter values, for which results are shown in
figure 3. For both figures, the net coupling strength α is constant over time, with

√
2α being greater

than the magnitude of the natural frequency difference Ω .
In both figures 2 and 3a–d, we see intermittency of synchronization, similar to that observed

experimentally and numerically in [7,20,24,27,51]: there is an alternation between synchronized
epochs (plateaux) and phase slips (rapid increases) in ψ(t). While ϕ(t) := f (t)t is slowly varying—
i.e. on the intervals [nT, nT + T1] where f (t) has small magnitude—we have phase synchrony.
But while ϕ(t) has rapid angular velocity—i.e. on the intervals [(n + 1

2 )T, nT + T2] where f (t) is
large—we have unbounded slipping of the phase difference.

Given that the net coupling strength between the systems was invariant, it is evident that
the continuing alternation between synchronization epochs and phase slips was just due to time-
variation in the coupling function. This shows that the net coupling strength does not in itself give
us enough information to characterize the interactions of the oscillators. Based on the numerics
implemented in this section, we can generalize the choices of the coupling parameters c1(t) and
c2(t) in order to analyse the effects of the time-varying coupling functions.

6. Explanation and generalization of numerical findings
Consider equation (5.3) with a general function ϕ(t) in place of f (t)t. Based on its behaviour,
we determine the dynamics of the phase difference ψ(t) of the oscillators. Whether they exhibit
synchronous and/or asynchronous states hinges on three considerations:

(i) If ϕ(t) is a slowly varying function, i.e. |ϕ̇| is small, then the phase difference ψ(t)
corresponds to a synchronous state for a finite time T1: for arbitrarily large T1 we can
take |ϕ̇| sufficiently small that the solution will remain in an arbitrarily small ball. See
theorem 6.1 and corollary 6.2 for the proof.

(ii) If the phase shift ϕ(t) is fast-winding round the circle (i.e. its unwrapped phase is rapidly
growing) then, using an averaging argument, we can show that the dynamics induces
phase slips. See theorem 6.3. The averaging argument essentially means that due to
the fast timescale of ϕ, the oscillators φ1 and φ2 feel no interactions and they rotate
independently at their own natural angular velocities.
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(iii) If the function ϕ(t) has both the behaviours stated in (i) and (ii), then the coupled
oscillators will synchronize when ϕ proceeds on the slow timescale, but they will exhibit
phase drifts when ϕ proceeds on the fast timescale. Hence, the dynamics of the phase
difference in equation (6.1) subject to a function ϕ(t) with both slow variation and fast
winding induces both synchronous and asynchronous states.

We now provide rigorous theorems to justify these three considerations. Before doing so, however,
we briefly discuss the setup. The phase difference ψ(t) = φ1(t) − φ2(t) obeys equation (5.2). We
take the parameters c1(t) and c2(t) in equation (5.2) to be of the form

c1(t) =
√

2α cos(ϕ(t)) and c2(t) =
√

2α sin(ϕ(t)),

for some constant α > 0 and C1 function ϕ : R → S
1 ∼= R/2πZ. The constant α corresponds to the

net coupling strength.
Equation (5.2) can be written as

dψ
dt

=Ω −
√

2α sin(ψ + ϕ(t)). (6.1)

Note that equation (6.1) is a non-autonomous system, and we can consider the effect of both slow
variation and fast variation of ϕ(t). Introducing a new variable η(t) =ψ(t) + ϕ(t), the dynamics of
equation (6.1) is then equivalent to the dynamics of the equation

dη
dt

=Ω + ϕ̇(t) −
√

2α sin(η). (6.2)

In the case that
√

2α > |Ω|, let η∗ and η∗∗ be respectively the stable and unstable fixed points of
the equation

dη
dt

=Ω −
√

2α sin(η). (6.3)

The following theorems address the effect of the time-varying coupling functions, while the net
coupling strength is invariant. First, in Theorem 6.1 and its subsequent corollary, we consider the
synchronization exhibited for slowly varying ϕ.

Theorem 6.1. Assume
√

2α > |Ω|. For all ε̃ > 0 and η0 ∈ S
1 \ {η∗∗}, there exist ε0, T0 > 0 such that

for all t> T0, if |ϕ̇| ≤ ε0 on [0, t] then the solution ψ of equation (6.1) with ψ(0) = η0 − ϕ(0) satisfies
ψ(s) ∈ B 1

2 ε̃
(η∗ − ϕ(s)) for all s ∈ (T0, t].

Proof. Fix ε̃ > 0 and η0 ∈ S
1 \ {η∗∗}, assuming without loss of generality that η0 lies in the

arc extending anticlockwise from η∗∗ to η∗, and that 1
2 ε̃ <min(d(η∗, η0), d(η∗,π/2)). Thus the

function F(η) :=Ω − √
2α sin(η) is strictly positive on [η0, η∗ − 1

2 ε̃] and strictly negative at η∗ + 1
2 ε̃.

Accordingly, we can pick ε0 <min(F(η0), F(η∗ − 1
2 ε̃), −F(η∗ + 1

2 ε̃)) and let

T0 =
∫ η∗−(1/2)ε̃

η0

1
F(η) − ε0

dη.

Then we have the following:

(i) If |ϕ̇| ≤ ε0 on an interval [0, t], then Ω + ϕ̇(s) − √
2α sin(η) is positive at η= η∗ − 1

2 ε̃ and
negative at η= η∗ + 1

2 ε̃ for all s ∈ [0, t]. Therefore, any solution η(·) of equation (6.2) with
η(t0) ∈ B(1/2)ε̃(η∗) for some t0 ∈ [0, t) has η(s) ∈ B(1/2)ε̃(η∗) for all s ∈ (t0, t].
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(ii) If |ϕ̇| ≤ ε0 on [0, T0], then there exists t0 ∈ (0, T0] such that the solution η(·) of equation (6.2)
with η(0) = η0 has η(t0) = η∗ − 1

2 ε̃.

Combining these gives the result. �

Corollary 6.2. Assume
√

2α > |Ω|. For all ε̃ > 0 and η0 ∈ S
1 \ {η∗∗} there exists T0 > 0 such that for

all T1 > T0, there exists ε > 0 such that if |ϕ̇| ≤ ε on [0, T1] then the solution ψ of equation (6.1) with
ψ(0) = η0 − ϕ(0) satisfies ψ(t) ∈ Bε̃(η∗ − ϕ(0)) for all t ∈ (T0, T1].

Proof. Take ε0 and T0 as in Theorem 6.1, and then for T1 > T0 take ε= min(ε0, ε̃
2T1

). So if |ϕ̇| ≤ ε
on [0, T1] then d(ϕ(t),ϕ(0)) ≤ 1

2 ε̃ for all t ∈ [0, T1], and so we have the desired result. �

Now in Theorem 6.3, we consider the unbounded phase slips exhibited for fast-winding ϕ.
The following theorem may be regarded as a kind of non-autonomous averaging principle. For a
detailed exposition of averaging principles, see [52].

Theorem 6.3. For all ε̃0, ε̃ > 0 there exist K1, K2 > 0 such that if ϕ is twice differentiable on an interval
[0, t] with ϕ̇(s)>max(K1, K2

√|ϕ̈(s)|) for all s ∈ [0, t], then any solution ψ of equation (6.1) has

|ψ(s) − ψ(0) −Ωs| ≤ ε̃0 + ε̃s

for all s ∈ [0, t].

Proof. As in the proof of Theorem 6.1, let F(η) :=Ω − √
2α sin(η). First take arbitrary K1 > 0

and K2 >
√

2π , and suppose that ϕ̇(s)>max(K1, K2
√|ϕ̈(s)|) for all s ∈ [0, t]. Define recursively a

sequence 0 = t0 < t1 < · · ·< tN < t by ti+1 = ti + 2π/ϕ̇(ti), with N being the largest possible such
that tN < t. It follows in particular that t − tN ≤ 2π/ϕ̇(tN). For each i<N, we have that

∫ ti+1

ti

F
(
ψ(ti) + ϕ(ti) + 2π (s − ti)

ti+1 − ti

)
ds =Ω(ti+1 − ti)

and therefore

|ψ(ti+1) − ψ(ti) −Ω(ti+1 − ti)|

≤
∫ ti+1

ti

∣∣∣∣F(ψ(s) + ϕ(s)) − F
(
ψ(ti) + ϕ(ti) + 2π (s − ti)

ti+1 − ti

)∣∣∣∣ds. (6.4)

Now fix any s ∈ (ti, ti+1). We have that s − ti < 2π/K1 and so

|ψ(s) − ψ(ti)|<
2π (|Ω| + √

2α)
K1

. (6.5)

Also, by Taylor’s theorem, we have that∣∣∣∣ϕ(s) −
(
ϕ(ti) + 2π (s − ti)

ti+1 − ti

)∣∣∣∣= 1
2
|ϕ̈(ξ1(s))|(s − ti)

2 ≤ 2π2|ϕ̈(ξ1(s))|
ϕ̇(ti)2

for some ξ1(s) ∈ (ti, s). But by the mean value theorem we have that for some ξ2(s) ∈ (ti, ξ1(s)),

1
ϕ̇(ξ1(s))

= 1
ϕ̇(ti)

− (ξ1(s) − ti)ϕ̈(ξ2(s))
ϕ̇(ξ2(s))2 >

1
ϕ̇(ti)

(
1 − 2π

K2
2

)

and so

∣∣∣∣ϕ(s) −
(
ϕ(ti) + 2π (s − ti)

ti+1 − ti

)∣∣∣∣≤ 2π2|ϕ̈(ξ1(s))|
ϕ̇(ξ1(s))2

(
1 − 2π

K2
2

)−2

≤ 2π2

K2
2

(
1 − 2π

K2
2

)−2

. (6.6)
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Combining equations (6.4), (6.5) and (6.6), we have that

|ψ(ti+1) − ψ(ti) −Ω(ti+1 − ti)| ≤
√

2α

⎛
⎝2π (|Ω| + √

2α)
K1

+ 2π2

K2
2

(
1 − 2π

K2
2

)−2
⎞
⎠

︸ ︷︷ ︸
=:κ(K1,K2)

(ti+1 − ti).

Hence, for each i ≤ N,
|ψ(ti) − ψ(0) −Ωti| ≤ κ(K1, K2)ti. (6.7)

Now for any s ∈ [0, t], taking the largest i with ti ≤ s, we have

|ψ̇(ζ ) −Ω| ≤
√

2α ∀ζ ∈ [ti, s]

and so

|ψ(s) − ψ(ti) −Ω(s − ti)| ≤
√

2α(s − ti)<
2
√

2πα
K1︸ ︷︷ ︸

=:κ0(K1)

. (6.8)

Combining equations (6.7) and (6.8) gives that

|ψ(s) − ψ(0) −Ωs|< κ0(K1) + κ(K1, K2)s

for all s ∈ [0, t]. So now, given any ε̃0, ε̃ > 0 choose K1, K2 sufficiently large that κ0(K1) ≤ ε̃0 and
κ(K1, K2) ≤ ε̃. �

Combining theorems 6.1 and 6.3, we have that if ϕ has alternating epochs of slow variation
and rapid oscillation, this can lead to the system (5.1) having alternating epochs of synchrony and
asynchrony.

7. The results in context
There are different ways in which time-variability can enter a system, and so other forms of non-
autonomous driving that give rise to intermittent synchronization have also been considered.
Of particular interest has been the case where time-variability enters through modulation of the
natural frequency of the driving oscillator [22,24,53]. As shown in [24,53], for fixed-frequency
driving we have synchronization either all of the time or none of the time, but when the driving
frequency is allowed to vary then we can have intermittent synchronization. Through the finite-
time dynamical considerations of [24] to account for a free shape of variation over time, it was
shown that this intermittent synchronization results overall in stability of the driven oscillations,
as indicated by negativity of Lyapunov exponents; and in this manner, greater time-variability
of the driving frequency increases the region of stability in parameter space. Similar results were
also observed numerically for higher-dimensional oscillatory systems.

The theoretical and numerical considerations of [24] for a unidirectionally coupled pair of
phase oscillators have been extended to phase-oscillator networks in [54]. The considerations
of this present paper can be generalized to networks such as those considered in [55]:
network structure can also have an impact on the dynamics exhibited, such as synchronization
[30,56]. Network synchronization induced by sufficiently fast non-autonomous driving has been
considered in [57], where the non-autonomous driving consists of rapid switching between the
existence and non-existence of links between given nodes, while the dynamical interaction along
existing nodes takes a specific time-independent form.

As intermittent synchronization in [24,54] led to stability, we likewise expect that the
intermittent synchronization obtained in our present study leads to stability of the driven
oscillations, as would be indicated by a stability analysis of the non-autonomous one-dimensional
differential equation

dφ
dt

=ω2 + qt(φ1(0) + ω1t,φ),

where φ(t) is the phase of the driven oscillator and φ1(0) + ω1t is the phase of the driving oscillator.
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8. Conclusion
Interacting dynamical systems can have time-varying coupling functions, where the net
coupling strength depends in a number of different ways on the time, sometimes resulting in
synchronization transitions. The experiments on the cardiorespiratory and neural delta-alpha
coupling functions whose results are shown in figure 1, for example, illustrate the existence of
time-varying functional relationships that can cause synchronization transitions.

A model of two coupled oscillators with time-evolving coupling functions has been shown
to exhibit transitions to/from synchronization even when the net coupling strength remains
constant. The analysis was carried out in terms of the phase difference between the oscillators.
The corresponding numerical simulations show that, in the case of time-varying coupling
functions, one can have sequential epochs of synchrony and asynchrony while the net coupling
strength remains unchanged. Thus, by itself, the net coupling strength does not provide enough
information to describe the dynamics of the interacting systems. To generalize the results, based
on the model considered, we discussed three main ideas arising from the periodic function f (t).
The first of these was that, when ϕ(t) := f (t)t varies slowly with time, the dynamics of the two
coupled oscillators induces synchrony over the slow timescale. The second was that when, by
contrast, ϕ(t) has rapid angular velocity, the oscillators do not synchronize. The third observation
was the combined effect: the oscillators can exhibit sudden changes between synchrony and
drifting phase difference occurring at transitions between slow variation and fast winding of ϕ(t).
So we have transitions in exhibited behaviour due to time-variability of the coupling functions
despite constant net coupling strength. This confirms that, in the time-variable setting, the net
coupling strength does not give sufficient information about the interaction of the oscillators to
predict their behaviour.

Note that this insufficiency of the net coupling strength as a criterion carries implications
for information-theoretic methods that assess the statistical mutual dependences of signals from
interacting systems [10,34–36,58,59]. The latter are statistical measures that can determine a causal
relationship and the predominant direction of influence, thus measuring a directed functional
connectivity. In this way, however, they usually reveal only the net coupling strength and
direction, but are unable to detect variations in sub-coupling components like those used in the
present study.
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