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Abstract
Aim: Primary forests have high conservation value but are rare in Europe due to his-
toric land use. Yet many primary forest patches remain unmapped, and it is unclear to 
what extent they are effectively protected. Our aim was to (1) compile the most com-
prehensive European-scale map of currently known primary forests, (2) analyse the 
spatial determinants characterizing their location and (3) locate areas where so far 
unmapped primary forests likely occur.
Location: Europe.
Methods: We aggregated data from a literature review, online questionnaires and 32 
datasets of primary forests. We used boosted regression trees to explore which bio-
physical, socio-economic and forest-related variables explain the current distribution 
of primary forests. Finally, we predicted and mapped the relative likelihood of pri-
mary forest occurrence at a 1-km resolution across Europe.
Results: Data on primary forests were frequently incomplete or inconsistent among 
countries. Known primary forests covered 1.4 Mha in 32 countries (0.7% of Europe’s 
forest area). Most of these forests were protected (89%), but only 46% of them 
strictly. Primary forests mostly occurred in mountain and boreal areas and were un-
evenly distributed across countries, biogeographical regions and forest types. 
Unmapped primary forests likely occur in the least accessible and populated areas, 
where forests cover a greater share of land, but wood demand historically has been 
low.
Main conclusions: Despite their outstanding conservation value, primary forests are 
rare and their current distribution is the result of centuries of land use and forest 
management. The conservation outlook for primary forests is uncertain as many are 
not strictly protected and most are small and fragmented, making them prone to ex-
tinction debt and human disturbance. Predicting where unmapped primary forests 
likely occur could guide conservation efforts, especially in Eastern Europe where 
large areas of primary forest still exist but are being lost at an alarming pace.

K E Y W O R D S

boosted regression trees, forest naturalness, land-use change, old-growth forest, primary 
forest, spatial determinants, sustainable forest management, virgin forest

1  | INTRODUC TION

Primary forests are becoming rare as forestland globally is cleared 
for agriculture or put under active management (Mackey et al., 2015; 
Potapov et al., 2017). Primary forests, according to the Food and 
Agricultural Organization (FAO), refer to naturally regenerated for-
ests of native species where there are no clearly visible indications of 
human activities and the ecological processes are not significantly dis-
turbed (FAO, 2015). Given their irreplaceability and unique qualities, 

protecting primary forests is a global concern (Mackey et al., 2015). 
Not only are primary forests cherished for their wild nature (Navarro 
& Pereira, 2012), and represent a social perception of untouched na-
ture (Schnitzler, 2014), but they are also ecologically important in 
regions where forests are highly fragmented (Vandekerkhove, De 
Keersmaeker, Menke, Meyer, & Verschelde, 2009). Primary forests, 
for instance, serve as refuges or sources of propagules for rare or 
endangered species, especially for forest species sensitive to human 
disturbance (Paillet et al., 2015; Peterken, 1996). Furthermore, 
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primary forests serve as a model for understanding natural distur-
bance and successional dynamics (Král, McMahon, Janík, Adam, & 
Vrška, 2014; Kuuluvainen & Aakala, 2011; Leibundgut, 1959), espe-
cially in the face of climate change, and provide baselines for the 
delivery of ecosystem services under unmanaged conditions, includ-
ing carbon stocks and sequestration (Burrascano, Keeton, Sabatini, 
& Blasi, 2013; Harmon, Ferrell, & Franklin, 1990). Finally, primary 
forests help us to evaluate human impacts on forest ecosystems and 
to understand the potential and limitations of close-to-nature for-
est management (Bauhus, Puettmann, & Messier, 2009; EEA, 2014; 
Kuuluvainen & Aakala, 2011).

In Europe, as in other human-dominated regions, historical de-
forestation and forest exploitation came close to eliminating primary 
forests (Kaplan, Krumhardt, & Zimmermann, 2009; Potapov et al., 
2017). Europe’s forests are now mainly composed of seminatural 
forests, while forests undisturbed by man account for only 4% of the 
total (FOREST EUROPE, 2015). Even this little share of undisturbed 
forest is heavily fragmented as virtually no intact forest landscapes 
>500 km2 exist outside European Russia and boreal northern Europe 
(Potapov et al., 2017). Finally, although some Eastern European 
countries may still contain relatively large areas of primary forests 
(Frank et al., 2007; Kulakowski et al., 2017), these remain often 
unmapped and unprotected and are being lost at an alarming rate 
(Chylarecki & Selva, 2016; Knorn et al., 2013; Mikoláš et al., 2017).

Seminatural forests cannot be easily restored to a primary status 
(Ford & Keeton, 2017). In the absence of anthropogenic disturbance, 
forests slowly recover the natural disturbance dynamics and develop 
those structural features (e.g., deadwood, large live trees and pres-
ence of canopy openings of various sizes) that are typical for the 
old-growth phases of primary forests, although this process takes 
decades (Burrascano et al., 2013; Paillet et al., 2015; Vandekerkhove 
et al., 2009). The ongoing process of agricultural intensification in 
productive areas, which co-occurs with deintensification or even 
abandonment of marginal areas, may offer important conserva-
tion opportunities (Jepsen et al., 2015; Navarro & Pereira, 2012; 
Schnitzler, 2014). In many Western European countries, satisfying 
wood demands increasingly relies on imports, while forests located 
in remote areas are today being managed much less intensively than 
in the past (Burrascano et al., 2016; Navarro & Pereira, 2012). As a 
result of these economic changes, as well as of changing manage-
ment priorities, the proportion of European forests in the older-
age classes is increasing, although wide regional differences exist 
(FOREST EUROPE, 2015). Efforts devoted at identifying and pro-
tecting primary forests should also include late-successional forests, 
especially given that in many European regions, these forests rep-
resent the most natural forests still existing in the landscape. Late-
successional forests play an important role in terms of biodiversity 
conservation, ecological functioning and provisioning of ecosystem 
services.

For the purpose of this study, we use the term “primary forests,” 
to include all forests having a high naturalness, without implying 
that these forests were never cleared nor disturbed by man, which 
is in line with the FAO definition of primary forests (Buchwald, 

2005; FAO, 2015). Research on the structure and dynamics of 
primary forests in Europe has a long tradition (Leibundgut, 1959). 
For instance, strictly protected forest areas were in the focus 
of two large collaborative efforts to coordinate, harmonize and 
link research on forest reserves (Diaci, 1999; Frank et al., 2007; 
Parviainen, 2000). A growing body of knowledge has accumulated 
ever since (Burrascano et al., 2013; EEA, 2014; Keeton et al., 2010; 
Kuuluvainen & Aakala, 2011), including data on the most iconic 
primary forests, such as Białowieża in Poland, Uholka-Shyrokyi 
Luh in Ukraine, Žofín in the Czech Republic and Izvoarele Nerei in 
Romania (Bernadzki, Bolibok, Brzeziecki, Za̧jaczkowski, & Zybura, 
1998; Hobi, Commarmot, & Bugmann, 2015; Král et al., 2014; 
Veen et al., 2010). Nevertheless, only a few countries have sys-
tematically inventoried remaining primary forest fragments (e.g., 
Adam & Vrška, 2009) aside from forest reserves and internation-
ally recognized primary forest patches. Large regional gaps thus 
remain, especially in those countries where the political resistance 
to the designation of additional strict reserves is hindering ef-
forts to identify remaining primary forest (Mackey et al., 2015). 
Furthermore, transboundary efforts for mapping and protecting 
primary forests are rare and confined to specific ecoregions (e.g., 
the Carpathians, the green belt of Fennoscandia) or forest types 
(e.g., UNESCO network of primeval beech forests).

Despite these past efforts for consolidating and harmonizing in-
formation at the continental scale (Diaci, 1999; Frank et al., 2007; 
Parviainen, 2000), no up-to-date and spatially detailed European-
wide database and map of primary forests are currently available 
(García Feced, Berglund, & Strnad, 2015). As a result, systematic re-
search to quantify the extent of primary forests in Europe, to assess 
whether primary forests are adequately protected or to understand 
what determines their spatial distribution is missing. A map of the 
primary forests of Europe is thus highly needed, to ensure that pri-
mary forests receive adequate recognition and protection (Mackey 
et al., 2015) and as a starting point for a systematic gap analysis that 
highlights those biogeographical regions or forest types for which 
primary forests are absent or underrepresented. Such a map is in-
creasingly needed in the light of international commitments, such 
as the European Biodiversity Strategy (Target 3b - Action 12, which 
calls for Member States to ensure the preservation of wilderness 
areas) or the EU’s Green Infrastructure Strategy, to ensure that pri-
mary forests and the ecosystem services they provide can be pro-
tected. Finally, analysing the determinants of the spatial distribution 
of primary forests could help to identify the socio-economic driv-
ers (e.g., bioenergy production) behind the threats faced by these 
forests (e.g., illegal logging and anthropogenic wildfires), as well as 
candidate sites for restoration initiatives, for instance where land-
use pressure and opportunity-cost of restoration are decreasing 
(Navarro & Pereira, 2012; Schnitzler, 2014).

In this paper, we addressed the following questions:

1.	 What is the currently known distribution of primary forests 
across Europe, biogeographical regions, forest types and pro-
tection levels?
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2.	 Which biophysical, socio-economic historical land-use factors de-
termine the extant pattern of primary forests?

3.	 What are the areas with the highest likelihood of finding previ-
ously unmapped primary forests?

2  | METHODS

2.1 | Primary forest database

To produce the first map of known European primary forests, we 
adopted FAO definition of primary forests (FAO, 2015). We followed 
the framework proposed by Buchwald (2005), according to which the 
term primary forest comprises all those forests previously indicated 
as primeval, virgin, near-virgin, old-growth and long-untouched (i.e., 
classes n10 to n5 in Buchwald, 2005 — see Supporting Information 
Appendix S1—for definitions). Here, we embrace a positivist per-
spective implying that empirical evidence can be used to infer 
whether forests have been impacted by human activities within the 
last two centuries.

Based on this set of conceptual definitions, we conducted a liter-
ature review and collected all the studies published between January 
2000 and January 2017, reporting basic information on primary for-
ests in Europe, excluding Russia. We limited our review to papers 
published after 2000, to avoid including those forests that, although 
being reported as primary in older papers, may have meanwhile lost 
their primary status due to human disturbance. We identified rele-
vant publications in the ISI Web of Knowledge using the search term 
“(primary OR virgin OR old-growth OR primeval) AND forest*” in 
the title field. We conservatively avoided other terms such as “un-
managed” (=not under active management), “natural” (=stocked with 
naturally regenerated native trees) or “ancient” (=never cleared for 
agriculture). Although widely used in the European literature, these 
concepts represent necessary but not sufficient conditions for con-
sidering a forest as primary for our paper.

The initial search was then refined using geographical and sub-
ject areas as filters (see Supporting Information Appendix S2 for de-
tails). This preliminary list of papers was then supplemented with the 
literature in their own reference lists as well as with studies known 
to the authors. For all papers, we extracted the location and basic 
information on the primary forests described. In addition, we sent 
out a questionnaire to scientists and experts on primary forests to 
collect information on (1) existing maps and databases of primary 
forests in their country, (2) primary forests not yet included in ex-
isting maps and databases, and (3) contacts of additional experts. 
In total, we contacted 134 forest experts from 33 European coun-
tries (Supporting Information Table S1). After finding a suitable 
dataset or map, we invited the data owner to join our informal re-
search network and share the dataset in their possession. To avoid 
terminological inconsistencies, the inclusion of a country dataset 
was conditional on the establishment of an explicit equivalence be-
tween country-specific definitions and the definition framework of 
Buchwald (2005).

We integrated all data into a geodatabase, where each primary 
forest patch was reported either as a polygon or as a point location. 
Our minimum mapping unit was two ha. For each forest, we gath-
ered a set of basic descriptors, including name, location, naturalness 
level (following the broad definitions reported in Buchwald, 2005—
Supporting Information Appendix S1), extent and dominant tree 
species. We assigned each stand to a broad forest type, based on 
the stand’s dominant tree species, elevation and biogeographical re-
gion (BfN, 2003; EEA, 2006). We derived the protection status and 
IUCN category of each forest patch based on the World Database of 
Protected Area (UNEP-WCMC & IUCN, 2017). A detailed descrip-
tion of the database architecture and each dataset is in Supporting 
Information (Supporting Information Tables S2, S3 and Appendix S3).

2.2 | Biophysical and socio-economic location 
characteristics of the mapped forests

Based on the variables that were previously used as spatial deter-
minants of harvest intensity and wood production across Europe 
(Levers et al., 2014; Verkerk et al., 2015), we identified a set of 19 
biophysical (including climate, soil, topography and forest condi-
tions), socio-economic and historical land-use variables that could 
explain primary forest distribution (Table 1). Most predictors were 
available as raster layers with a resolution of 1 × 1 km or finer, with 
the exception of three variables that either had a 0.5° resolution, or 
were available at the country level. We reprojected all predictors to 
the Lambert azimuthal equal-area projection. We checked for collin-
earity and excluded collinear predictors when an individual variable 
returned a variance inflation factor (VIF) >10 (Dormann et al., 2013) 
or returned a Pearson’s r > 0.7 with another variable (in this case, the 
variable having the highest VIF was excluded; Table 1).

2.3 | Relative likelihood of the occurrence of 
undetected primary forests

We converted the map of primary forests to a 1-km presence–ab-
sence raster and used boosted regression trees (BRTs) to explore 
the relationships between our set of predictors and the occurrence 
of primary forests. In this way, we estimated the relative likeli-
hood that a grid cell contained a primary forest patch, although 
we recognize that the relatively coarse scale of most predictors 
may weaken the performance of our model. We relied on model-
ling as, to our knowledge, no reliable workflow exists that allows 
differentiating primary from nonprimary forest using remote sens-
ing data only.

BRTs are nonparametric models based on decision trees in a boost-
ing framework. They have the advantage of not requiring prior assump-
tions and being relatively robust against overfitting, missing data, and 
collinearity. Therefore, BRTs represent a flexible approach for uncover-
ing nonlinear relationships and interactions among predictors. BRTs are 
increasingly used for attaining system understanding, hypothesis test-
ing and statistical inferences (Dormann et al., 2013; Elith, Leathwick, 
& Hastie, 2008). Our BRT was parameterized using a learning rate of 
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0.02, a tree complexity of 5 and a bag fraction of 0.7 (Elith et al., 2008). 
We used the gbm.step routine provided by the dismo package (Hijmans, 
Phillips, Leathwick, & Elith, 2011) in r (R Development Core Team, 
2017) to determine the optimal number of trees. We ran all the analy-
ses after masking nonforest areas (Gallaun et al., 2010).

As the data on primary forest presence were spatially clustered 
and this may lead to inaccurate models (Phillips et al., 2009), we used 
a spatial filtering approach to rarefy the available data on a 5 × 5-km 
grid. To account for the bias in our dataset due to some countries not 
reporting any or very few data, we also created a map of sampling 
effort (1: high sampling effort, 0: low sampling effort; Supporting 
Information Figure S1). We then stratified the selection of 37,060 
pseudo-absence points (i.e., ten times the number of presences after 
the rarefaction) based on the distribution of presence points in the 
map of sampling effort (Kramer-Schadt et al., 2013). To account for 
remaining spatial bias, we used the pwdSample function in the dismo 
package to pair each test presence site with the closest test pseudo-
absence site prior to evaluating the performance of our model, thus 
removing the remaining spatial sorting bias (Hijmans, 2012). We also 
tested for spatial autocorrelation in model residuals using Moran’s I.

We used the receiver-operating characteristic curves (ROC) and 
the area under the curve (AUC) to evaluate prediction performance 
based on 10-fold cross-validation. As AUC is only rank-based, we 
also calculated Pearson’s correlation between the observed pres-
ence\pseudo-absence and the likelihood predicted from the BRT 
model (Phillips et al., 2009). Finally, we used the true-positive and 
true-negative rates, to calculate model accuracy and precision when 
using different likelihood thresholds for discriminating between pre-
dicted primary forest occurrence vs. absence. We used the thresh-
old returning the highest accuracy to create a map of the 1 × 1-km 
forested grid cell potentially containing one or more patches of pri-
mary forest. The relative importance of predictors was evaluated 
according to the number of times that a variable was selected for 
splitting, weighted by the squared improvement to the model as a 
result of each split and averaged over all trees (Elith et al., 2008). For 
those predictors with a relative importance above that expected by 
chance (100%/number of predictors), we produced partial depen-
dency plots constrained between the 2.5 and 97.5 percentiles of the 
predictor range and smoothed using a LOESS interpolation (span pa-
rameter = 0.2) to enhance interpretability.

F IGURE  1 Distribution of primary 
forest patches retrieved for Europe by 
forest type. The map of biogeographical 
regions in the background follows BfN 
(2003). Forest types follow EEA (2006): 
FT1—boreal forest, FT2—hemiboreal and 
nemoral coniferous-mixed forest, FT3—
alpine coniferous, FT4-5—mesophytic 
deciduous and acidophilus forest, FT6—
beech forest, FT7—mountainous beech 
forest, FT8—thermophilus deciduous 
forest, FT9—broadleaved evergreen 
forest, FT10—coniferous Mediterranean 
forest, FT11-12—mire and swamp forests 
and floodplain forest, FT13—nonriverine 
alder, birch or aspen, NA-NC—no data/
unclassified [Colour figure can be viewed 
at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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3  | RESULTS

Our database covered 1.4 Mha of primary forest in 32 European 
countries (Figure 1). This database was composed of 32 regional 
datasets (Supporting Information Table S3) that we integrated 
with data on additional 254 primary forest patches, described 
in 94 studies or reports retrieved through the literature review 
(Supporting Information Table S4). A list of the data sources is 
in Supporting Information Appendix S4. Most of the primary 
forests for which data were available were located in northern 
Europe, especially Finland (0.9 Mha), and Eastern Europe (0.2 
Mha), especially Ukraine, Bulgaria and Romania (Supporting 
Information Table S5). The countries having the highest propor-
tion of primary forest were Finland (2.9% of national territory), 
Switzerland, Lithuania, Slovenia and Bulgaria (each about 0.5%; 
Figure 2). These rankings, however, are heavily affected by the 
availability of data and disregard the contribution of countries for 
which we could not retrieve adequate data. We found complete 
inventories only for three countries (Czech Republic, Slovakia and 
Hungary) and partial or incomplete inventories for additional four 
countries, but either limited to specific mountain ranges (e.g., 
Carpathians—Romania, Ukraine) or protected areas (France, Italy; 
Figure 2). Countries for which we were not able to retrieve data 
on primary forests were Latvia, Belarus, Moldova and Ireland. For 
Sweden, Austria, the UK, Bosnia and Herzegovina, Montenegro 

and Serbia, we only found scattered information, that is very 
few records in the literature, but no (or very limited) spatial data-
sets deriving from local inventories (Figure 2). Nevertheless, we 
cannot exclude that additional data may exist for these or other 
countries that we did not manage to retrieve, especially for coun-
tries expected to host wide stretches of primary forest, such as 
Sweden.

Primary forests occurred mostly in the boreal (1 Mha, 1% of 
that biogeographical region) and the alpine regions (0.4 Mha, 0.6%). 
The Macaronesian region also had a high relative proportion of pri-
mary forests, all of it located in the Laurisilva of Madeira (15,100 ha, 
1.5%; Supporting Information Table S6). The mapped primary for-
est patches were, on average, very small: The median size was only 
24 ha, and only 4.3% of the patches were larger than 1,000 ha. Most 
(89.1%) of the primary forest in our dataset was protected, but only 
46% was currently under strict protection (IUCN category I), with an 
additional 24% being included in national parks (IUCN category II; 
Figure 3, Supporting Information Table S5).

With regard to the forest types (FTs, sensu EEA, 2006), boreal 
forest (FT1) accounted for the highest share of the mapped primary 
forests (1.09 Mha), followed by mountain beech forest (FT7—0.15 
Mha) and, to a minor extent, alpine coniferous forest (FT3—0.07 
Mha; Figure 1, Supporting Information Figure S2). According to the 
definitions reported in Buchwald (2005—Supporting Information 
Appendix S1), most of the primary forests in our dataset were 
near-virgin (n7—1.20 Mha), while old-growth (n6—0.15 Mha) or 
long-untouched stands (n5—0.11 Mha) accounted only for a minor 
fraction (10%) of the cumulative area we mapped. However, when 

F IGURE  2 Contry-wise completeness of primary forest data 
and proportion of primary forest under strict protection (IUCN 
category I), included in protected areas having other IUCN 
categories or unprotected. The size of the pie is proportional to the 
logarithm of the total primary forest extent mapped in a country. 
The pie fractions only represent the data currently available and 
they should not be directly compared across countries, as data 
quality and availability differ. Furthermore, for some countries, 
only inventories of primary forest located either inside (e.g., Italy, 
Finland and France) or outside (Norway) protected areas were 
available [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE  3 Area of European primary forest across IUCN 
categories. I—strict nature reserves or wilderness areas; II—national 
parks; III—natural monuments or features; IV—habitat/species 
management areas; V—protected landscapes; and VI—protected 
area with sustainable use of natural resources. When a patch 
of primary forest was protected under multiple levels, we only 
considered the strictest category [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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considering the number of polygons rather than the area, the highest 
share of the forest patches we mapped were classified as old-growth 
forests and belonged to the boreal (FT1), alpine coniferous (FT3) and 
mountain beech (FT7) forest types (Supporting Information Figure 
S3).

The boosted regression tree modelling provided insights into the 
relative importance of our predictors in determining the spatial pat-
terns of known primary forests. The BRT model fitted 2,050 trees 
and returned a relatively high cross-validated AUC and correlation 
(mean ± SD range 0.86 ± 0.005 and 0.63 ± 0.008, respectively). 
When evaluating the model performance on the test data selected 
to control for spatial sorting bias (Hijmans, 2012), the AUC and the 
correlation were lower (0.70 and 0.33, respectively), indicating that 
the model performance was affected by the spatial dependency of 
the training data. The highest model accuracy (0.64) was observed 
for a threshold corresponding to the 90th percentile of the probabil-
ity distribution (Supporting Information Table S7, Figure S4).

Biophysical, socio-economic and historical variables all played 
a role in determining the likelihood of primary forest occurrence 

(Figure 4). Primary forests were more likely found in areas with 
higher ruggedness and water availability. Socio-economic factors 
had the highest relative importance among the selected variables, 
with accessibility and population density selected in 12.6% and 
12.2% of all model runs. Primary forests occurred more likely far-
ther away from major towns and where population density was 
lower. Both historical variables we used were important predictors: 
The likelihood of occurrence of primary forest decreased for in-
creasing historical levels of wood demand up to a certain threshold, 
above which it increased again. The amount of land suitable for ag-
riculture still forested in 1850, instead, showed a reverse U-shaped 
relationship. Finally, our model also highlighted differences across 
biogeographical regions: The likelihood of occurrence of primary 
forests was higher than average for the alpine, Black Sea and boreal 
regions.

The areas with the highest primary forest likelihood (Figure 5) 
were along the northern Finnish–Russian border, in the Finnish–
Swedish border and in mountain ranges, especially the Carpathians, 
the eastern Alps, the Dinaric Mountains and, to a lesser extent, 

F IGURE  4 Partial dependency 
plots (PDPs) showing the relationship 
between spatial determinants and 
the relative likelihood of occurrence 
of primary forest patches in a given 
1 × 1-km pixel. The vertical axis of the 
PDPs shows fitted values for each 
observation along the variable’s data 
range (horizontal axis). X-axes are 
equipped with rug plots that visualize the 
distribution of the respective data space. 
Numbers in parentheses represent the 
relative importance of a given variable. 
Biogeographical regions: ALP = alpine, 
BLK = Black Sea, CON = continental, 
MED = Mediterranean, PAN = Pannonian, 
ATL = Atlantic, BOR = boreal)
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the highest parts of the Pyrenees. Areas with low primary forests 
likelihood were the Atlantic region, the Britannic Archipelago, the 
Middle European lowlands, the Pannonian plain and the hemibo-
real Baltic region. Areas with predicted and observed primary for-
est (Supporting Information Figure S5) matched in those regions 
where we had a high sampling size (northern Finland, Slovakian and 
Ukrainian Carpathians, Balkan mountains). On the contrary, our 
model predicted the occurrence of scattered and isolated primary 
forest patches in southern Finland, in the continental lowlands or 
in the western Mediterranean areas weakly. Only 38% of the area 

predicted to host primary forest was included in protected areas, of 
which only 5.6% was under strict protection (i.e., IUCN category I; 
Supporting Information Figure S6).

4  | DISCUSSION

Our study produced the most comprehensive spatially explicit data-
set on known primary forests in Europe currently available. Known 
primary forests covered approximately 1.4 Mha in 32 European 

F IGURE  5 Areas with the highest likelihood of occurrence of primary forest in Europe at a 1 × 1 km resolution. The top-ranking 5% pixels 
were highlighted in purple and the 90–95th percentile in blue. Forests are reported in grey and follow Gallaun et al. (2010) [Colour figure can 
be viewed at wileyonlinelibrary.com]

(a) (b) (c)

(d)

(e)

www.wileyonlinelibrary.com
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countries, which represent 0.25% of terrestrial Europe and 0.7% of 
Europe’s forest area excluding Russia. This means that we managed 
to map about one-fifth of the 7.3 Mha of forest estimated to be “un-
disturbed by man” in Europe (FOREST EUROPE, 2015). We found a 
general increase in the number of primary forest patches from the 
west to the east and from the south to the north. Most of the pri-
mary forests in our dataset were located in Finland (0.9 Mha), in 
the Carpathians (0.16 Mha) and in the Balkans (0.08 Mha), although 
some important data gaps exist.

For many countries, we noted a mismatch between the total area 
of primary forest included in our map and the estimates reported in 
FOREST EUROPE (2015), possibly because these were based on the 
data not inherently designed for mapping primary forest, such as ex-
trapolation from forest inventories (Italy, Norway) or remote sensing 
data not verified in the field (e.g., Romania, FOREST EUROPE, 2015). 
The area of primary forest we mapped for Finland is three times 
larger than previous estimates (FOREST EUROPE, 2015). It possibly 
depends on the fact that we considered as primary forests not only 
old-growth stands older than 160–200 years (as in FOREST EUROPE, 
2015), but also those primary forests composed of a mosaic of suc-
cessional phases occurring in the extreme north of Finland (Bernier 
et al., 2017; Kuuluvainen & Aakala, 2011; Potapov et al., 2017). On 
the contrary, the amount of primary forest area mapped for Sweden 
and the Carpathians is far lower than current estimates. For Sweden, 
we mapped only 0.03 Mha of primary forest, which represents <2% 
of the current estimation (2.4 Mha in FOREST EUROPE, 2015). Given 
that Sweden is expected to host the widest continuous stretches 
of primary forest of the European continent (Parviainen, 1999), this 
represents the most severe data gap of our dataset. Similarly, for the 
Carpathians, we mapped ca. 30% of the 0.44 Mha of primary forest 
currently estimated to exist (FOREST EUROPE, 2015). The data we 
aggregated for the Carpathians mostly derived from surveys coordi-
nated within the framework of the UNEP—Carpathian Convention. 
Not only are these inventories still incomplete in countries such as 
Ukraine and Romania, but they also prioritize those forests having 
the highest naturalness levels. Therefore, a considerable share of 
forest of lower naturalness levels, but still qualifying as primary, may 
remain unmapped in the Carpathians (Kulakowski et al., 2017).

The low share of primary forest in Western Europe was ex-
pected considering the historically high population density, and long 
history of land use, especially in the Mediterranean (Jepsen et al., 
2015). Species-rich Mediterranean forest types (i.e., FT8, FT9 and 
FT10) were particularly scarce in our map (Supporting Information 
Figures S2 and S3). Mediterranean forests show fundamentally dif-
ferent structural characteristics from temperate mesic forests, due 
to the high-drought stress Mediterranean forests experience during 
the summer and due to fire disturbance (Karavani et al., 2018). The 
role of wildfires in shaping the structure of Mediterranean primary 
forests is particularly complex as today most wildfires are human-
induced (Ganteaume et al., 2013; Vacchiano, Garbarino, Lingua, 
& Motta, 2017). These conditions may hinder the development of 
structural features typically associated with old-growth stages, such 
as deadwood or large trees (Burrascano et al., 2013; Kulakowski 

et al., 2017). As these features are commonly used on the ground for 
identifying primary forests (at least in their late-successional stages), 
significant portions of Mediterranean primary forest may remain 
overlooked.

Primary forest disproportionately occurred in remote, scarcely 
populated areas, mostly in rugged mountain areas or at high latitudes 
(i.e., on land with low agricultural productivity or low profitability 
for forestry operations). This makes intuitively sense, as accessibility 
and the distance from markets or other centres of demand is one of 
the main drivers of land-use allocation. Indeed, in remote and unfa-
vourable areas such as northern Fennoscandia and the Carpathians 
mountains, land-use history has been shorter and less intense than 
in the rest of Europe (Jepsen et al., 2015; Kulakowski et al., 2017), 
making the persistence of primary forests more likely. This finding is 
also consistent with previous work in Fennoscandia (Kuuluvainen & 
Aakala, 2011), as well as with the known bias in protected area dis-
tribution towards higher elevation and more remote locations (Joppa 
& Pfaff, 2009). Interestingly, accessibility and population density are 
also important spatial determinants for explaining the patterns of 
wood production and harvesting intensity in Europe (Levers et al., 
2014; Verkerk et al., 2015). The correlation between primary forest 
and water availability probably reflects the same pattern, as a direct 
effect of water availability on the likelihood of finding patches of 
primary forests is unlikely and water availability is usually high in 
mountain and boreal regions. Finally, our model predicted an unex-
pectedly high likelihood of occurrence of primary forest in the rug-
ged portions of the Pyrenees and the Alps. The Pyrenees and the 
Alps have a longer history of land use and higher historical rates of 
forest management intensity than other European mountain ranges, 
which our models could not account for.

Although difficult to map at high spatial resolution, historical land-
use pressures played a key role in our model to explain present-day 
primary forest distribution. Primary forests, for instance, had a lower 
likelihood of occurring in those regions with higher historical wood 
demand (Figure 4), but only up to a threshold, after which the likeli-
hood increased unexpectedly. We believe this relationship derives by 
the occurrence of several primary forest patches in some historical 
mining areas, where a historical high wood demand co-occurred with 
a high historical forest cover, such as the Upper Silesian Province 
(Poland). The historical variables we used, however, did not fully 
capture the role of historical events and contingencies. For instance, 
the occurrence of some primary forest patches may depend on the 
short distance from major historical political boundaries as in the 
case of the Bieszczady region (SE Poland) or the Rhodope mountains 
(between Greece and Bulgaria). The peripheral location of these re-
gions and/or the lack of effective means for timber transportation 
left considerable areas of primary forest well into the 20th century. 
These areas could have followed a trajectory similar to other pe-
ripheral areas where primary forests were extensively cut in the last 
century if political upheavals, including the establishment of the Iron 
Curtain, had not occurred (Keeton et al., 2010). In addition to major 
historical events, peculiar local episodes could also explain the pres-
ence of some primary forest patches, such as Fonte Novello, a 50-ha 
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old-growth stand in Gran Sasso National Park (central Italy), which is 
located at the boundary between two municipalities. Ownership of 
this forest remnant has been contented between the two municipali-
ties since their formal establishment at the beginning of 19th century 
and remains unresolved as of today. This dispute coupled with the 
deep economic depression of this mountain area saved the stand 
from being exploited for timber and degradation until its recent “re-
discovery” and protection. Other emblematic examples include pri-
mary forests that were set aside centuries ago as hunting grounds, 
such as in Białowieża (lowland Poland), Biogradska Gora National 
Park (Montenegro) or Central Bohemia (Czech Republic).

The result of an unprecedented international collaboration, our 
dataset should be considered as a necessary first step towards a 
more complete inventory. Important limitations include high vari-
ability in data quantity and quality across countries. Variability may 
derive from a different interpretation of FAO definition of primary 
forests. Although authoritative and widely accepted internation-
ally, FAO definition is conceptual, rather than operational, which 
may result in inconsistencies in reporting among countries (Bernier 
et al., 2017). For many countries, no complete inventory exists, and 
data derive from the knowledge of local experts or from partial 
inventories with relatively narrow breadth, focussing on either 
forest inside (e.g., France, Italy and Finland) or outside protected 
areas (e.g., Norway) or specific regions (e.g., the Transcarpathian 
region of Ukraine, the French Pyrenees). In some countries, we 
found only incomplete data although extensive forestry statistics 
and databases are generally available for these countries. This was 
either because we did not manage to engage local researchers 
in helping us locate, extract and harmonize existing data (Latvia, 
Sweden) or because relevant data are kept strictly confidential 
by public authorities, possibly to avoid conflicts with private for-
est owners (e.g., Austria). While filling these knowledge gaps is a 
priority to achieve a more accurate description of primary forest 
distribution in Europe, the good-quality datasets we retrieved for 
neighbouring countries with similar ecological conditions (Norway 
and Finland in the case of Sweden, or Switzerland and Slovenia in 
the case of Austria) grant robustness to our statistical results. For 
other countries with abundant forest resources and presumably 
also a relatively high fraction of primary forest (e.g., many Balkan 
countries and Belarus), data were unavailable, at least in the inter-
national scientific literature or in digitized forms. In this case, we 
advocate a higher commitment from the international community 
to support local research institutions and NGOs in the collection 
or digitization of data on primary forests. Few data also exist for 
those countries with low forest cover (e.g., <10%) and in which sig-
nificant areas of primary forest are unlikely to occur due to historic 
clearing or biophysical factors, such as the British Isles, Moldova 
or Cyprus.

Granting adequate protection to European primary forests 
should be a conservation priority (Mackey et al., 2015), especially 
given the recent concerns about commercial exploitation of old-
growth forests in Eastern Europe (Chylarecki & Selva, 2016; Knorn 
et al., 2013). The majority (89%) of primary forest in our dataset 

is currently under some form of protection; nevertheless, its fu-
ture protection remains uncertain. A high fraction of primary forest 
(54%) is currently outside strictly protected areas, and broad dif-
ferences exist among European countries in the management re-
striction applied in other protected areas (Diaci, 1999; Parviainen, 
2000; Verkerk, Zanchi, & Lindner, 2014). In some countries, some 
forest management activities (e.g., salvage logging) are allowed 
even in protected areas, representing a threat to primary forests 
(Thorn et al., 2018). Another concern is the small average size of 
primary forest patches. Even if protected, a small patch of forest 
may not be large enough to host the full range of ecological pro-
cesses, and biodiversity may suffer from extinction debt (Peterken, 
1996). When large patches of primary forest do not exist, main-
taining existing patches in a large matrix of natural or seminatural 
forests should be the priority. This is necessary both to buffer the 
effects of direct and indirect anthropogenic disturbance on primary 
forests and because these patches could function as “strongholds” 
for the recovery and recolonization of many specialist species in 
the surrounding forest (Vandekerkhove et al., 2009). Our map of 
primary forest in Europe can therefore inform efforts aiming at 
preserving wilderness areas, in line with the requirements of the 
European Biodiversity Strategy and EU’s Green Infrastructure 
Strategy. Given the current low share of primary forests, their res-
toration should be a priority throughout Europe (Navarro & Pereira, 
2012; Schnitzler, 2014). Our map could be used to prioritize those 
regions and forest types for possible restoration efforts. For in-
stance, our work highlighted areas, such as the most rugged parts 
of the Alps and the Pyrenees, where land-use pressure is relatively 
low and primary forests could potentially occur, thus suggesting 
that the opportunity costs of restoring primary forests and associ-
ated ecosystem processes and biodiversity in these areas may be 
lower than elsewhere.
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