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Abstract

Sustainable management of indoor and outdoor air quality is essential for protecting public
health, enhancing well-being, and supporting resilient urban environments. Low-cost
air quality sensors enable continuous, real-time monitoring of key pollutants and, when
combined with data analytics, provide scalable and cost-effective insights for smart build-
ing operation and environmental decision-making. This pilot study evaluates an indoor–
outdoor air quality monitoring system deployed at the Faculty of Electrical Engineering and
Information Technologies in Skopje, with a focus on: (i) PM2.5 and PM10 concentrations
and their relationship with meteorological conditions and human occupancy; (ii) sensor re-
sponsiveness and reliability in an educational setting; and (iii) implications for sustainable
building operation. From January to March 2025, two indoor sensors (a classroom and a
faculty hall) and two outdoor rooftop sensors continuously measured PM2.5 and PM10 at
one-minute intervals. All sensors were calibrated against a reference instrument prior to
deployment, while meteorological data were obtained from a nearby station. Time-series
analysis, Pearson correlation, and multiple regression were applied. Indoor particulate
levels varied strongly with occupancy and ventilation status, whereas outdoor concentra-
tions showed weak to moderate correlations with meteorological variables, particularly
atmospheric pressure. Moderate correlations between indoor and outdoor PM suggest
partial pollutant infiltration. Overall, this pilot study demonstrates the feasibility of low-
cost sensors for long-term monitoring in educational buildings and highlights the need for
adaptive, context-aware ventilation strategies to reduce indoor exposure.

Keywords: indoor air quality; particulate matter (PM2.5, PM10); sustainable air quality
monitoring; IoT-based sensing; indoor–outdoor interaction; educational buildings

1. Introduction
Indoor air quality (IAQ) is fundamental to public health and sustainable development

because people spend most of their time indoors and indoor pollutant concentrations often
exceed outdoor levels [1–4]. Educational buildings are key micro-environments where
students and staff spend several hours each day [3,5,6]. Poor IAQ in classrooms and lecture
halls has been associated with headaches, fatigue, impaired concentration, and reduced
academic performance [6–8]. Naturally ventilated buildings in polluted urban areas are
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particularly vulnerable, as indoor air quality is strongly influenced by outdoor pollution
levels, occupant activities, and building operation and maintenance [9–11]. Understand-
ing IAQ dynamics in educational settings is therefore essential, especially in cities with
persistently high particulate matter concentrations.

Recent advances in low-cost sensors and Internet of Things (IoT) technologies enable
continuous, high-resolution monitoring of pollutants such as PM2.5, PM10, CO2, tempera-
ture, and humidity [12–14]. When appropriately calibrated against reference instruments,
these affordable sensor networks provide reliable multi-pollutant measurements and sup-
port real-time ventilation management, overcoming the cost and operational constraints of
conventional air-monitoring equipment [12,15,16]. Despite their potential, sustained moni-
toring campaigns in naturally ventilated university buildings remain limited, particularly
in highly polluted urban environments [9,12,17].

This pilot study [18] addresses that gap by deploying a network of low-cost sensors
in the Faculty of Electrical Engineering and Information Technologies in Skopje, North
Macedonia—a city with persistently high particulate matter pollution. Two indoor nodes
(faculty hall and large classroom) and two outdoor nodes (building façade) measured
particulate matter and environmental parameters at one-minute intervals. The sensors
were calibrated prior to deployment, positioned at breathing height, and shielded from
environmental disturbances. The resulting dataset is analysed to:

(i) characterise indoor and outdoor particulate levels in naturally ventilated university
spaces;

(ii) evaluate the influence of occupancy, ventilation, and meteorological conditions on
indoor air quality; and

(iii) assess the feasibility of low-cost sensor networks for sustainable IAQ management in
educational buildings. As a pilot-scale investigation, this work offers context-specific
insights and complements existing residential IAQ research by focusing on public
buildings in a high-pollution urban setting.

1.1. Literature Review

Advances in Internet of Things (IoT) technologies have enabled the development of
dense, low-cost sensor networks capable of continuous and resource-efficient air qual-
ity monitoring, supporting sustainable environmental management in buildings and
cities. Widely used gas sensors, such as MQ-135 and MQ-7, are commonly embedded
in ESP8266/ESP32-based units to measure CO2, CO, and VOCs, with data transmitted
via Wi-Fi or LTE (MQTT/HTTP) to cloud servers [19]. Commercial solutions such as
the Netatmo weather station further enable real-time tracking of temperature, humidity,
and CO2 through mobile applications, facilitating user awareness and informed decision-
making [20]. These networks typically rely on Wi-Fi, Bluetooth, ZigBee, or LoRaWAN to
provide scalable coverage across buildings and urban environments, contributing to long-
term, cost-effective monitoring strategies. Recent Sustainability studies confirm that such
IoT-based sensing infrastructures provide reliable long-term IAQ trends when combined
with appropriate calibration and data validation methods, enabling scalable deployment in
educational and public buildings [13,14].

Recent research increasingly frames such sensing infrastructures within sustainability
and Industry 5.0 paradigms. Authors in [21] introduced an Industry 5.0-oriented platform
integrating commercial low-cost sensors for continuous indoor environmental monitoring
in industrial settings, reporting improvements in worker well-being and enabling pre-
dictive maintenance of ventilation systems. Onboard data processing and user-oriented
dashboards have become standard features, enhancing accessibility and supporting timely
responses to air quality deterioration. Portable devices such as AirBeam3 integrate Wi-
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Fi/4G connectivity and interface with cloud platforms like AirCasting, enabling multi-site
visualization and alert-based interventions when pollutant thresholds are exceeded. These
systems have been widely deployed in dormitories, classrooms, offices, and residential
buildings, demonstrating their applicability for sustainable indoor environment manage-
ment [12]. Sustainability-oriented frameworks further emphasize the role of such systems
in supporting data-driven decision-making and long-term environmental resilience in
public institutions [13].

In parallel, engineering research emphasizes the role of ventilation control strategies
in balancing indoor air quality improvement with energy efficiency. Studies have shown
that optimized mechanical ventilation schemes can significantly enhance pollutant removal
while reducing energy consumption, supporting sustainable building operation [22]. Sim-
ilarly, HVAC system design strongly influences airflow patterns, thermal comfort, and
indirectly IAQ dynamics, highlighting the need for integrated monitoring and adaptive
control solutions [23]. Recent Sustainability research demonstrates that demand-controlled
and sensor-driven ventilation strategies can simultaneously improve IAQ and reduce
HVAC-related energy use in educational and office buildings, reinforcing the importance
of coupling real-time IAQ monitoring with intelligent ventilation control [24,25].

Contemporary studies increasingly incorporate meteorological factors and occupant
behavior to interpret IAQ patterns more comprehensively. Research has demonstrated that
indoor activities such as cooking and humidifier use, combined with reduced ventilation
during cold periods, can cause pronounced PM2.5 spikes [17]. School-based studies report
chronic CO2 exceedances linked to inadequate ventilation, with outdoor PM levels influenc-
ing window-opening behavior. Behavioral interventions, including visual or LED-based
prompts encouraging natural ventilation, have shown measurable improvements in indoor
air quality with minimal energy penalties [26]. Sustainability-focused investigations further
highlight that meteorological variability and occupant-driven behaviors jointly modulate
indoor–outdoor pollutant exchange in naturally ventilated buildings, particularly in dense
urban environments [9,27].

The literature consistently documents the adverse health effects associated with ex-
posure to indoor air pollutants [8,10,28]. Ultrafine particles (<0.1 µm) dominate indoor
particulate matter and pose particular risks due to their ability to penetrate deep into the
respiratory system and bloodstream [28]. In naturally ventilated buildings, outdoor PM2.5
can infiltrate indoor spaces at levels reaching 70–80% of outdoor concentrations [10], while
ventilation type—natural, mechanical, or hybrid—plays a decisive role in pollutant ingress
and occupant exposure. Poorly designed or maintained systems may contribute to Sick
Building Syndrome, undermining both health and sustainability goals [8].

From a regional sustainability perspective, Skopje experiences some of the highest
particulate matter pollution levels in Europe, driven by traffic emissions, residential heating
with solid fuels, construction activities, industrial sources, and unfavorable geographical
conditions [29,30]. Recent studies in North Macedonia and Kosovo report elevated con-
centrations of VOCs and particulate matter in indoor environments, including schools and
residential buildings [31,32].

1.2. Contribution to the State of the Art

Building on these Sustainability-focused studies, the present work extends existing
knowledge by providing an integrated, real-time analysis of indoor–outdoor particulate
matter dynamics, meteorological influences, and occupancy effects in a highly polluted
urban context.

This study focuses on indoor–outdoor air quality dynamics in institutional buildings
in North Macedonia, where such integrated analyses remain limited. While previous
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research has largely focused on outdoor air pollution, this work advances the state of the
art by jointly examining indoor and outdoor particulate matter concentrations and their
interactions with environmental and human-driven factors in real operating conditions.

The key novelties and contributions of this study are summarized as follows:

• Integrated indoor–outdoor IAQ assessment: The work provides a synchronized analy-
sis of indoor and outdoor PM2.5 and PM10 concentrations, offering new insights into
pollutant infiltration and transmission in naturally ventilated university buildings.

• Real-time, IoT-enabled monitoring framework: The study demonstrates the appli-
cation of affordable, IoT-based sensing technologies for high-resolution, real-time
IAQ monitoring, supporting scalable and resource-efficient solutions for sustainable
building management.

• Incorporation of occupancy and ventilation effects: By explicitly accounting for oc-
cupancy patterns and ventilation practices, the study highlights the critical role of
human behavior in shaping indoor air quality in educational environments.

• Quantitative evaluation of meteorological influences: The research assesses the impact
of key meteorological parameters—such as temperature, relative humidity, and atmo-
spheric pressure—on outdoor–indoor pollutant dynamics, particularly under high
urban pollution loads.

• Context-specific insights from a high-pollution urban area: Conducted in Skopje,
one of Europe’s most polluted cities, the findings provide evidence-based guidance
for optimizing ventilation strategies and improving sustainable IAQ management in
educational institutions in North Macedonia and comparable urban settings.

The primary contribution of this pilot study is to assess the feasibility and limitations
of affordable sensor-based monitoring for capturing indoor–outdoor air quality interactions
under real operating conditions.

2. Methods
2.1. Test Location Description

The measurement setup comprises four sensor nodes strategically deployed to capture
both indoor and outdoor air quality conditions at the Faculty of Electrical Engineering
and Information Technologies. Two of the nodes—Sensor 1 (n1) and Sensor 1′ (n1′)—
are positioned outdoors at different locations across the Faculty campus, as presented
in Figure 1, aiming to enable cross-validation of measurements and provide a reliable
representation of ambient air pollution levels.

Figure 1. Position of the outdoor sensor nodes.
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The remaining two nodes are installed indoors to monitor air quality under distinct
occupancy and ventilation scenarios. Sensor 2 (n2) is located in the Faculty Hall, a central
circulation area characterized by continuous and high foot traffic (see Figure 2), while
Sensor 3 (n3) is placed in a large classroom that is frequently occupied by students, as
shown in Figure 3.

Figure 2. Position of the indoor sensor nodes (n2) in the hallway. The exterior doors are facing north
and south.

Figure 3. Position of the indoor sensor node (n3) in the classroom.

When deploying the network, we selected sensor heights to match the approximate
breathing zone of seated or standing occupants (≈1.3–1.5 m above the floor). Sensor 2
(n2), installed in the Faculty Hall, was mounted on a freestanding stand 1.4 m above the
floor and positioned near the center of the corridor to avoid direct drafts from doors or
windows. Sensor 3 (n3), located in the large classroom, was placed approximately 1.3 m
above the floor on a desk near the center of the room. These height selections were guided
by recent sensor validation studies recommending placement at about breathing height
(~1.5 m) to reflect human exposure and to avoid floor-level resuspension or ceiling-level
dilution [16,33]. Both indoor sensors were kept away from corners, heating radiators, and
airflow obstructions to minimize boundary-layer effects. The outdoor sensor nodes (n1′)
and (n1) were mounted on the external façade of the building at about 1.8 m height under a
protective cover, aligned with the typical breathing zone of passersby and oriented toward
open space to capture ambient air. Field measurements on a multi-storey building showed
that PM2.5 concentrations dropped by only about 3–4% between ground level and 35 m [34],
and other researchers found no significant vertical variation in outdoor PM2.5 because
regional sources dominate [35]. These studies suggest that any height-related differences in
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the network are likely minimal, so it is sufficient to note that vertical gradients are modest
and do not materially affect the results.

The influence of sensor positioning on measurement results was also considered. The
study [33] demonstrated that wall-mounted sensors installed at 1.2 m height exhibit delays
of up to 200 s and record lower peak concentrations compared with sensors placed near
pollution sources or at breathing height. To mitigate such issues, all sensors in this study
were positioned in unobstructed areas away from walls and obstacles. Nevertheless, subtle
differences in airflow patterns and occupant activity around each sensor may still influence
readings. These aspects are discussed in Section 4.

2.1.1. Indoor Environment Descriptions and Occupancy

The Faculty Hall is a long, narrow corridor approximately 20 m × 3 m with a ceiling
height of 3 m. It functions as the main circulation area for students and staff, with continu-
ous foot traffic throughout working hours. Sensor 2 was placed centrally in the hall at a
height of 1.4 m. The large classroom covers roughly 70 m2 (≈10 m × 7 m) with a ceiling
height of 3 m; Sensor 3 was positioned 1.3 m above the floor near the center of the room,
intentionally avoiding direct proximity to windows or vents [33]. Both rooms rely solely on
natural ventilation through periodically opened windows, and no mechanical ventilation
system was installed. Occupancy varied during the study period: the hall regularly hosted
transient gatherings of 27–83 people, whereas in the classroom, on average, 80 students
attend lectures (the maximum number of students in a group is 120 students, and the
capacity of the classroom is 150 students. The outdoor sensors (n1′) and (n1) were mounted
on the façade at about 1.8 m height and shielded from direct rain and sunlight, with no
nearby obstacles or vents.

Table 1 summarizes the sensor coordinates, heights, room dimensions, typical occu-
pancy levels, and additional notes.

Table 1. Sensor coordinates, heights, room dimensions, typical occupancy levels and additional notes.

Sensor
Node Environment Height Above

Floor (m)
Approximate
Dimensions Typical Occupancy Notes

n1 and n1′
(Outdoor)

Building
façade

(north-west
side)

1.8

Outdoor open
space near
entrance;
sensors

mounted on
exterior wall

Not applicable

Protected from
direct rain and

sunlight; oriented
toward open area

to capture
ambient air;

located away
from vents

n2 (Hall) Faculty Hall
(corridor) 1.4 ≈20 m × 3 m ×

3 m (height)

27–83 people in a minute
passing through, depending on
the frequency; continuous foot
traffic (The expected average
number of people in the main

hall is 83 during high
frequencies hours (11–14), in the
low frequency hours (after 17) is

27, and during normal
frequencies (form 8–11 and
from 14 to 17) 50 people.)

Sensor placed
centrally on stand,
away from walls

and radiators;
natural

ventilation
through windows

n3
(Classroom)

Large
classroom 1.3

≈10 m × 7 m ×
3 m (≈70 m2

floor area)

On average, lectures are
attended by about 80 students,
with a maximum group size of

120 (max. capacity 150)

Sensor placed on
desk near centre;

away from
windows and
vents; natural

ventilation only
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2.1.2. Influence of Sensor Position, Room Dimensions and Occupancy on Measurements

Variations in particulate measurements can partly be attributed to environmental
parameters. First, the height at which sensors are placed influences the mixture of resus-
pended particles versus well-mixed air; sensors closer to the floor may record higher PM
due to resuspension, whereas sensors near ceilings may underestimate exposure. By posi-
tioning the sensors at breathing height, we aimed to minimize these biases. Second, room
dimensions affect ventilation efficiency and pollutant dispersion-larger volumes promote
dilution, whereas narrow corridors like the hall can accumulate resuspended particles
during high foot traffic. Third, occupant numbers directly influence particle concentrations
through emission and resuspension. Empirical studies of university classrooms have re-
ported strong positive correlations (Pearson r ≈ 0.98) between the number of occupants
and CO2/particulate concentrations [6,11]. Our dataset similarly showed higher PM peaks
during crowded periods (Section 4), underscoring the need to account for occupancy in
sensor deployment and data interpretation.

The indoor sensor layout allows for comparative analyses across rooms that differ in
usage patterns, ventilation, exposure characteristics, and their orientation with respect to
the cardinal directions.

The performance of a ventilation system is shaped by several factors, including its type,
placement, and operating schedule—all of which directly influence pollutant concentra-
tions. By analyzing data from the deployed sensor nodes, this study examines how various
ventilation conditions impact environmental parameters within the observed spaces. In the
context of this research, ventilation relied exclusively on natural airflow. Windows were
opened between 6:00 a.m. and 8:00 a.m. each working day by the cleaning staff, providing
the primary means of fresh air exchange during the monitoring period. Therefore, three
distinct visitor-frequency categories were defined. The high category corresponds to work-
ing days between 08:00 and 19:00 across all indoor sensor nodes, reflecting periods with
varying levels of occupancy by technical staff, professors, and students. The low category
is assigned to working days between 06:00 and 08:00, when only technical (cleaning) staff
are typically present, resulting in reduced visitor activity. The none category includes all
non-working days as well as working days from 20:00 to 06:00, representing periods with
minimal or no human presence.

2.2. Measurement System Description

The monitoring system comprises multiple wireless sensor nodes, each integrating
four sensing elements and a Wi-Fi communication module on a single controller board.
The nodes measure key air quality parameters, including PM2.5, PM10, CO, and NO2.

The particulate matter sensor used in this study was the SDS011 laser dust sensor,
manufactured by Nova Fitness Co., Ltd., Jinan, Shandong, China, which incorporates
optical sensors capable of detecting particles in the 0.3–10 µm range. Gas pollutants are
monitored using the MiCS-4514 unit, which includes dual sensing components dedicated
to CO and NO2 detection. The main characteristics and performance specifications of these
sensor units are summarized in Table 2.

Table 2. Main features of the sensing units.

Sensing
Unit

Measurement
Parameters

Supply
Voltage [V]

Operating
Temperature
Range [◦C]

Measurement
Range

[µg/m3]

CO
Detection

Range
[ppm]

Sensing
Resistance
in Air [kΩ]

Maximum
Working
Current

[mA]

SDS011 PM2.5,
PM10 5 −20 to 50 0.0 to 999.9 — — 220

MiCS-4514 CO, NO2 4.9 to 5.1 −30 to 85 — 1 to 1000 100 to 1500 —
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These low-cost sensors rely on laser light-scattering and have been shown to provide
linear responses (R2 > 0.95) at PM2.5 concentrations above 10 µg/m3, but they systemati-
cally overestimate absolute concentrations; laboratory tests suggest correction factors of
~0.3–0.5, meaning uncalibrated SDS011 readings are 2–3 × higher than reference values.
Field evaluations report long-term mean accuracies of 80–98%, root-mean-square errors
below 6 µg/m3, and strong inter-sensor correlations (R > 0.97).

The controller performs initial processing of the collected sensor data before trans-
mitting it across the network. It is a highly versatile platform, capable of supporting
low-power sensing applications as well as more computationally intensive tasks, including
music streaming and voice encoding. The key technical characteristics of the controller are
presented in Table 3.

Table 3. Main characteristics of the controller.

Feature Controller (ESP32)
Supply Voltage [V] 2.7 to 3.6

Operating Temperature Range [◦C] −40 to 85
Module Interface SD Card, UART, SPI, I2C, Motor PWM

Wi-Fi Frequency Range [GHz] 2.4 to 2.5

The sensor nodes, equipped with integrated Wi-Fi modules, transmit real-time air
quality measurements to the nearest routers within the Faculty building. The collected data
is subsequently uploaded to an open IoT platform, where it can be visualized online or
downloaded for further analysis. Detailed descriptions of the hardware configuration and
system architecture are provided in earlier studies [36,37].

Calibration of the sensor nodes was performed using the MicroDust Pro Aerosol
Monitoring System (Casella CEL Ltd., Bedford, UK), operated with the manufacturer-
supplied Casella Insight Management Software (version V17), which provides an accuracy
of 2%. This reference instrument employs an infrared light source with a wavelength of
880 nm and offers a measurement resolution of 0.001 mg/m3.

The averaged PM concentrations measured by the sensor nodes and the reference
device at the location near Sensor 1 are summarized in Table 4.

Table 4. Summary of average PM Concentrations, Relative Humidity, and Temperature (±Standard
Deviation).

Period PM Sensor
[µg/m3]

PM Reference
Instrument

[µg/m3]
Temperature

[◦C]
Relative

Humidity [%]

Dry Period 8.9 ± 2.3 11.2 ± 2.5 23.7 ± 5.9 50 ± 10.7
Wet Period 16.1 ± 5.5 18.9 ± 4.5 20.2 ± 1.9 69.4 ± 9.5

In our deployment, we co-located the sensors with a reference monitor to derive cali-
bration coefficients, applied these corrections to our data, and interpreted low-concentration
results with caution due to reduced sensitivity below 10 µg/m3.

Ambient conditions across all three monitoring locations were generally comparable
during the measurement campaign. The highest hourly PM concentration recorded by the
sensor nodes was 53 µg/m3. It should be noted that seasonal variations may influence both
the magnitude and the characteristics of PM concentrations.

Measurement errors were generally higher at lower PM concentrations, while accuracy
improved as particulate levels increased. Elevated PM values were observed during the
wet period, whereas the dry season exhibited more pronounced measurement deviations.

Because this pilot study prioritised affordability and deployment simplicity, the sensor
network focused on particulate matter (PM2.5, PM10) and selected gaseous pollutants
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(CO and NO2). Volatile organic compounds (VOCs) were not included, as reliable long-
term VOC monitoring typically requires more costly sensors with higher selectivity and
calibration stability.

2.3. Study Area and Meteorological Conditions

During the analysed period (January–March 2025), meteorological conditions in Skopje
were characteristic of the winter season and early spring. Average daily air temperatures
were approximately 7 ◦C in January, 9 ◦C in February, and 19 ◦C in March, while average
daily minimum temperatures were 1 ◦C, 2 ◦C, and 8 ◦C, respectively. Relative humidity
showed a decreasing trend over the study period, from approximately 73% in January to
46% in March. Mean wind speeds increased gradually from 0.9 m/s in January to 1.6 m/s
in February and 2.6 m/s in March. Wind direction at the sensor location was predominantly
from the northeast (28.6%), east (22.5%), and southeast (14.7%), reflecting prevailing airflow
patterns during the monitoring period.

2.4. Data Acquisition
2.4.1. Data Pre-Processing and Quality Control

Prior to analysis, sensor data were screened for missing values and outliers. Short
data gaps were identified and excluded from statistical analysis, while extreme values
inconsistent with physical plausibility or concurrent sensor behaviour were treated as
outliers and removed. This quality-control procedure ensured the robustness of subsequent
statistical analyses.

2.4.2. Data Processing

The dataset utilized in this study is derived from two main sources: sensor measure-
ments and publicly available meteorological data. Throughout the monitoring period, all
data was collected in CSV format, systematically organized, and prepared for analysis.
Python 3.12.3, selected for its flexibility and strong analytical capabilities, served as the
primary tool for data processing and computation.

Sensor readings were originally recorded at 30 s intervals; these values were sub-
sequently aggregated into hourly averages to improve data interpretability and reduce
noise by consolidating multiple measurements within each hour. Data from the three
sensor nodes, along with corresponding weather records, were merged into a unified
dataset to enable an integrated and comprehensive analysis. To ensure consistency and
comparability across measurements, sensor outputs expressed in ohms (Ω) were converted
into particulate matter concentrations (µg/m3). Key meteorological variables—including
temperature and atmospheric pressure—were also extracted and incorporated into the
dataset to support correlation and regression analyses. This rigorous data preparation
workflow provides a robust foundation for the subsequent analytical stages of the study.

2.5. Statistical Tools

To analyze the collected data, standard statistical procedures as outlined by [38] includ-
ing descriptive statistics, data visualization, correlation analysis, and hypothesis testing—
were applied. A range of hypothesis tests [38] was conducted with a significance level set
at α = 0.05. When assumptions required for parametric testing—such as normality or ho-
mogeneity of variance—were violated, nonparametric alternatives were employed [39–42].
These nonparametric tests were grouped into two categories: independent-sample tests
(the Wilcoxon rank-sum test and the Kruskal–Wallis test) and paired-sample tests (the
Wilcoxon signed-rank test and the Friedman test).
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In cases where the null hypothesis was rejected, indicating statistically significant
differences between conditions, the effect size was also assessed. The effect size r was
calculated as shown in Equation (1):

r =
Z√
N

(1)

where Z is the standardized test statistic and N is the total number of observations. Alter-
natively, with the same parameters, one can calculate η2 as shown in Equation (2)

η2 =
Z2

N − 1
(2)

The η2 evaluates the percentage of variability that is encountered by the conditions.

3. Results
Given the pilot-scale design of the study, the Section 3 reports statistically supported

observations specific to the investigated sensor locations and measurement period, without
generalising beyond the monitored spaces.

The dataset comprises measurements collected from four sensor nodes between Jan-
uary and March 2025, corresponding to the winter season, when air pollution levels in
Skopje are typically elevated.

Saharan dust intrusions did occur between January and March 2025, affecting North
Macedonia’s atmosphere on at least two occasions. No significant dust event was noted in
January 2025 for the country, but early February brought a dust plume into the broader
Balkan region (strongly impacting Greece, with minor effects possibly reaching North
Macedonia) [43]. A more direct and tangible impact happened in late March 2025, when
Saharan dust was clearly observed over North Macedonia, especially in western locales (and
to a lesser extent in Skopje) [44]. These intrusions were part of a pattern of frequent Saharan
dust transports in early 2025, as tracked by Copernicus Atmosphere Monitoring Service
(CAMS) and satellites [44]. Each event temporarily degraded air quality and visibility
in affected areas, underscoring that even countries as far north as North Macedonia can
occasionally be touched by Sahara Desert dust. If no other intrusions are mentioned beyond
these, we can confirm that aside from the early-February and late-March episodes, North
Macedonia saw no additional Saharan dust events in Q1 2025. All available evidence
therefore points to two dust intrusions in that timeframe–and confirms that Skopje and
surrounding areas did experience some effects (hazy skies, elevated particulates) during
those events, particularly the March 2025 incident.

The analysis investigates correlations among sensor nodes across different times of the
day, with particular emphasis on periods of high building occupancy, while also assessing
relationships between indoor and outdoor sensors, as well as between outdoor particulate
matter concentrations and relevant meteorological parameters. In addition, temporal
variations in sensor readings were analysed to identify systematic differences across time
periods, with the distributions of PM2.5 and PM10 concentrations for the outdoor sensor
(Sensor 1, n1) illustrated in Figure 4 and (Sensor 2, n2) illustrated in Figure 5.

Prior to conducting inferential analyses, the distribution of each variable was evaluated.
Because many statistical tests assume normally distributed data, distributional properties
were assessed using the Shapiro–Wilk test. Normality testing was performed separately for
each sensor node and each visitor-frequency category. The null hypothesis of normality
was rejected in all cases except for PM data from Sensor 2 (n2) in low category.
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(a) (b) 

Figure 4. Distribution of concentrations for the outdoor sensor, Sensor 1 (n1): (a) PM2.5; (b) PM10.

  
(a) (b) 

Figure 5. Distribution of concentrations for the indoor sensor, Sensor 2: (a) PM2.5; (b) PM10.

Consequently, non-parametric methods were applied, with Spearman’s rank corre-
lation selected for subsequent analyses. When the correlation between the concentration
of PM2.5 and PM10 is registered on the four analyzed sensors, one can confirm the high
positive correlation between the outdoor Sensors 1 and 1′ for both pollutants (see Figure 6).
When the correlation between the indoor and outdoor sensors is studied, slightly higher
correlation is reported between the outdoor Sensor 1 and the indoor sensors than between
Sensor 1′ and the indoor sensors (see Figure 6). The slightly higher correlation between
outdoor Sensor 1 and the indoor sensors indicated that Sensor 1 better represents the
outdoor air that infiltrates the indoor environment.

Differences in sensor placement and exposure to local outdoor conditions likely cause
Sensor 1′ to capture more localized variability that is not transferred indoors, resulting in a
lower correlation.

The observed weak negative correlations between wind speed and particulate matter
concentrations are consistent with the meteorological conditions described in Section 2.3,
where low wind speeds during winter favour pollutant accumulation.

Spearman correlation analysis was performed to assess the relationships between
meteorological parameters (temperature, wind speed, pressure, and cloud cover) and PM
concentrations (PM2.5 and PM10), to assess how meteorological parameters influence
the major pollutants observed in indoor spaces. The results for Sensor 1 show that both
temperature and wind speed exhibit negative correlations with PM2.5 (−0.27 and −0.21,
respectively) and PM10 (−0.17 and −0.11, respectively). Cloud cover also demonstrated a
weak negative correlation with PM2.5 (−0.034) and PM10 (−0.019). In contrast, atmospheric
pressure showed a positive association with both pollutants, with correlation coefficients of
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0.25 for PM2.5 and 0.13 for PM10. Dew point temperature displayed minimal correlation
(−0.046 for PM2.5 and 0.045 for PM10). A summary of all correlation coefficients is provided
in Table 5. Similar results are obtained for the second outdoor location, Sensor 1′, and they
are presented in Table 5 as well.

 

(a) (b) 

Figure 6. Correlation between the measured concentration of PM by the four sensors: (a) PM2.5;
(b) PM10.

Table 5. Correlation coefficients between meteorological parameters and particulate matter concen-
trations (PM2.5 and PM10) for the outdoor sensors.

Meteorological
Parameters

PM2.5 PM10
Sensor 1 Sensor 1′ Sensor 1 Sensor 1′

Temperature [◦C] −0.27 −0.35 −0.17 −0.35
Wind Speed [km/h] −0.21 −0.057 −0.11 −0.058

Cloud cover [%] −0.034 0.0065 −0.019 0.005
Pressure [Pa] 0.25 0.39 0.13 0.39

Dew Point [◦C] −0.046 0.0046 0.045 0.0053

3.1. Statistical Comparison of Sensor Measurements Across Occupancy Categories

Table 6 summarizes the descriptive statistics of PM2.5 and PM10 concentrations
recorded by the four sensor nodes under different occupancy categories. Clear differences
are observed between outdoor and indoor environments, as well as among indoor spaces
with varying visitor frequency.

To evaluate whether PM measurements differed significantly between sensors under
varying occupancy conditions, a series of non-parametric statistical tests was conducted.
Because the PM2.5 and PM10 datasets did not satisfy the assumption of normality, the
Wilcoxon signed-rank test (for paired samples) and the Mann–Whitney U test (for in-
dependent samples) were applied. The results reveal several clear patterns regarding
indoor–indoor and indoor–outdoor differences under the low, none, and high visitor fre-
quency categories. For both PM2.5 and PM10, indoor Sensors 2 and 3 (n2 and n3) differ
significantly from outdoor Sensors 1 and 1′ across all occupancy categories. For the outdoor
sensors (Sensor 1 and Sensor 1′), higher mean concentrations and larger variability are
observed compared to the indoor sensors. In particular, Sensor 1′ consistently reports
substantially higher mean PM2.5 (15.78 µg/m3) and PM10 (17.9 µg/m3) values than Sensor
1 (5.4 µg/m3 and 7.8 µg/m3, respectively). This difference is also reflected in the higher
maximum values and standard deviations, indicating stronger exposure to ambient pol-
lution sources and meteorological influences at the Sensor 1′ location. Across occupancy
categories, outdoor concentrations tend to be highest during periods classified as no oc-
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cupancy, which correspond to nighttime or early-morning hours when indoor activity is
minimal but outdoor pollution accumulation can occur due to reduced atmospheric mixing.

Table 6. Descriptive statistics for the collected data.

PM2.5 PM10
Occupancy Min Max Mean Std Min Max Mean Std

Se
ns

or
1 total 0.1 42.3 5.4 4.3 0.2 51.4 7.8 6.2

none 0.1 42.3 5.9 4.8 0.2 51.4 8.5 6.8
low 0.7 14 5.5 3.9 1 23 8.1 6.1
high 0.5 15 4.3 3.1 0.6 20.5 6.4 4.5

Se
ns

or
1′ total 0.1 65.9 15.78 11.2 0.1 75.8 17.9 12.7

none 0.1 65.9 17.7 11.7 0.1 75.8 20.1 13.6
low 1.8 32.1 15.8 9.7 2.1 37 18.1 11.3
high 1.4 52.3 12.1 8.9 1.6 59.8 13.7 10.1

Se
ns

or
2 total 0.5 38.2 6.4 5.0 0.8 47.0 8.0 6.3

none 0.5 16.9 5.1 3.4 0.8 19.7 6.1 4.2
low 1.8 16.5 6.7 4.0 2.5 21 9.1 4.7
high 1.4 38.2 8.9 6.6 1.5 47 11.6 8.1

Se
ns

or
3 total 1.5 16.3 4.5 2.3 1.6 105.5 6.2 6.4

none 1.5 11.9 3.7 1.7 1.6 14.6 4.2 2.1
low 2.9 12.1 5.6 2.6 3.3 105.5 11.4 19.1
high 1.8 16.3 5.8 2.6 1.9 52.9 9.2 6.0

Indoor sensors (Sensors 2 and 3) exhibit generally lower mean concentrations than the
outdoor sensors; however, a clear dependence on occupancy level is evident. For Sensor 2,
both PM2.5 and PM10 mean values increase progressively from the none to high occupancy
category, reaching mean values of 8.9 µg/m3 (PM2.5) and 11.6 µg/m3 (PM10) under high
occupancy. This trend indicates the contribution of human presence and activity, such
as resuspension of settled particles and increased movement within the space. A similar
pattern is observed for Sensor 3, although with lower PM2.5 means overall. Notably, Sensor
3 shows occasional high PM10 maxima (up to 105.5 µg/m3) during low occupancy, which
can be attributed to short-term events or localized disturbances, as reflected by the large
standard deviation in this category.

Table 7 complements the descriptive analysis by presenting the results of non-
parametric statistical tests assessing whether observed differences between sensor pairs are
statistically significant across occupancy categories. For both PM2.5 and PM10, statistically
significant differences are consistently found between the indoor sensors (Sensors 2 and 3)
and the outdoor sensors (Sensors 1 and 1′) for none and high occupancy conditions. These
results confirm that indoor particulate concentrations differ systematically from outdoor
levels, even when natural ventilation is present, highlighting the role of indoor-specific
sources and processes.

An important exception is observed for comparisons involving Sensor 1 and the indoor
sensors during low occupancy, where no statistically significant differences are detected.
This finding is consistent with the descriptive statistics in Table 6, which show similar
mean values and overlapping concentration ranges for these conditions. As noted, the
low-occupancy category represents a relatively short monitoring period with limited data
points, which reduces statistical power and may mask subtle differences.

Comparisons between the two indoor sensors (Sensor 2 vs. Sensor 3) further underline
the influence of occupancy. While statistically significant differences are detected for none
and high occupancy, no significant differences are found during low occupancy for either
PM2.5 or PM10. This suggests that, when human activity is minimal, particulate levels
in different indoor spaces converge toward similar background concentrations, whereas
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increased occupancy amplifies room-specific characteristics such as size, usage patterns,
and airflow conditions.

Table 7. Statistical differences between sensor pairs across occupancy levels (✔ denotes rejection of
the null hypothesis, indicating a statistically significant difference (p < 0.05);$ denotes failure to
reject the null hypothesis (p ≥ 0.05)).

Sensor Pair Occupancy PM 2.5 Stat.
Diff.

PM10
Stat. Diff.

Sensor 1 vs. Sensor 2 None ✔ ✔
Sensor 1 vs. Sensor 2 Low $ $
Sensor 1 vs. Sensor 2 High ✔ ✔
Sensor 1 vs. Sensor 3 None ✔ ✔
Sensor 1 vs. Sensor 3 Low $ $
Sensor 1 vs. Sensor 3 High ✔ ✔
Sensor 1′ vs. Sensor 2 None ✔ ✔
Sensor 1′ vs. Sensor 2 Low ✔ ✔
Sensor 1′ vs. Sensor 2 High ✔ ✔
Sensor 1′ vs. Sensor 3 None ✔ ✔
Sensor 1′ vs. Sensor 3 Low ✔ ✔
Sensor 1′ vs. Sensor 3 High ✔ ✔
Sensor 2 vs. Sensor 3 None ✔ ✔
Sensor 2 vs. Sensor 3 Low $ $
Sensor 2 vs. Sensor 3 High ✔ ✔

Overall, the combined interpretation of Tables 6 and 7 demonstrates that:

(i) outdoor particulate concentrations are consistently higher and more variable than
indoor levels,

(ii) indoor PM concentrations increase with occupancy, and
(iii) statistically significant indoor–outdoor and indoor–indoor differences are strongly

dependent on visitor frequency. These findings reinforce the importance of consid-
ering occupancy patterns when interpreting indoor air quality data and evaluating
exposure in public buildings.

Similar comparison is done between the indoor sensors, and the results (given in
Table 6) suggest that, again, the null hypothesis can’t be rejected when the occupancy is
low. Observe that the low occupancy encompasses a very short period of time, and there is
not much data for this case. When we compare data from the same indoor sensor but with
different frequency, the obtained results are presented in Table 8.

Table 8. Statistical differences between indoor sensor pairs across occupancy levels (✔ denotes
rejection of the null hypothesis, indicating a statistically significant difference (p < 0.05);$ denotes
failure to reject the null hypothesis (p ≥ 0.05)).

Sensor Pair PM 2.5 Stat. Diff. PM10
Stat. Diff.

Sensor 2: none vs. low ✔ ✔
Sensor 2: none vs. high ✔ ✔
Sensor 2: low vs. high $ $
Sensor 3: none vs. low ✔ ✔
Sensor 3: none vs. high ✔ ✔
Sensor 3: low vs. high $ $

Indoor sensors n2 and n3 show no significant difference during low occupancy, mean-
ing that PM levels in these rooms behave similarly when few people are present. However,
during no occupancy or high occupancy, significant differences emerge. This indicates that
room-specific features (size, ventilation, activity patterns) strongly influence particulate
levels during high use or complete inactivity. When the concentration of the PM is studied
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at the same location, the same pattern is detected: there is no significant difference between
the period when the rooms are ventilated and when flour is mopped, and when the rooms
are full of people (seating or moving), but in all other cases, there is a significant difference.

Figures 7 and 8 show the concentration of PM2.5 and PM10 over one working week
in March 2025. For better comparison light orange background presents period with low
occupancy, light pink background stands for high occupancy, and for no occupancy, light
purple is used.

Figure 7. Comparison of the concentration of PM2.5 recorded by Sensors 1, 2 and 3 (n1, n2 and n3,
respectively).

Figure 8. Comparison of the concentration of PM10 recorded by the Sensors 1, 2 and 3 (n1, n2 and n3,
respectively).

3.2. Overall Synthesis

Across all statistical tests, three consistent patterns were observed in the particulate
matter measurements collected during the monitoring period.

• Statistically significant differences were detected between indoor and outdoor par-
ticulate matter concentrations across all occupancy categories. For the investigated
rooms and sensor locations, indoor PM2.5 and PM10 levels differed from outdoor
concentrations under low-, high-, and no-occupancy conditions, indicating that
indoor particulate behavior was not solely determined by simultaneous outdoor
pollution levels;
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• The two monitored indoor spaces exhibited similar particulate matter behavior dur-
ing low-occupancy periods, whereas statistically significant differences emerged
during high-occupancy and no-occupancy conditions. This suggests that room-
specific factors—such as volume, airflow patterns, ventilation effectiveness, and usage
characteristics—interacted with occupancy status to influence indoor particulate con-
centrations. Periods of increased activity are likely associated with particle generation
and resuspension, while unoccupied periods reflect conditions dominated by infiltra-
tion, deposition, and residual indoor sources.

• Transitions between occupancy categories were associated with measurable changes
in indoor particulate concentrations. Comparisons involving no-occupancy condi-
tions showed the largest statistical differences relative to occupied periods, whereas
differences between low- and high-occupancy conditions were often not statistically
significant. This indicates that the presence or absence of occupants had a stronger
influence on particulate behavior than incremental changes in occupancy level.

In addition to these patterns, short-term concentration peaks were observed in the
room monitored by sensor n3 during the early morning period between 06:00 and 08:00.
These peaks coincided with routine cleaning activities and are likely associated with
window opening during this period, which may have introduced polluted outdoor air and
disturbed settled particles through increased airflow. Figure 9 illustrates the corresponding
PM2.5 peaks, while Figure 10 presents the PM10 peaks, highlighting the influence of
short-term ventilation events on indoor particulate concentrations.

Figure 9. PM2.5 Concentration for sensor node 3 located in the Faculty room.

Figure 10. PM10 Concentration for sensor node 3 located in the Faculty room.
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4. Discussion
4.1. Synthesis with Existing Literature

This pilot study provides preliminary evidence on indoor–outdoor particulate matter
dynamics in a naturally ventilated university building in Skopje. The moderate correlations
observed between outdoor PM2.5/PM10 concentrations and meteorological parameters
such as temperature, wind speed, and atmospheric pressure indicate that local emission
sources and micro-environmental conditions play a dominant role, which is consistent with
findings from other urban indoor air quality (IAQ) studies [9,10,45].

The modest infiltration of outdoor particulate matter and the pronounced variability
of indoor concentrations across different occupancy conditions align well with previous
reports showing that naturally ventilated buildings can admit approximately 70–80% of
outdoor fine particles and that indoor pollutant levels are strongly influenced by occupant
activities, ventilation behaviour, and building characteristics [9,10].

The present results also corroborate earlier sensor placement studies demonstrating
that measurements taken at breathing height better represent actual occupant exposure and
avoid the delayed or attenuated concentration peaks often associated with wall-mounted
devices [16,33]. Furthermore, the strong influence of occupancy on indoor particulate
concentrations—particularly the contrast between unoccupied periods and periods of high
visitor density—mirrors observations from other educational environments, where both
CO2 and particulate matter levels have been shown to track student numbers and activity
patterns [6,8].

Taken together, these consistencies suggest that the indoor–outdoor dynamics ob-
served in this pilot study are broadly representative of naturally ventilated educational
buildings, while also providing novel empirical data from a region where systematic IAQ
monitoring has been limited.

4.2. Strengths and Limitations

By integrating low-cost Internet of Things (IoT) sensors into an institutional building,
this study demonstrates the feasibility of generating high-resolution IAQ data in resource-
constrained settings. The sensors were calibrated prior to deployment, positioned at
breathing height, and shielded from direct drafts, enabling continuous monitoring without
interfering with normal building use [12,13].

Nevertheless, several limitations constrain the interpretation of the findings. The
investigation was conducted at a single site using a limited number of sensor nodes and
focused exclusively on a winter period, which restricts spatial resolution and seasonal
generalisability. Although the sensors were calibrated according to manufacturer recom-
mendations, they were not co-located with reference-grade instruments during deployment,
and residual measurement bias cannot be excluded [12,13].

In addition, ventilation rates, detailed occupant activity patterns, and atmospheric
parameters such as planetary boundary layer height were not directly measured [46,47],
and volatile organic compounds were intentionally excluded to avoid cross-sensitivity
issues. These constraints, together with the pilot-scale sample size, mean that the statistical
relationships identified here should be interpreted as indicative rather than definitive.

4.3. Implications for Policy and Practice

Despite these limitations, the findings have several practical implications for public
institutions located in polluted urban environments. First, the strong influence of occupancy
on indoor particulate concentrations suggests that relatively simple operational measures—
such as managing class sizes, staggering occupancy schedules, and encouraging natural
ventilation during peak use—can meaningfully reduce indoor exposures.
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Real-time feedback from low-cost sensor networks could support facility managers
in optimising window opening and ventilation scheduling, complementing demand-
controlled ventilation strategies highlighted in previous IAQ studies [3,12]. Second, the
observed infiltration of outdoor particulate matter underscores the importance of maintain-
ing building envelopes and ventilation pathways to limit pollutant ingress, particularly
during periods of elevated outdoor pollution. Regular maintenance of mechanical systems
and periodic cleaning of natural ventilation openings can therefore contribute to healthier
learning environments.

More broadly, integrating IAQ considerations into building design standards and
public health policy—especially in regions with persistently high outdoor pollution—
can help protect students and staff while supporting sustainable urban development
goals [48,49].

4.4. Opportunities for Future Research

The pilot-scale nature of this study highlights several directions for future work. Ex-
panding sensor networks to include additional indoor and outdoor locations and extending
monitoring across multiple seasons would improve spatial and temporal coverage and al-
low investigation of seasonal variability. Co-locating low-cost sensors with reference-grade
instruments would enable systematic calibration and uncertainty assessment.

Incorporating additional parameters such as CO2, volatile organic compounds,
bioaerosols, occupancy metrics, and ventilation rates would provide a more comprehensive
characterisation of IAQ dynamics. Finally, combining empirical monitoring with compu-
tational fluid dynamics simulations and atmospheric data—such as planetary boundary
layer height—could improve understanding of pollutant transport mechanisms in naturally
ventilated buildings and inform the design of adaptive control strategies. Such research
would support the development of scalable, evidence-based policies for managing IAQ in
educational buildings located in high-pollution urban environments.

5. Conclusions
This pilot study used a small network of calibrated low-cost sensors to explore indoor–

outdoor particulate matter dynamics in a naturally ventilated university building in Skopje.
The main finding is that human occupancy and room-specific characteristics exert a stronger
influence on indoor PM2.5 and PM10 concentrations than outdoor meteorological condi-
tions. Indoor sensors recorded pronounced peaks during periods of high visitor frequency
and more stable levels when spaces were unoccupied, while correlations with temperature,
wind speed and atmospheric pressure were generally weak. These results highlight the
importance of considering occupancy and ventilation behaviour when assessing exposure
and designing mitigation strategies.

Several limitations temper these findings. Measurements were collected at a single
site during winter, and the four-node sensor network does not capture potential spatial
heterogeneity or seasonal variation. Sensors were not co-located with reference instruments
during deployment, and ventilation rates, occupancy counts and planetary boundary layer
heights were not recorded. The small sample size limits the statistical power of correlation
analyses. Consequently, the reported relationships should be interpreted cautiously and
validated in larger, multi-season studies.

Despite these constraints, the study demonstrates the feasibility of deploying afford-
able sensor networks for continuous IAQ monitoring in educational buildings. From a
policy and practice perspective, simple interventions—such as scheduling classes to reduce
peak occupancy, encouraging natural ventilation when outdoor pollution levels are lower
and maintaining ventilation systems—could help mitigate indoor particle exposure. For
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future research, expanding sensor networks, incorporating additional pollutants and mete-
orological data, and integrating occupancy and ventilation measurements will be essential
to develop evidence-based guidelines for managing indoor air quality in polluted urban
environments.
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Abbreviations
The following abbreviations are used in this manuscript:

IAQ Indoor Air Quality (air quality inside buildings).
PM Particulate Matter (airborne particles).
PM2.5 Particulate matter with aerodynamic diameter ≤ 2.5 µm (fine particles).
PM10 Particulate matter with aerodynamic diameter ≤ 10 µm (coarse + fine fraction).
CO2 Carbon dioxide (commonly used as a ventilation/occupancy proxy indoors).
CO Carbon monoxide (toxic gas pollutant).
NO2 Nitrogen dioxide (traffic/combustion-related gas pollutant).
SO2 Sulfur dioxide (combustion-related gas pollutant).
O3 Ozone (secondary pollutant, oxidant).
VOCs Volatile Organic Compounds (a large class of gaseous organic pollutants).
TVOC Total Volatile Organic Compounds (aggregate VOC indicator).
SBS Sick Building Syndrome (symptoms linked to time spent in a building).
IoT Internet of Things (networked sensors/devices collecting and exchanging data).
Wi-Fi wireless local network technology (IEEE 802.11 family).
LTE Long-Term Evolution (cellular 4G communications).
MQTT Message Queuing Telemetry Transport (lightweight IoT messaging protocol).
HTTP Hypertext Transfer Protocol (web communication protocol).
ZigBee low-power wireless mesh networking standard (often for sensors).
LoRaWAN Long Range Wide Area Network (low-power long-range IoT networking).
HVAC Heating, Ventilation, and Air Conditioning.

MQ-135
Common low-cost gas sensor module (often used as a broad “air quality/VOC”
type sensor).

MQ-7 Low-cost gas sensor module commonly used for CO sensing.
SDS011 Optical particulate sensor module for PM2.5/PM10.
MiCS-4514 Dual-gas sensing module (CO and NO2 channels).
ESP8266 ESP8266—Wi-Fi microcontroller module family used in IoT nodes.
ESP32. Microcontroller + Wi-Fi/Bluetooth SoC used as the controller in your nodes.
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AirBeam3 Portable air-quality sensor device referenced as an example.
AirCasting a platform/app ecosystem used with AirBeam devices for visualization/sharing.
Netatmo commercial “weather station”/IAQ device referenced as an example.
MicroDust Pro reference aerosol monitoring instrument used for calibration in the text.
UART Universal Asynchronous Receiver–Transmitter (serial communication).
SPI Serial Peripheral Interface (serial bus).
I2C Inter-Integrated Circuit (serial bus).
PWM Pulse-Width Modulation (control signal method, e.g., motor control).
CAMS Copernicus Atmosphere Monitoring Service
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