

See discussions, stats, and author profiles for this publication at: <https://www.researchgate.net/publication/316562709>

Effects of heavy metal pollution on pigmented macrophages in kidney of Vardar chub (*Squalius vardarensis* Karaman): JORDANOVA et al .

Article in Microscopy Research and Technique · April 2017

DOI: 10.1002/jemt.22884

CITATIONS

5

10 authors, including:

Maja Jordanova

Ss. Cyril and Methodius University in Skopje

56 PUBLICATIONS 308 CITATIONS

[SEE PROFILE](#)

READS

56

Katerina Rebok

Ss. Cyril and Methodius University in Skopje, Faculty of Natural Sciences and Mathe...

55 PUBLICATIONS 224 CITATIONS

[SEE PROFILE](#)

Zrinka Dragun

Ruđer Bošković Institute

81 PUBLICATIONS 766 CITATIONS

[SEE PROFILE](#)

Sheriban Ramani

Hydrometeorological Service, Republic of Macedonia

26 PUBLICATIONS 136 CITATIONS

[SEE PROFILE](#)

Some of the authors of this publication are also working on these related projects:

HydroMediT 2021 [View project](#)

Transboundary Fish and Fisheries Management Plan for the Prespa Lakes Basin [View project](#)

Effects of heavy metal pollution on pigmented macrophages in kidney of Vardar chub (*Squalius vardarensis* Karaman)

Maja Jordanova¹ | Katerina Rebok¹ | Zrinka Dragun² | Sheriban Ramani³ | Lozenka Ivanova¹ | Vasil Kostov⁴ | Damir Valić⁵ | Nesrete Krasnić² | Vlatka Filipović Marijić² | Damir Kapetanović⁵

¹Department for cytology, histology and embryology, Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University in Skopje Arhimedova 3, Skopje 1000, Macedonia

²Laboratory for Biological Effects of Metals, Ruder Bošković Institute, Division for Marine and Environmental Research, Bijenička 54, Zagreb 10002, Croatia

³Air and Soil Quality Monitoring and Laboratory Analyses; Hydrobiology and Ecology Department, Ministry of Agriculture, Forestry and Water Economy, Hydrometeorological Administration, Division for Water, Skupi 28, Skopje 1000, Macedonia

⁴Fishery department, Institute of Animal Sciences, Ilievski 92a, Skopje 1000, Macedonia

⁵Laboratory for Aquaculture and Pathology of Aquatic Organisms, Ruder Bošković Institute, Division for Marine and Environmental Research, Bijenička 54, Zagreb 10002, Croatia

Correspondence

Maja Jordanova, Laboratory of Histology and Embryology, Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril & Methodius University, Arhimedova 3, 1000 Skopje, Republic of Macedonia.

Email: majaj@pmf.ukim.mk

Funding information

This study has been financially supported by the Ministry of Science, Education and Sport of the Republic of Croatia (projects No. 098-0982934-2721 and 098-0982934-2752) and particularly by the Ministry of Education and Science of the Republic of Macedonia (project No. 16-11935/1).

Review Editor: Prof. George Perry

Abstract

Pollution with heavy metals may influence the immune system of fish, leading to impairment of their health or even increase their mortality. The fish kidney is one of the first fish organs to be affected by water contamination. Amounts of kidney macrophages (MACs), which are involved in fish immune response, as well as the qualitative and quantitative changes in the pigmented MACs in fish kidney, are used as biomarkers of pollution. Therefore, in this study, we have evaluated relative and total volumes of trunk kidney pigmented MACs, and analyzed the pigments accumulated within them. Fish were sampled from two mining impacted rivers, Kriva and Zletovska, highly contaminated with heavy metals, and from one reference river, Bregalnica, in spring and autumn of 2012. We have observed that main pigments found in kidney MACs of Vardar chub were melanin and lipofuscin/ceroid, as well as that relative volumes of MACs ranged from 0.56 to 1.68%. Moreover, the results showed that relative volumes of pigmented MACs were higher in metal contaminated rivers, especially in autumn season in the Zletovska River, concurrently with extremely high metal exposure. In addition, condition factors and kidney somatic indices were found significantly lower in the Zletovska River in both seasons, autumn and spring, possibly also as a consequence of high water pollution. Our data confirm that increase in relative volumes of pigmented MACs may serve as warning sign of potential heavy metal pollution in aquatic environment.

KEY WORDS

fish, kidney, macrophage aggregates, metals pollution

1 | INTRODUCTION

Pigmented macrophages (MACs) are the oldest known immune cells and are considered as a part of the reticulo-endothelial system and,

hence, a part of the fish defense system. They are the site of centralization of foreign material and cellular debris for destruction, detoxification or reuse, the storage of exogenous and endogenous waste products, the immune response, iron storage, and recycling (Agius,

1979; Agius & Roberts, 2003). According to their function they are believed to be analogues to the mammalian germinal centers (Agius, 1985; Blazer, Fournie, & Weeks-Perkins, 1997).

Pigmented MACs are a prominent feature in fish spleen, kidney, and sometimes in liver (Agius, 1979; Blazer, Facey, Fournie, Courtney, & Summers, 1994). Occurrence of MACs, their number, and degree of their pigmentation depend on the age, sex, nutrition status, and health status of the fish (Agius, 1979, 1985; Agius & Roberts, 2003; Blazer et al., 1994, 1997; Jordanova, Rebok, Naskovska, Kostov, & Rocha, 2016a; Montero, Blazer, Socorro, Izquierdo, & Tort, 1999; Roberts, 1975; Schwindt, Fournie, Landers, Schreck, & Kent, 2008). The liver and kidney melanin MACs also appear to be related to the state of reproductive development (Elston, Drum, Pearson, & Parke, 1997; Jordanova, Miteva, & Rocha, 2008; Jordanova, Rocha, Rebok, & Rocha 2011).

Numerous investigators have documented increase in MACs number, size, and/or pigment density in organs of fish with poor health, pathogen conditions (Agius, 1979; Elston et al., 1997; Roberts, 1975) or as a response to various environmental contaminants in field and/or laboratory studies (Agius & Roberts, 2003; Blazer, Wolke, Brown, & Powell, 1987; Blazer et al., 1994, 1997; Broeg, 2003; Couillard & Hodson, 1996; Elston et al., 1997; Facey, Blazer, Gasper, & Turcotte, 2005; Fenoglio et al., 2005; Fournie, Summers, Courtney, & Engle, 2001; Jordanova, Rebok, Naskovska, & Kostov, 2016b; Schwindt et al., 2006, 2008; Wolke, 1992). Data on influence of heavy metals on MACs also exist, but according to our knowledge they are scarce (Blazer et al., 1997; Jasim, 2008; Kurtović, Teskerežić, & Teskerežić, 2008; Mela et al., 2007; Rabitto et al., 2005; Reddy, 2012; Suresh, 2009; Vinodhini & Narayanan, 2009) and although they are mainly quantitative in nature, different researchers examined different portions of kidney and/or different MACs parameters, making the comparison of the results practically impossible. Although MACs are easy to identify, quantification of their size/number/volume occurrence is time consuming.

Many toxicants, including heavy metals, enter aquatic ecosystems, especially near active mines, contributing to ecosystem degradation. Taking into account that MACs are good biomarkers for evaluation of the anthropogenic impact on the environment (Blazer et al., 1997), the present study aimed to investigate pigmented MACs in the kidney of Vardar chub (*Squalius vardarensis* Karaman) collected from two metal polluted rivers (Zletovska and Kriva; Ramani et al., 2014) and one reference river (Bregalnica). As the chub is a top predator, it is particularly vulnerable to the impact of chemical agents, namely heavy metals in our case. Specific aim of this study was to stereologically, determine the quantity of pigmented MACs in the trunk kidney of Vardar chub, through determination of their relative and total volumes. Additionally, pigments within MACs were identified, and chub condition factors (CF) and kidney somatic indices (KSI) were determined, as indicators of fish health deterioration.

2 | MATERIAL AND METHODS

2.1 | Fish sampling and dissection

Vardar chub samplings were performed in spring, in spawning season (May, June) and autumn (October) of 2012 in three rivers located in

the north-eastern Macedonia: Bregalnica ($n = 43$), as a relatively clean site if metals are concerned, contaminated mainly by agricultural runoff and municipal waste waters, and two rivers which are under direct influence of Pb/Zn mines and were proven as highly metal polluted, the Zletovska River ($n = 40$) and the Kriva River ($n = 30$) (Ramani et al., 2014). Detailed information on sampling sites and physico-chemical characteristics of the water of all three rivers in the time of chub samplings was previously reported by Ramani et al. (2014). Fish were collected by electro fishing (electrofisher Samus 725G) according to CEN EN 14011, 2003 standard. After capture, fish were transported from sampling sites to the laboratory in plastic container with aerated river water. In the laboratory, fish were anaesthetized with clove oil. For age determination, scales were removed just below dorsal fin. Only fish of 2^+ to 4^+ age were used for this particular study. The total length (TL) was measured, as well as body mass (BM) without gonads, to avoid the influence of the gonad development on the measured parameters. The CF was calculated according to the following formula: $CF = BM \times 100/TL^3$. After biometric measurements, fish were dissected, the whole kidneys were carefully removed and their masses measured (KM). Kidney-somatic index (KSI) was calculated according to the following formula: $KSI = KM \times 100/BM$.

2.2 | Tissue collection and processing

For determination of number, as well as estimation of relative and total volumes of pigmented MACs, small pieces of the kidneys were selected from the regions below the dorsal fin and placed in Bouin's fixative for 48 hr. The sampled pieces were routinely dehydrated through a series of alcohols, cleared in xylene, infiltrated and embedded into paraffin. From each piece, we took 5 μ m thick serial sections, selecting some of them for analysis by a systematic random sampling approach, to obtain a final set of slides for analyses (about 5 per fish). Sections for quantitative analyses were stained with Perl's method.

2.3 | Macrophage quantification

From each selected section, 15–18 systematically sampled fields were observed and MACs were quantified at a final magnification of 400 \times ; the first field was randomly selected. On average, 100 fields per kidney (i.e., per fish) were selected and studied. A classical unbiased stereological technique based on manual point counting (Freere & Weibel, 1967) was used to estimate the relative volume of pigmented MACs within the organ (expressed as percentage), according to the following formula:

$$V_V(\text{structure, reference}) = V_V(s, r) = [P(s) \times 100] \div P(r),$$

in which $V_V(s, r)$ is the percentage of the total volume of a reference space occupied by one particular given structure within that space, $P(s)$ is the total number of test points lying over the reference space (in this study complete kidney tissue), and $P(r)$ is the total number of points falling over a particular structural component. Point counting was directly made on a light microscope, and for that a square lattice glass grid with 180 points was inserted into the left ocular.

For the estimation of total volume of the pigmented MACs, the following formula was used:

TABLE 1 Body masses (BM), condition factors (CF), and kidney-somatic indices (KSI) of Vardar chub (*Squalius vardarensis*) sampled in spring and autumn of 2012 from reference Bregalnica River and two rivers impacted by heavy metal pollution, Zletovska and Kriva

Location	BM (g)		CF		KSI %	
	Spring	Autumn	Spring	Autumn	Spring	Autumn
Bregalnica	69.02 (0.61) ^a	68.82 (0.38) ^a	1.14 (0.09) ^a	1.06 (0.06) ^a	0.76 (0.29) ^a	0.82 (0.24) ^a
Zletovska	28.67 (0.58) ^b	36.04 (0.97) ^b	0.99 (0.07) ^b	0.87 (0.08) ^b	0.55 (0.26) ^b	0.46 (0.16) ^b
Kriva	56.44 (0.48) ^a	46.43 (0.28) ^{ab}	1.13 (0.07) ^a	0.97 (0.05) ^{ab}	0.87 (0.16) ^a	0.80 (0.12) ^a

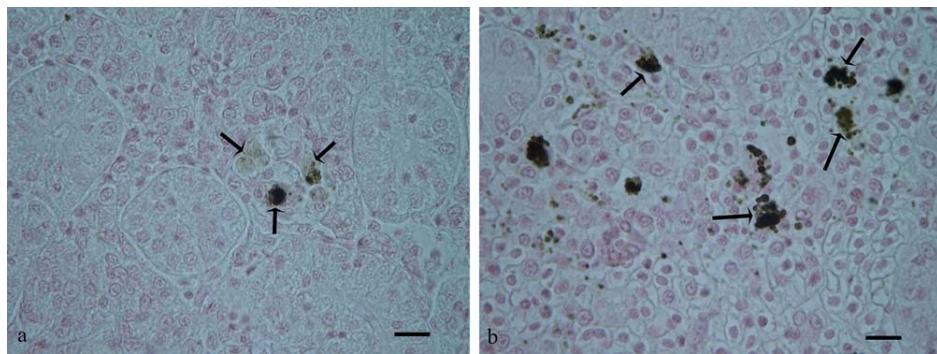
Data are expressed as means, with coefficient of variations in brackets. Within each column, values with different superscript letters are significantly different ($p < .05$), according to the post hoc Tukey's test.

$$V(s) = V_V(s, r) \times V(r)$$

2.4 | Statistical analyses

The data are presented as group means obtained from individual fish values, and accompanied by the respective coefficients of variation ($CV = SD/Mean$). For statistical analyses, the software STATISTICA 7.0 for Windows was used. After checking the normality and homogeneity of variances of the data sets, data were analyzed by two-way ANOVA/MANOVA. Whenever the ANOVA disclosed significant results, comparisons among the rivers and seasons were performed using the post hoc Tukey's test. Differences were considered significant at $p < .05$.

3 | RESULTS AND DISCUSSION


CFs and organo-somatic indices are standard parameters in fish studies, which indicate health status and well-being of individuals. In our study, CFs, or relationship between mass and length, and KSI, expressed as percentage size of kidneys, reflected the status of chub organisms or their kidneys, respectively, in mining impacted rivers. According to Farkas, Salánki, Specziár, and Varanka (2001), measurement of CF is especially important when comparison between groups of individuals collected in different seasons and years is made. Our results have indicated that all three parameters, BM, CF, and KSI, showed significantly lower values in highly metal contaminated Zletovska River compared to reference Bregalnica River, as well as compared to the other, less metal contaminated, mining impacted Kriva River (Table 1).

Numerous field and laboratory studies have been concentrated on the effects of anthropogenic and natural-occurring chemicals in the environment on the health of aquatic organisms. Some of them indicated changes in CFs and organo-somatic indices, or both, as a reflection of exposure to different pollutants and contaminants in the water (van der Oost, Beyer, & Vermeulen, 2003). The condition of the whole body, and of the organs, as determined by CFs and organo-somatic indices, respectively, is sometimes indicative of toxicant effects (Myers et al., 1992) and can provide information on potential pollution impact in ecosystem. Accordingly, as we have previously reported for CFs, low values of both CFs and KSI observed in the Zletovska River could be associated with extremely high metal exposure in the water of that river in the time of chub sampling, as well as with probable insufficient fish nutrition (Barišić et al., 2015; Jordanova et al., 2016c). Investiga-

tions on KSI are scarce compared with the other organo-somatic indices because the removal of the kidney is a difficult procedure (Pulsford et al., 1995). Still, some information on pollutant effect on KSI is available. For example, long-term exposure to arsenic affects KSI (Ghosh, Datta, Bhattacharya, & Mazumder, 2007) and reduces head KSI (Datta, Ghosh, Saha, Bhattacharya, & Mazumder, 2009). Therefore, taking in consideration high water contamination with metals in the Zletovska River, we can presume that the decrease of CFs and KSI that we have observed was very likely the result of the negative influence of heavy metals on chub health and condition.

Furthermore, histological analysis has shown that in chub kidney pigmented MACs were randomly distributed throughout the hematopoietic tissue (Figure 1). By use of Perl's method, differential pigment composition was visualized within MACs, based on the fact that applied stain dyes melanin, the melanosome pigment derived from tyrosine metabolism, into brown-black color. Conversely, hemosiderin, as protein-bound iron pigment, is colored blue, whereas lipogenic pigments derived from oxidation of unsaturated lipids ceroid/lipofuscin are yellow-tan (Agius & Roberts, 2003). In our case, pigmented MACs mainly varied in color from dark brown to yellow, which indicated that main pigments located within them were melanin and lipofuscin/ceroid, whereas hemosiderin could be found extremely rarely. Relatively few studies on the pigment composition of fish kidney MACs have been reported, and their results varied depending on the fish species. For example, in the kidney of *Salmo letnica* only pigment melanin could be found in pigmented MACs (Jordanova et al., 2011). The microscopic evaluation of the kidney of the *Dicentrarchus labrax* also showed that in the most fish dark brown to black pigments were present within MACs (Kurtović et al., 2008). Some fishes, for example *Tilapia mossambica*, normally lack lipofuscin (Suresh, 2009), although lipofuscin generally appears to be the most common pigment in fish MACs (Agius, 1985; Agius & Roberts, 2003). Moreover, exposure to sublethal concentrations of Cd, Pb, Cr, and Ni in solution resulted in the occurrence of MACs with lipofuscin accumulation in kidney of *Cyprinus carpio* (Vinodhini & Narayanan, 2009).

Concerning the MACs quantity, the examined specimens of Vardar chub generally contained low amounts of MACs. We have estimated stereologically relative and total amounts of pigmented MACs and according to these evaluations, 0.56–1.68% of kidney tissue was occupied by pigmented MACs (Table 2). For comparison, in *Salmo letnica*, where the same methodology was applied, much higher percentage of

FIGURE 1 Light micrographs of Perl's stained sections from the kidney of Vardar chub, showing the evident differences between (a) fish in the reference site with fewer pigmented macrophage (arrows), and (b) fish from Zletovska River with much extensive macrophage accumulations. Bar line = 10 μ m [Color figure can be viewed at wileyonlinelibrary.com]

trunk kidney tissue was occupied with MACs, up to 7.48% (Jordanova et al., 2011).

If the locality was considered, generally higher relative volumes were noted in the kidneys of fish collected from the rivers contaminated with heavy metals compared to fish from the reference site (Figure 1), but the difference was statistically significant only between the Zletovska River and Bregalnica River in autumn season (Table 2). Lower exposure to metals observed in the mining impacted Kriva River (Ramani et al., 2014) did not provoke MACs response of the same intensity as in the Zletovska River. This finding was in accordance with concentrations of dissolved heavy metals in the river-water, which were measured in the same time when chub were collected. Namely, the highest concentrations of heavy metals were also noted in the Zletovska River, being higher in autumn than in spring (Ramani et al., 2014). Similarly to kidney MACs response, higher frequency and intensity of histopathological alterations was also noted in the gills and liver of the same chub from the Zletovska River compared to chub from the other two polluted rivers (Barišić et al., 2015; Jordanova et al., 2016c).

However, the observed differences in MACs relative volume do not have to be the consequence only of the changes in metal exposure, but could also have a physiological background. Mizuno, Misaka, Myakoshi, Takeuchi, and Kasahara (2002) suggested that differences in seasons could influence MACs deposition in trunk kidney. For example,

Saha, Usami, and Suizuki (2002) reported that the immune systems are more effective during spawning season. Therefore, MACs response obviously depends on seasonal changes in fish physiological status, and thus, it is better to assess metal pollution effect on MACs response in chub kidney during the post-spawning period, when the influence of fish physiological status is less pronounced. This could also be the explanation why the differences between sites in MACs relative volume were more evident and significant in autumn than in the spring, spawning period. Contrary to relative volumes, significant differences between sampling sites were not noted for total volumes of pigmented MACs in trunk kidney.

Previous studies have also shown that higher number and/or size of phagocytic areas of MACs occur in the kidney of fish experimentally exposed to heavy metals compared with control fish (Jasim, 2008; Kurtović et al., 2008; Mela et al., 2007; Rabitto et al., 2005; Reddy, 2012; Suresh, 2009). Moreover, MACs response depends on the type of metals. For example, in the spleen number of MACs in fish treated with food rich with Zn and Fe decrease, but increase if fish were treated with copper rich food (Manera, Serra, Isani, & Carpené, 2000). Conversely, chronic exposure to arsenic led to reduction in melanomacrophage population in head kidney, but increased hemosiderin accumulation (Datta et al., 2009). Contrary, exposure to Pb(II) resulted in the increase of the melanomacrophage centres (Rabitto et al., 2005). Exposure to Cd has also influenced MACs number, which varied depending on doses and durations of the treatments (Jasim, 2008). Although, according to currently published information, some metals tend to increase and the others tend to decrease MACs pool, our results, which were gathered from wild population of Vardar chub inhabiting river contaminated with mixture of metals, indicated that in the kidney of this particular fish species simultaneous exposure to high concentrations of large number of heavy metals undoubtedly causes increase of relative volumes of pigmented MACs, making them good biomarkers of metal pollution.

4 | CONCLUSIONS

Pollution is worldwide problem. Many toxicants, including heavy metals, enter aquatic ecosystems, contributing to their degradation, as well

TABLE 2 Relative volumes (V_v) and total volumes (V) of pigmented macrophages (MACs) in the kidney of Vardar chub (*Squalius vardarensis*) sampled in spring and autumn of 2012 from reference Bregalnica River and two rivers impacted by heavy metal pollution, Zletovska and Kriva

Location	V_v (MACs) %		V (MACs) cm^3	
	Spring	Autumn	Spring	Autumn
Bregalnica	0.80 (0.86)	0.56 (0.81) ^a	0.53 (1.27)	0.32 (0.89)
Zletovska	1.11 (0.75)	1.68 (0.46) ^b	0.21 (1.37)	0.28 (1.03)
Kriva	0.92 (0.83)	0.86 (0.74) ^{ab}	0.47 (1.16)	0.28 (0.55)

Data are expressed as means, with coefficient of variations in brackets. Within each column, values with different superscript letters are significantly different ($p < .05$), according to the post hoc Tukey's test.

as to promotion of toxic effects on aquatic organisms, such as fish. Based on our results, qualitative and quantitative changes in pigmented MACs in fish kidney can be used as histological biomarkers to assess degradation of fish health, specifically of Vardar chub, due to exposure to metal pollutants. Relative volumes of pigmented MACs in kidneys of Vardar chub could be applied as useful biomarker of metal pollution due to their increase after chub exposure to high metal concentrations. As observations on pigmented MACs amount in relation to exposure to heavy metals in natural environment, as well as in the laboratory conditions, are still quite limited, it would be useful in the future to examine dose dependent effects of mixtures of various metals, as well as of single metals on MACs response. Moreover, as different researchers investigate different MACs parameters, standardization of the protocols is of prime importance.

ACKNOWLEDGMENTS

The authors are thankful to all those having contributed to the study. We are especially thankful to Professor Zlatko Levkov for the use of equipment, the light microscope and digital camera for making of microphotographs. This study has been financially supported by the Ministry of Science, Education and Sport of the Republic of Croatia (projects No. 098-0982934-2721 and 098-0982934-2752) and particularly by the Ministry of Education and Science of the Republic of Macedonia (project No. 16-11935/1).

CONFLICT OF INTEREST

None.

REFERENCES

Agius, C. (1979). The role of melano-macrophage centres in iron storage in normal and diseased fish. *Journal of Fish Diseases*, 2, 337–343.

Agius, C. (1985). The melano-macrophage centres of fish: A review. In M. J. Manning & M.F. Tatner (Eds.), *Fish immunology* (pp. 85–105). London: Academic Press.

Agius, C., & Roberts, R. J. (2003). Melano-macrophage centres and their role in fish pathology. *Journal of Fish Diseases*, 26, 499–509.

Barišić, J., Dragun, Z., Ramani, S., Filipović Marijić, V., Krasnić, N., Čož-Rakovac, R., ... Jordanova, M. (2015). Evaluation of histopathological alterations in the gills of Vardar chub (*Squalius vardarensis* Karaman) as an indicator of river pollution. *Ecotoxicology and Environmental Safety*, 118, 158–166.

Blazer, V. S., Facey, D. E., Fournie, J. W., Courtney, L. A., & Summers, J. K. (1994). Macrophage aggregates as indicators of environmental stress. In J. Stolen & S. Fletcher (Eds.), *Modulators of fish immune responses* (Vol. 1, pp. 169–185). Fair Haven, New Jersey: SOS Publications.

Blazer, V. S., Fournie, J. W., & Weeks-Perkins, B. A. (1997). Macrophage aggregates: Biomarker for immune function in fishes? In J. F. Dwyer, T. R. Doane, & M. Hinman (Eds.), *Environmental Toxicology and Risk Assessment: Modeling and risk assessment* (Vol. 6, pp. 360–375), ASTM STP 1317. West Conshohocken, PA: American society for testing and materials.

Blazer, V. S., Wolke, R. E., Brown, J., & Powell, C. A. (1987). Piscine macrophage aggregate parameters as health monitors: Effect of age, sex, relative weight, season and site quality in largemouth bass (*Micropterus salmoides*). *Aquatic Toxicology*, 10, 199–215.

Broeg, K. (2003). Acid phosphatase activity in liver macrophage aggregates as a marker for pollution-induced immunomodulation of the non-specific immune response in fish. *Helgoland Marine Research*, 57, 166–175.

Couillard, C. M., & Hodson, P. V. (1996). Pigmented macrophage aggregates: A toxic response in fish exposed to bleached-kraft mill effluent? *Environmental Toxicology and Chemistry*, 15, 1844–1854.

Datta, S., Ghosh, D., Saha, D. R., Bhattacharya, S., & Mazumder, S. (2009). Chronic exposure to low concentration of arsenic is immunotoxic to fish. Role of head kidney macrophages as biomarker of arsenic toxicity to *Clarias batrachus*. *Aquatic Toxicology* (Amsterdam, Netherlands), 92(2), 86–94.

Elston, R. A., Drum, A. S., Pearson, W. H., & Parke, K. (1997). Health and condition of pacific herring *Clupea pallasi* from Prince William Sound, Alaska, 1994. *Diseases of Aquatic Organisms*, 31, 109–126.

Facey, D. E., Blazer, V. S., Gasper, M. M., & Turcotte, C. L. (2005). Using Fish Biomarkers to Monitor Improvements in Environmental Quality. *Journal of Aquatic Animal Health*, 17, 263–266.

Farkas, A., Salánki, J., Specziár, A., & Varanka, I. (2001). Metal pollution as health indicator of lake ecosystems. *International Journal of Occupational Medicine and Environmental Health*, 14 (2), 163–170.

Fenoglio, C., Boncompagni, E., Fasola, M., Gandini, C., Comizzoli, S., Milanesi, G., & Barni, S. (2005). Effects of environmental pollution on the liver parenchymal cells and Kupffer-melanomacrophagic cells of the frog *Rana esculenta*. *Ecotoxicology and Environmental Safety*, 60(3), 259–268.

Fournie, J. W., Summers, J. K., Courtney, L. A., & Engle, V. D. (2001). Utility of splenic macrophage aggregates as an indicator of fish exposure to degraded environments. *Journal of Aquatic Animal Health*, 13, 105–116.

Freere, H., & Weibel, E. R. (1967). Stereologic techniques in microscopy. *Journal Royal Microscopical Society (Great Britain)*, 87, 25–34.

Ghost, D., Datta, S., Bhattacharya, S., & Mazumder, S. (2007). Long-term exposure to arsenic affects head kidney and impairs humoral immune responses of *Clarias batrachus*. *Aquatic Toxicology*, 81, 79–89.

Jasim, B. M. (2008). Effects of prolonged exposure to cadmium on the hematopoietic organs in grass carp (*Ctenopharyngodon idella*, Cyprinidae). *Basrah Journal of Veterinary Research*, 7(2), 108–120.

Jordanova, M., Miteva, N., & Rocha, E. (2008). A quantitative and qualitative study of the hepatic pigmented macrophage aggregates during the breeding cycle of Ohrid trout, *Salmo letnica* Kar. (Teleostei, Salmonidae). *Microscopy Research and Technique*, 71, 822–830.

Jordanova, M., Rebok, K., Dragun, Z., Ramani, S., Ivanova, L., Kostov, V., ... Kapetanović, D. (2016c). Histopathology investigation on the Vardar chub (*Squalius vardarensis*) populations captured from the rivers impacted by mining activities. *Ecotoxicology and Environmental Safety*, 129, 35–42.

Jordanova, M., Rebok, K., Naskovska, M., & Kostov, V. (2016b). Macrophage aggregates in brook barbel *Barbus cf. peloponnesius* spleen as indicators of environmental pollution. *Contributions Section of Natural Mathematical and Biotechnical Sciences MASA*, 37(2), 185–189.

Jordanova, M., Rebok, K., Naskovska, M., Kostov, V., & Rocha, E. (2016a). Splenic pigmented macrophage aggregates in barbel (*Barbus peloponnesius*, Valenciennes, 1844) from river Bregalnica – Influence of age, sex and season on a pollution biomarker. *Turkish Journal of Fisheries and Aquatic Sciences*, 16, 881–890.

Jordanova, M., Rocha, M. J., Rebok, K., & Rocha, E. (2011). Changes in the amount of kidney pigmented macrophage aggregates throughout

the breeding cycle of female Ohrid trout, *Salmo letnica* Kar. (Teleostei, Salmonidae). *Microscopy Research and Technique*, 75(2), 176–181.

Kurtović, B., Teskerežić, E., & Teskerežić, Z. (2008). Histological comparison of spleen and kidney tissue from farmed and wild European sea bass (*Dicentrarchus labrax* L.). *Acta Adriatica*, 49(2), 147–154.

Manera, M., Serra, R., Isani, G., & Carpené, E. (2000). Macrophage aggregates in gilthead sea bream fed copper, iron and zinc enriched diets. *Journal of Fish Biology*, 57, 457–465.

Mela, M., Randi, M. A. F., Ventura, D. F., Carvalho, C. E. V., Pelletier, E., & Ribeiro, O. (2007). Effects of dietary methylmercury on the liver and kidney histology in the neotropical fish *Hoplias malabaricus*. *Ecotoxicology and Environmental Safety*, 68, 426–435.

Mizuno, S. N., Misaka, N., Myakoshi, Y., Takeuchi, K., & Kasahara, N. (2002). Effects of starvation on melano-macrophages in the kidney of masu salmon (*Oncorhynchus masou*). *Aquaculture*, 209, 247–255.

Montero, D., Blazer, V. S., Socorro, J., Izquierdo, M. S., & Tort, L. (1999). Dietary and culture influences on macrophage aggregate parameters in gilthead seabream (*Sparus aurata*) juveniles. *Aquaculture*, 179, 523–534.

Myers, M. S., Olson, O. P., Johnson, L. L., Stehr, C. S., Hom, T., & Varanasi, U. (1992). Hepatic lesions other than neoplasia in subadult flatfish from Puget Sound, Washington: Relationships with indices of contaminant exposure. *Marine Environmental Research*, 34, 45–51.

Pulsford, A. L., Thomas, M. E., Lemaire-Gony, S., Coles, J., Fossato, V. U., & Pipe, R. K. (1995). Studies on the immune system of the goby, *Zosterisessor ophiocephalus*, from the Venice Lagoon. *Marine Pollution Bulletin*, 30(9), 586–591.

Rabbitto, I. S., Alves Costa, J. R., Silva de Assis, H. C., Pelletier, E. E., Akaishi, F. M., Anjos, A., ... Oliveira Ribeiro, C. A. (2005). Effects of dietary Pb(II) and tributyltin on neotropical fish, *Hoplias malabaricus*: Histopathological and biochemical findings. *Ecotoxicology and Environmental Safety*, 60, 147–156.

Ramani, S., Dragun, Z., Kapetanovic, D., Kostov, V., Jordanova, M., Erk, M., & Hajrulai-Musliu, Z. (2014). Surface water characterization of three rivers in the lead/zinc mining region of northeastern Macedonia. *Archives of Environmental Contamination and Toxicology*, 66(3), 514–528.

Reddy, S. J. (2012). Cadmium effect on histo-biomarkers and melano-macrophage centers in liver and kidney of *Cyprinus carpio*. *World Journal of Fish and Marine Sciences*, 4(2), 179–184.

Roberts, R. (1975). Melanin- Containing cells of teleost fish and their relation to disease. In E. Ribelin, G. Migaki (Eds.), *The pathology of fishes* (pp. 399–441). Wisconsin: The University of Wisconsin Press.

Saha, N. R., Usami, T., & Suizuki, Y. (2002). Seasonal changes in the immune activity of common carp (*Cyprinus carpio*). *Fish Physiology and Biochemistry*, 26, 379–387.

Schwindt, A. R., Fournie, J. W., Landers, D. H., Schreck, C. B., & Kent, M. L. (2008). Mercury concentrations in salmonids from western US national parks and relationships with age and macrophage aggregates. *Environmental Science and Technology*, 42(4), 1365–1370.

Schwindt, A. R., Truelove, N., Schreck, C. B., Fournie, J. W., Landers, D. H., & Kent, M. L. (2006). Quantitative evaluation of macrophage aggregates in brook trout *Salvelinus fontinalis* and rainbow trout *Oncorhynchus mykiss*. *Diseases of Aquatic Organisms*, 68, 101–113.

Suresh, N. (2009). Effect of cadmium chloride on liver, spleen and kidney melano macrophage centres in *Tilapia mossambica*. *Journal of Environmental Biology*, 30(4), 505–508.

van der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: A review. *Environmental Toxicology and Pharmacology*, 13 (2), 57–149.

Vinodhini, R., & Narayanan, M. (2009). Heavy metal induced histopathological alterations in selected organs of the *Cyprinus carpio* L (Common carp). *International Journal of Environmental Research*, 3(1), 95–100.

Wolke, R. E. (1992). Piscine macrophage aggregates: A review. *Annual Review of Fish Diseases*, 2, 91–108.

How to cite this article: Jordanova M, Rebok K, Dragun Z, et al. Effects of heavy metal pollution on pigmented macrophages in kidney of Vardar chub (*Squalius vardarensis* Karaman). *Microsc Res Tech*. 2017;00:000–000. <https://doi.org/10.1002/jemt.22884>