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Abstract. The concept of energy harvesting systems allows sustainable energy sources, such as 

mechanical energy, to be harvested from the environment. The feature of piezoelectric material to 

generate voltage as a result of its deformation characterizes them as an energy harvesting tool, due to 

their robustness and efficiency characteristics. This paper shows numerical modeling of an energy 

harvesting cantilever beam using the Euler-Bernoulli method. The FEM simulations of the cantilever 

beam have been created in order to determine the optimal position of the piezoelectric transducer along 

the beam. Furthermore, these conclusions have been used to develop the mathematical model in 

MATLAB in order to investigate the effect of the geometry characteristics of the beam and the 

piezoelectric transducer on the output parameters. The impact of the dimensions and effective area of 

the piezoelectric transducer and its location on the cantilever beam as well as the effects of the 

dimensions of the beam have been studied in order to obtain an optimal energy harvesting model in 

terms of its efficiency. Once the modeling phase has been completed, the output results regarding the 

generated voltage and power from the energy harvesting system have been compared and models have 

been validated.  

Keywords: energy harvesting, piezoelectric materials, cantilever beam, modeling and simulation 

 

INTRODUCTION 

The energy crisis is one of the main problems facing humanity today, as a result of which 

science and researchers are constantly trying to develop sustainable solutions in order to fulfill 

energy demands. Therefore, technologies that use renewable energy sources such as solar 
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energy, kinetic energy, thermal, or bio-energy noticed rapid progress. Apart from the macro 

energy harvesting technologies which include renewable energy plants, recently, continuous 

development has also been made in micro energy harvesting technologies. Micro energy 

harvesting technology is focused on the alternatives to conventional batteries and uses energy 

from mechanical vibration, mechanical stress and strain, which generate low-level power 

expressed in mW or μW [1]. The piezoelectric energy harvesting technique has been widely 

researched due to its high energy conversion ability from mechanical vibration. This technique 

uses the properties of piezoelectric materials to generate voltage under the influence of a 

mechanical force.  

Most research papers in the energy harvesting area, present the harvester as a cantilever beam 

with one or more piezoelectric layers, which is excited harmonically at its fundamental natural 

frequency in order to obtain maximum electrical output [2]. This is due to the fact that 

compared to other structures, the cantilever beam has a lower resonant frequency, and provides 

higher stress and strain with less ambient vibrational force [3]. There are various methods for 

modeling an unimorph beam, or a beam with a single piezoelectric transducer mounted on its 

surface. Depending on the purpose of the model, one has to determine which method is optimal. 

For example, Cottinet P.J. et al. [4] use the pin-force model to develop a model that predicts 

the energy harvesting capabilities of an electrostrictive polymer composite. Various papers [5, 

6, 7] compare the most used methods for analytical modeling: the pin-force model, the 

enhanced-pin force model which expands upon the pin-force concept, and the Euler-Bernoulli 

model. The Euler-Bernoulli method has been proven to be the most accurate representation of 

a real energy harvesting system out of the three methods and for this reason, it has been used 

in this paper. On the other hand, the finite element method has been widely used as an analysis 

tool for continuous systems with a finite number of concentrated masses. The discretization of 

the continuous systems of a finite number of elements or concentrated masses simplifies the 



mathematical apparatus or analytical solutions to the dynamics of the elastic structure from 

partial differential equations to a system of ordinary differential equations [8]. Uddin M.N. et 

al. [9] use the finite element method in determining natural frequencies, modes, and stresses 

along a cantilever piezoelectric energy harvesting beam. Kumar A. et al. [10] use the finite 

element method for coupled piezoelectric energy harvester in order to discretize the 

electromechanical coupling phenomenon between mechanical and electrical domains. They 

optimize material properties that determine the performance of piezoelectric energy harvesters 

such as dielectric constant, piezoelectric strain coefficient, electromechanical coupling 

coefficient, Young modulus, density, and electrical and mechanical quality factors [10]. An 

area in energy harvesting that opens up a wide research space is the optimization of the design 

of the energy harvesting system in order to generate maximal voltage.  

In this paper, an optimization of the cantilever piezoelectric energy harvesting beam concerning 

the position of the piezoelectric transducer, the position of the excitation force, and geometrical 

characteristics of the piezoelectric transducer and the beam have been conducted. A 

combination of two different modeling methods has been used: analytical modeling using the 

Euler-Bernoulli method and the finite element method.  

 

MATHEMATICAL MODELING 

Mathematical modeling of the beam 

Continuous systems are mechanical systems with continuously distributed mass and 

theoretically have infinite degrees of freedom. In order to obtain an analytical solution for the 

dynamics of these systems, certain approximations such as material homogeneity and an ideally 

constant width of the beam along the entire length, have to be adopted. Using these 

approximations, partial differential equations with constant coefficients are obtained. The 



solutions to these partial differential equations represent the natural frequencies of the system 

and the modes of oscillation of the elastic structure.  

The differential equation of motion of a continuous beam according to the Euler-Bernoulli 

method is represented with the following relation:  

               𝐸𝐼𝑦

𝜕4𝑦(𝑥, 𝑡)

𝜕𝑥4
= 𝑓(𝑥, 𝑡) − 𝜌𝐴

𝜕2𝑦(𝑥, 𝑡)

𝜕𝑡2
                                                                         (2.1) 

where 𝑦 is the displacement of the beam, 𝜌𝑏 is its density and 𝐴𝑏  is its area of the cross-section, 

whereas  𝜌𝑏𝐴𝑏
𝜕2𝑦(𝑥,𝑡)

𝜕𝑡2 is kinetic energy, 𝐸𝑏𝐼𝑏
𝜕4𝑦(𝑥,𝑡)

𝜕𝑥4
 is potential energy and 𝑓(𝑥, 𝑡) is the 

excitation force.  

If the excitation force is a harmonic function the differential equation can be rewritten as: 

               
𝐸𝑏𝐼𝑏

𝜌
𝑏
 𝐴𝑏

𝜕4𝑦(𝑥, 𝑡)

𝜕𝑥4
+

𝜕2𝑦(𝑥, 𝑡)

𝜕𝑡2
=

𝐹0

𝜌
𝑏
𝐴𝑏

sin(𝜔𝑡) 𝛿(𝑥 − 𝐿𝑓)                                             (2.2) 

where 𝜔  is the frequency of the excitation force and 𝐿𝑓 is the distance from the clamped end to 

the point where the excitation force is applied. 

The general solution of the equation (2.2) can be expressed as: 

               𝑦(𝑥, 𝑡) = ∑ 𝑇𝑖(𝑡)𝑌𝑖(𝑥)
∞

𝑖=1
                                                                                                 (2.3) 

where 𝑇𝑖(𝑡) is the i-th modal coordinate of the shape and 𝑌𝑖(𝑡) is the i-th mode shape of the 

beam. 

Inman, D.J et al. [12] state that the first 3 modes (i=1, 2, 3) in equation (2.3) are sufficient for 

generating the mode shape equation of the cantilever beam. 

By replacing expression (2.3) in (2.2), the following differential equations can be obtained [12]: 

                𝑌(𝑥)𝑖𝑣 −
𝜔𝑛

2

𝑐2
𝑌(𝑥) = 0                                                                                                      (2.4) 

              𝑇̈(𝑡)+𝜔𝑛
2𝑇(𝑡) = 0                                                                                                               (2.5) 

The solution of the first characteristic equation depends only on the x coordinate: 

              𝑌(𝑥) = 𝐴𝑠𝑖𝑛(𝛽𝑥) + 𝐵𝑐𝑜𝑠(𝛽𝑥) + 𝐶𝑠𝑖𝑛ℎ(𝛽𝑥) + 𝐷𝑐𝑜𝑠ℎ(𝛽𝑥)                                    (2.6) 

whereas using the wave number [11], 

              𝛽4 = 𝜔𝑛
2

𝜌
𝑏
 𝐴𝑏

𝐸𝑏𝐼𝑏
                                                                                                                     (2.7) 



and 𝜔𝑛 is the natural frequency of the system. 

In order to obtain maximal deflections of the beam, the frequency of the excitation force has to 

be equal to the first natural frequency of the beam. Constants A, B, C and D can be calculated 

using the boundary conditions for clamped-free configuration [11]. At the clamped end, for      

x = 0, slope and deflection must be zero, while at the free end, for x=l, shearing force and 

bending moment must be equal to zero. 

Finally, the general mode shape equation for a cantilever beam could be expressed as: 

𝑌𝑖(𝑥) = cosh(𝛽𝑖𝐿𝑏) − cos(𝛽𝑖𝐿𝑏) −
sinh(𝛽𝑖𝐿𝑏) − sin(𝛽𝑖𝐿𝑏)

cosh(𝛽𝑖𝐿𝑏) + cos(𝛽𝑖𝐿𝑏)
[sinh(𝛽𝑖𝐿𝑏) − sin(𝛽𝑖𝐿𝑏)] (2.8) 

where 𝐿𝑏 is the total length of the beam. 

Solutions for 𝛽𝑖 (Fig.1) are calculated from the characteristic equation:  

              cos(𝛽𝑖𝐿𝑏) cosh(𝛽𝑖𝐿𝑏) = −1                                                                                               (2.9) 

Figure 1. Solutions to characteristic equation (2.9) 

For the adopted value beam’s length of 0.561 m. first five natural frequencies (Table 1) can be 

calculated using the following expression: 

              𝑓𝑖 =
1

2𝜋

(𝛽𝑖𝐿𝑏)2

𝐿𝑏
2 √

𝐸𝑏𝐼𝑏

𝜌
𝑏
 𝐴𝑏

                                                                                                     (2.10) 

The solution of equation (2.5) can be expressed as a convolutional integral:  

              𝑇(𝑡) =
1

𝜔𝑑𝑖
𝑒−𝜉𝜔𝑛𝑖𝑡 ∫ 𝐹𝑖(𝜏)𝑒−𝜉𝜔𝑛𝑖𝑡 sin(𝜔𝑑𝑖(𝑡 − 𝜏)) 𝑑𝜏                                             (2.11) 



where 𝜔𝑑  is the damped natural frequency and 𝜉 is the damping ratio. 

Table 1. First five natural frequencies of the beam 

i 𝛽𝑖𝐿𝑏 Natural frequencies for the beam [Hz] 

1 1.875104 3.8881 

2 4.696409 24.3668 

3 7.854757 68.2277 

4 10.995540 133.6991 

5 14.137168 221.0143 

 

The beam curvature can be calculated as: 

              𝜌(𝑥, 𝑡) =
𝜕2𝑦(𝑥, 𝑡)

𝜕𝑥2
                                                                                                            (2.12) 

or average beam curvature: 

              𝜌̅(𝑡) =
1

𝐿𝑃
∫ 𝜌(𝑥, 𝑡)𝑑𝑥

𝐿𝑃

0

                                                                                                  (2.13) 

where 𝐿𝑝 is the total length of the piezoelectric transducer. 

The applied moment acting on the beam can be expressed as: 

              𝑀(𝑡) = 𝐸𝑏𝐼𝑏𝜌̅(𝑡)                                                                                                                (2.14) 

Mathematical modeling of the piezoelectric transducer 

A general model for the piezoelectric transducer which presents the relationship between the 

moment of the beam and generated voltage as a function of time is: 

              𝑉(𝑡) =  − 

6𝑔31
𝐸𝑏𝑡𝑏

𝐸𝑝𝑡𝑝
(1 +

𝑡𝑏

𝑡𝑝
)

𝑏𝑝𝑡𝑝 {1 + (
𝐸𝑏𝑡𝑏

𝐸𝑝𝑡𝑝
)

2

∙ (
𝑡𝑏

𝑡𝑝
)

2

+ 2
𝐸𝑏𝑡𝑏

𝐸𝑝𝑡𝑝
[2 + 3

𝑡𝑏

𝑡𝑝
+ 2 (

𝑡𝑏

𝑡𝑝
)

2

 ]}

∙ 𝑀(𝑡)   (2.15) 

where 𝑔31 [𝑉 ∙
𝑚

𝑁
]  is the voltage constant, 𝐸𝑏 [

𝑁

𝑚𝑚2] is Young’s modulus of the material of the 

beam, 𝐼𝑏[𝑚4]  is the axial moment of inertia of the beam and 𝐸𝑝 [
𝑁

𝑚2] is Young’s modulus of 

the piezoelectric material. Concerning the geometry of the system, 𝑡𝑏[𝑚]  is the beam's 

thickness, 𝑡𝑝[𝑚] and 𝑏𝑝[𝑚] are the thickness and width of the piezoelectric transducer, 

respectively. 

 



The generated power can be calculated as: 

              𝑃(𝑡) = 𝑉(𝑡) ∙ 𝐼(𝑡)                                                                                                              (2.16) 

              𝐼(𝑡) = 𝐶𝑃 ∙
𝑑𝑉

𝑑𝑡
                                                                                                                    (2.17) 

              𝐶𝑃 =
𝑑31 ∙ 𝐴𝑝

𝑔31 ∙ 𝑡𝑝
                                                                                                                      (2.18) 

where 𝐼(𝑡) is the current expressed as a function of time, 𝐶𝑃 is the capacitance of the 

piezoelectric transducer, 𝐴𝑝 is the effective area of the piezoelectric transducer and 𝑑31 is its 

piezoelectric strain coefficient. 

Based on these mathematical models of the cantilever beam and piezoelectric transducer, 

analytical modeling and simulations in MATLAB and FEM simulations have been performed 

in order to analyze this energy harvesting system in detail. 

 

RESULTS AND DISCUSSION  

Analytical modeling and FEM simulations have been conducted in order to analyse the impact 

of several input parameters on the generated output power. The following properties have been 

studied: position of the piezoelectric transducer along the beam, position of the excitation force, 

length ratio and thickness ratio of the beam and piezoelectric transducer, respectively. Obtained 

optimal values have been used as an input and an identical harmonic excitation force has been 

applied to both models. The analytical and FEM model have been validated by comparison of 

the obtained results concerning output voltage and power. 

Position of piezoelectric transducer 

Firstly, FEM simulations have been performed in order to determine the optimal position of 

the piezoelectric transducer along the beam, which would generate maximal power. According 

to results from FEM simulations (Fig. 2), the maximal output power is generated when the 

distance between the clamped end of the beam and the piezoelectric transducer equals zero. 



One may deduct that by increasing this distance, output electric power decreases. Therefore, 

optimal position of the piezoelectric transducer is next to the clamped end of the beam. 

 

 

 

 

 

 

 

 

 

  

 

Figure 2. Output electric power [mW] – Three different positions of the PZT  

Position of excitation force 

Output electric power is expected to change when position of the excitation force is varied. In 

order to discover optimal placement of excitation harmonic force, which generates maximal 

output electric power, analytical modeling in MATLAB has been performed. By increasing the 

distance from the clamped end of the beam to the line of action of the excitation force, the 

applied moment to the beam amplifies. As the obtained results from the simulation (Fig. 3) 

show, the optimal position of the excitation force is at the free end of the beam. The excitation 

 force can be defined with the following function: 

a) Position I 

d=0 mm 

 

b) Position II 

d=87 mm 

 

c) Position III 

d=174 mm 

 



             𝐹(𝑡) = 0.35 ∙ sin(2𝜋 ∙ 𝜔1 ∙ 𝑡) = 0.35 ∙ sin(2𝜋 ∙ 3.88 ∙ 𝑡)                                            (3.1) 

Figure 3. Output electrical power [mW] as a function of the position of excitation force 

In the optimized model the excitation force is placed at the free end of the beam and follows 

the function shown in (3.1). 

Length ratio 

Another parameter that has to be optimized is the length of the piezoelectric transducer in 

relation to the beam’s length. Analytical simulations in MATLAB have been performed in order 

to determine optimal length of the piezoelectric transducer which enables maximal power 

generation. Results (Fig.4) show that when 47% of the length of the beam is covered by a PZT, 

 

 

 

 

 

 

 

Figure 4. Output electrical power [mW] as a function of length ratio of PZT and beam 
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maximal power is generated. Until certain value for the length of the piezoelectric transducer 

is reached, output power increases by increasing the length. For values of the length higher 

than the crossing point, overall characteristics of the system get affected and the effective cross-

section, Young’s modulus, and natural frequencies change. Adverse effects are caused by 

reducing beam strain and deformation, and overall generated electric power. 

Thickness ratio 

Last parameter that has been optimized is thickness ratio of piezoelectric transducer and beam, 

respectively. Obtained results from MATLAB simulations (Fig.5) show a peak value of 

generated power for thickness ratio of 33%. For values of the thickness ratio of the piezoelectric  

 

 

 

  

 

Figure 5. Output electrical power [mW] as a function of thickness ratio of PZT and beam 

transducer and the beam, respectively, the generated power decreases by increasing the value 

of thickness ratio. 

MATLAB and FEM simulations of optimized model 

Analytical modeling and simulations and FEM simulations of the optimized model (Fig.6) have 

been performed and output results have been compared. Identical input parameters which 

match calculated optimal values, concerning the dimensions and properties of the beam and 

the piezoelectric transducer (Table 2) have been used. The frequency of the excitation force 
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 matches the first natural frequency of the system (Fig. 6). 

 

 

 

Figure 6. Energy harvesting cantilever beam with PZT 

Table 2. Parameters of the beam and piezoelectric transducer 

 

 

 

 

 

 

Output results from the analytical modeling and simulation in MATLAB (Fig.7) show that 

voltage of 202.63 V and electrical power of 1.34 mW have been generated in 3 seconds, at the 

first natural frequency of the system. The highest values for the generated voltage and power 

are achieved at the first natural frequency of the system and therefore the system was excited 

only on that frequency.  

 

Figure 7. Generated a) voltage [V] and b) electrical power [mW] from analytical simulations 

in MATLAB 

 Parameter Notation Value Unit 

Beam Length 𝐿𝑏 0.561 m 

 Width 𝑏𝑏 0.04 m 

 Thickness 𝑡𝑏 0.0015 m 

 Density 𝜌𝑏 7850 kg/m3 

 Young’s Modulus 𝐸𝑏  2∙1011 Pa 

PZT (PZT-5A) Voltage constant 𝑔31 -11.3∙10-3 V∙m/N 

 Dielectric constant 𝑑31 -190∙10-12 m/V 

 Young’s Modulus 𝐸𝑝 3∙103 Pa 

 Length 𝐿𝑝 0.263 m 

 Width 𝑏𝑝 0.04 m 

 Thickness 𝑡𝑝 0.0005 m 

 Density 𝜌𝑝 7950 kg/m3 

 Resistance 𝑅 1000 kΩ 

𝐹(𝑡) = 0.35 ∙ sin(2𝜋 ∙ 3.88 ∙ 𝑡) 

𝐿𝑏 

𝐿𝑝 

a) b) 



Obtained results from the FEM simulations (Fig.8) show that in 3 seconds, voltage of 190.32V 

and electrical power of 1.74 mW have been generated at the first natural frequency of the 

system.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Generated a) voltage [V] and b) electrical power [mW] from FEM simulations 

Over a certain period of time, the generated voltage and electric power are stored and their 

value increases. In this paper, change of stored voltage and electric power for a period of 3 

seconds has been plotted (Fig.7) and calculated (Fig. 8).  

Validation of the models has been performed by comparison of the obtained output results 

concerning the generated voltage and electrical power. Acquired results from both models 

using two different modelling methods have similar values and therefore model is valid. Thus, 

model can successfully predict power generation from a cantilever unimorph vibrating beam. 

 

 

a) 

b) 



CONCLUSIONS 

Analytical modelling based on Euler-Bernoulli theorem and FEM simulations of energy 

harvesting cantilever beam have been made. Optimal parameters of the model have been 

determined, concerning the position of the piezoelectric transducer, position of the excitation 

force, length and thickness ratio of the piezoelectric transducer and the beam, respectively. 

Maximal electric power has been generated for: location of the piezoelectric transducer next to 

the clamped end of the beam, location of excitation force on the free end of the beam, length 

ratio of 0.47 and thickness ratio of 0.33 between the piezoelectric transducer and the beam. 

Once the optimal parameters have been defined, they have been used as input parameters for 

the model. Based on an exact model, simulations in MATLAB and FEM simulations have been 

performed in order to determine output voltage and electric power. Since obtained output 

results for the identical model using two different techniques match, a deduction can be drawn 

that the model is valid. 
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