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Abstract— Decentralisation of the power system and the
implementation of microgrids into the standard power system,
leads to a complex system which requires a reliable operation and
a proper energy management. Finding the right set of
optimisation algorithms is the base for solving the optimisation
problem. This paper overviews the usage of optimisation
algorithms for microgrid energy management, with an accent on
a classical optimisation algorithm (Dynamic Programming), and
heuristic algorithms, such as Genetic Algorithm and Particle
Swarm Optimisation. The paper also proposes a methodology for
optimal energy management in a hybrid grid-connected
distribution microgrid, with a storage system and stochastic load.
The algorithm analyses the optimal scheduling of the installed
generators considering the state of charge of the battery and
electricity price for power trading with the utility grid. The
optimal solution is the most economically justified solution from
which the microgrid can benefit, and the one with the least
impact on the nodal voltages.

Keywords—Microgrid; Optimisation Methodology;
Management System; Unit Commitment

Energy

. INTRODUCTION

The battle for nature salvation, against the fossil fuel using
power plants, triggers the alarm for enhancing the operation of
Renewable Energy Sources (RES) within the power system.
Using clean energy is both economic and environmental
friendly. Implementing the renewables for local power
generation enables the consumers to become producers of
electrical energy, who are independent and self-sustained.
Driven by the will for providing electricity for every household
and at the same time respecting nature, the number of
microgrids implemented into the standard power systems
increases. As far, there are some basic rules accepted by the
microgrids community, regarding the proper operation and
maintenance [1]. However, under the lack of regulations and
technical guidelines, there are still some obstacles to the
seamless operation of grid-connected microgrids.

A microgrid represents a small power system, connected to
the utility grid, consisting of RES and local consumers, and,
optionally, a diesel generator and storage systems for storing
the unused electrical energy, for its further usage or trading

with the main power grid. These components are
interconnected, and they operate as a single controllable unit.
That way, microgrids enable a clean and self-maintained way
of power generation, meaning that they can work as a separate
entity, isolated from the power system. In addition to the
environmental benefits they provide, the latter is another reason
microgrids are accepted worldwide [2]. Since the main sources
of power in the microgrids depend on the weather conditions,
their switching off and on can cause disturbance in the power
system. Therefore, the microgrid has to be secured with a
stable voltage and frequency.

Grid-connected microgrids can also trade electric power
with the utility grid they are connected to. The price of the
electricity is previously determined. For that purpose, there is a
smart energy management system in the microgrids, which
determines whether it is more economically justified to store
the power or to sell it [3]. This is beneficial to the power
system because it enhances the economy, the reliability of
supply and lowers the burden that the spinning reserve carries.

The optimisation of microgrids is similar to the one for
standard power systems, except that it has to take into
consideration the weather conditions. The change of the
weather conditions has a huge impact on the nodal voltages in
the microgrid. Therefore, proper optimisation regarding the
operation of the distributed generators is required.

The literature consists of many different optimisation
algorithms, but the choice for a certain algorithm is based on
the number of constraints and the complexity of the problem.

This paper analyses the optimisation algorithms used in the
literature and proposes a methodology for enhancing the
algorithms for improving the results.

Il.  LITERATURE REVIEW

Along with the increased microgrid implementation, the
need for its optimisation increased in the last decade. The
numerous research on finding the best optimisation algorithm
testify to the importance of the optimisation of the microgrids.
The optimal work of the microgrids means a proper and safe
power system operation. That includes choosing the best



location, size, and configuration of the microgrid, management,
and control of the distributed generators and loads.

Depending on the aspect of view, whether the costs for
generation are optimised, nodal voltage disruptions, or
microgrids' impact on the power system, there are many
different algorithms and mathematical methods applied for
solving the microgrid optimisation problem. Researchers are
constantly working on proposing novel optimisation algorithms
or improving the classical algorithms which can solve the unit
commitment problem of microgrids by simplifying it [4] [5] [6]
[7].

For instance, paper [8] proposes a solution to the unit
commitment problem in a microgrid supported with a battery
system, by implementing the Most Valuable Player Algorithm
(MVPA). This algorithm is a new metaheuristic optimisation
algorithm inspired by actual sports events. The optimisation is
subject to the operation costs. The results using the proposed
method are satisfactory for the analysed microgrid
configurations and operation scenarios, neglecting the power
demand and power generation variations.

But, generally, there are three most applied algorithms for
this problem: the Dynamic Programming Method (DP),
Genetic Algorithm (GA), and Particle Swarm Optimisation
(PSO) [9] [10]. In [11] these algorithms are overviewed and
compared. The paper provides a clear picture of each method's
usage and application.

Reference [12] presents an overview of six metaheuristic
algorithms for cost minimisation of microgrids. The paper,
through a comparative analysis, using different performance
indicators for a microgrid, provides directions for choosing the
most suitable optimisation technique for a grid-connected
hybrid microgrid cost minimisation.

The unit commitment problem in microgrids is a complex
problem requiring an algorithm that gathers all of the
constraints. Dynamic Programming method (DP) is a classical
optimisation method that can be used for solving unit
commitment problems in microgrids, as presented in [13] and
[14]. However, adding the nodal voltages’ and distribution
lines’ limits, the optimisation requires a more evolutionary
algorithm.

A comparison between a classical optimisation algorithm
and a metaheuristic algorithm is presented in [15]. The
algorithms are used for minimising the fuel costs and CO;
emissions for a micro gas turbine in a microgrid. The results
show that the PSO algorithm is applicable for solving the unit
commitment problem in the microgrids, and it is more effective
compared to DP.

In [16] a hierarchical GA is implemented for maximising
the profit from energy exchange of a microgrid with the utility
grid, assuming a Time of Use (TOU) energy policy.

The [1] presents an improved GA which minimises the
costs of an islanded microgrid and maximises the benefits
when it is connected to the grid. The algorithm uses a
simulated annealing technique to accelerate the convergence,
leaving the bad individuals in the GA in the earlier stages.

Paper [17] presents a day-ahead energy storage system
scheduling in a microgrid, by using the GA and PSO. The
paper gives a contribution to optimal microgrid scheduling by
minimising the costs of microgrid operation, which are defined
by dynamic pricing. The goal is to optimise the operation of the
distributed generators and battery so that in times of high
prices, the stored energy would be used. The paper compares
the applicability of the two optimisation algorithms, which
results in a better performance of the PSO.

The [18] proposes an improved PSO algorithm for unit
commitment in microgrids. Additionally, cost functions for
determining the state of charging and discharging of the battery
and a dynamic penalty function are introduced. The results
show improvement in cost reduction by 12 %.

In [19] wind power-based microgrid supported with fuel
cells, a diesel generator, and an electrolyser is analysed. The
fuel cell is used in times of energy demand which is not
satisfied by the wind turbine. The paper proposes a PSO-based
algorithm to minimise the operation costs. The results show
nearly 70% cost reduction and economic operation of the
microgrid.

The PSO algorithm is used for cost optimisation in a grid-
connected microgrid, with a capability of islanded work in
[20]. The proposed algorithm considers the variations of the
distributed generators and power demand proposing a day-
ahead forecast for overcoming this issue.

In [21] voltage disruptions caused by connected distributed
generation are analysed. This is the starting point to finding the
optimal placement of the distributed generation. Using PSO,
the objective function of line losses, voltage stability index, and
node voltage deviation of the system is optimised to determine
the capacity and location of distributed generation.

Another methodology for optimisation of distributed
generation considering the costs and voltage stability was
introduced in [22]. The multi-objective optimisation uses two
techniques: the sum-weighted Pareto front and an adapted goal
programming methodology. In this paper, the voltage stability
is “measured” by the load index value (L-index).

I1l.  PROBLEM DEFINITION

The implementation of the microgrids represents a big step
into a future clean energy power system and it is a big change
that has come along to a very positive reaction from the people.
However, it is still challenging for people to adjust their
behaviour and their habits to the microgrid operation. For
instance, cooking or showering during a certain part of the day.
If people's habits follow the weather conditions and power
generation practise, the implementation of the microgrids will
be very easy and there would not be a need for a smart energy
system that follows the consumption habits. However, since
that practice is not very likely applicable, and power demand is
a stochastic process, the microgrids' operation has to be
adjusted to the consumption while respecting certain
constraints.

Grid-connected microgrids can rely on the utility network,
as a backup power source in times of need. However, its



operation should not impact the normal operation mode of the
utility grid, especially not the consumers. Therefore, it is
necessary to determine the optimal schedule of distributed
generators and battery systems.

The constraints usually refer to the technical limits of the
installed equipment and system’s balance. But, besides the
technical limitations of the installed generator and battery, the
microgrid operation should consider the nodal voltages,
limitations of the power bought from the utility on occasions
when the generators do not produce any power and the battery
is empty, and the power demand. These parameters, have to be
in a perfect balance, in which they can overcome the variety of
uncertainties regarding the weather conditions and power
demand.

In a grid-connected microgrid, additionally, the electricity
prices have to be considered in order to find an optimal
operation plan. This adds to the complexity of the unit
commitment problem in the grid-connected microgrids, which
is different from the unit commitment problem in standard
power systems [1].

IV. PROPOSED METHODOLOGY

The optimisation of a microgrid is a complex problem
consisting of multiple constraints, from the technical limits of
the equipment to the balance between the production and
consumption of power and the stable power supply. Grid-
connected microgrids have a great advantage of being
connected to the utility grid, which represents a backup in
emergencies when there is an interruption in the power supply.
However, being connected to the utility grid brings a big
responsibility to voltage stability.

This paper proposes a methodology for creating an
algorithm that considers the probability of power supply from
the installed distributed generators, the uncertainty of power
demand, state of charge of the battery system, and the
probability of voltage sags and proposes an optimal solution by
minimizing the operation costs.

Most of the microgrid optimisation research focus on the
operation costs and technical constraints of the microgrid’s
components. However, the nodal voltages should be inspected
too, in order to define one solution as the optimal one. This
invokes the penalty costs for not satisfying the defined
conditions for a proper microgrid’s solution.

The objective function is subject to the total costs for
microgrid operation:

T
F (C) = max {Z (BDER,i - Cgrid,i ) - Cpenalty } (l)
i=1

where, Bpgg; refers to the profit for selling the excess

power to the utility grid in the i-th hour, andC refers to

grid,i
the costs for buying power from the grid in the i-th hour.
Additionally, the penalty costs Cpena,tyfor not supplying

quality electrical power, with stable voltage, are considered.

Adding penalty costs levels up the reliability of the power
supply of the microgrids and the standards for electrical power
quality and proper operation.

The constraints consider the installed power capacity of the
distributed generators:

Pmin,DER < DER < max,DER (2)
Power limits of the battery:
0 < Pbat < Pmax,bat (3)
Buying power from the grid:
O = I:>grid < Pmax,grid (4)
Nodal voltage levels:
0'95'Ur,node SUr,node S1'05’Ur,node (5)

The power bought from the utility grid should be enough to
supply the load in the microgrid. However, if there is a legal
frame that defines some of the load as a priority, then the
maximum quantity of power bought from the grid can be
enough to supply the priority load.

Since the weather conditions are not predictable and the
forecast is not a hundred percent accurate, the algorithm should
be able to follow the power production from the distributed
generators and take information about the battery state of
charge constantly, as often as possible. Only then it can
maintain the voltage levels and optimise the microgrid
operation.

Additionally, the algorithm should take information for the
electrical power prices, and then decide whether the excess
power from the microgrids is going to be sold to the utility grid
or stored for further use. Also, this decision applies in times of
power production shortage, i.e. whether the needed power
should be bought from the grid or taken from the storage
system. A solution to this problem was proposed in [23] and
[24] by using the convex optimisation technique.

The selection for the optimal solution is based on satisfying
the before mentioned constraints. That means that the
optimisation algorithm should optimise the generators’
operation to optimise the power losses and maximise the profit
from power trading. The optimisation is described by the
following steps:

e First, the data for maximum power generation for the
installed generators and power demand is entered.

e Then, the values for power generated from the
generators at the analysed moment are compared to the
constraints.

e Additionally, each solution is applied to the network
and nodal voltages are inspected. This step is very
important since the microgrids are small-scale systems,
whose stability depends highly on the generators'
performance.



e The process continues for a limited number of
iterations. The algorithm memorises the optimal
solution in a way that compares it to the global best.

o In the final step, total profit from trading power with the
utility grid is calculated and the penalty costs are
evaluated based on the time of an outage. The solution
with the highest profit is considered to be the optimal
one.

V. DESCRIPTION OF THE OPTIMISATION ALGORITHMS

In this section, the Dynamic Programming (DP) method,
GA and PSO basic settings will be discussed, and the
comparison between the three methods will be presented.

A. Dynamic programming

DP method is a classical optimisation method set by
Bellman in the 1950s. The method provides an optimal solution
to a certain issue by dividing the main problem into many
smaller sub-problems. The DP optimisation method uses a set
of algorithms for finding an optimal solution to a wide range of
input data. The optimisation is done by maximising or
minimising an objective function.

The solution to each of the sub-problems eventually gives
the optimal solution to the main problem. Although the method
can be classified as a “divide and conquer” group of methods,
it works opposite of them [25]. The optimisation is done by
analysing the sub-problems first, which are simpler
expressions. The solution of each sub-problem is memorised.
The set of all conditionally optimal solutions leads to the
solution of the main problem.

Many nonlinear problems, from any field, can be solved
using the DP method. Its application is widely known for
power system planning, optimal unit commitment in complex
power systems, which cannot be solved by standard methods of
nonlinear programming and energy management optimisation.
In power systems optimisation, usually, the method is used for
minimising the costs or maximising the profit. In energy
management optimisation, the method is mostly used for the
optimisation of emissions from the power plants [26].

The simple microgrid optimisation and unit commitment
problem can be solved using classical optimisation techniques,
such as the Dynamic Programming (DP) method, as presented
in [27]. However, adding the voltage stability constraint makes
the problem more complex, and therefore a different
optimisation technique is required.

B. Genetic Algorithm

The most commonly used heuristic optimisation algorithms
are the Genetic Algorithm (GA) and Particle Swarm
Optimisation (PSO). Each of these algorithms is based on
natural running processes.

GA is a heuristic optimisation technique, inspired by the
Darwinian principle of evolution through genetic mutation and
selection. The method is an abstract version of the evolutionary
process in which for a certain number of populations of
chromosomes, a mutation and selection are made [28]. The

chromosomes are encoded strings (usually in a binary system)
that carry the information of one generation [29]. The
chromosomes are tested for fitness in a certain function, which
grades the solution to the analysed problem. If the solution is
satisfactory, then the next generation is created.

Each generation of chromosomes has parents. The genes of
the child chromosomes are created by two parent
chromosomes. For that purpose, a crossover should be defined.
The crossover is a point to which recombination of genes of the
parent chromosomes is made. The new set of genes is the child
chromosome. In the next step, a mutation of a certain gene is
done.

The iterations continue for a certain population. As the
number of iterations increases, eventually, the chromosomes'
fitness increases and the solution improves. The process runs
until the stopping criteria are reached. In this way, the optimal
solution to a problem is determined [30].

C. Particle Swarm Optimisation

PSO is an optimisation technique inspired by the motion of
bird flocks and schooling fish [31]. Similar to the GA, in PSO,
the system is initialized with a population of random solutions,
and the search for the optimal solution is performed by
updating generations. However, this method does not have
crossover and mutation steps and it requires a lower number of
iterations [32].

PSO method is based on the movement of particles in
space, which in the algorithm, represent the potential solutions
[32]. At each point the algorithm memorises the best
performance of the particle (the best solution), creating the
optimal movement path. Although this might seem like an
advantage, it decreases the method's accuracy.

D. GA and PSO combination

The comparison between GA and PSO performance on
optimising a hybrid RES system presented in [33] shows that
both, GA and PSO, are efficient for optimising complex
problems. However, each of the optimisation methods achieves
better results under well-defined objective functions and
constraints. PSO is computationally more efficient than GA in
terms of both speed and memory requirements. And although it
is less practical, it is found to be quite applicable for unit
commitment problems in microgrids [33].

Many research combine the GA and PSO, creating an even
better and more efficient optimisation algorithm. In [35] a
combined GA and PSO algorithm is proposed for optimisation
and sizing of distributed generation. The proposed algorithm
should minimise network power losses, improve voltage
regulation, and improve voltage stability. The PSO algorithm
is used for finding the optimal sizing of the distributed
generation, and GA is used for calculating the optimal sitting of
the distributed generation. The results show that the
combination of these two algorithms provides a better solution
than their separate usage.

This shows that for some problems, the best solution is
provided by combining two optimisation algorithms. For the



presented microgrid optimisation problem, we propose a
combination of GA and PSO.

V1.  SELECTION OF AN OPTIMISATION ALGORITHM

The summary of the advantages and disadvantages of some
optimisation algorithms in Table 1, shows that the DP method
cannot be used for the optimisation of complex systems as the
one presented in sections Il and IV. However, the
combination of GA and PSO can and will be used for that
purpose.

TABLE I. COMPARISON OF OPTIMISATION ALGORITHMS
Optimisation .
Algorithms Advantages Disadvantages
- Splitting a problem into
simpler sub-problems. Complex problems
. - Solving much simpler which require
Dynamic

problems gives the
optimal solution.

- Easy to implement to
any kind of problem.

multi-objective
optimisation
cannot be solved.

Programming

- The optimal solution is
calculated through a
selection of multiple
iterations, each one
better than the other.

- Fast convergence.

- Can be used in many
fields.

Selecting true
selection criteria,
crossover, and
mutation
parameters are
essential for better
optimisation.

Genetic
Algorithm

- Does not require
crossover and mutation
parameters.

- Memorises the previous
conditional optimal
solution.

- Fast convergence.

- Applicable for many
different types of
optimisation problems.

Particle Swarm
Optimisation

Requires complex
computations.

Since GA requires a larger number of iterations and has a
simpler computation algorithm, it will be used for the unit
commitment problem of the microgrid. The output of the GA
(the optimal solution) will be a parameter to which the voltage
stability of the nodes will be computed. For that purpose, the
PSO can be used.

The optimisation algorithm consisting of both, GA and
PSO, will give the unit commitment and economic dispatch of
the microgrid.

VII. CONCLUSION

Each microgrid is unique. There are many microgrid test-
beds around the world and each of them defers from the
others. Starting from the location and to its performance.

Therefore, there is not an empirical solution to the microgrid
optimisation problem. And that is what makes it challenging.

This paper presented the most used algorithms for the
optimisation of grid-connected microgrids. Since it is a
complex problem that requires a detailed analysis of every
entity of the microgrids, at each moment, it cannot be said that
the solution is unified. Each research proposes a unique
solution to this problem. This means that in the planning and
operation of microgrids, one can choose which optimisation
algorithm suits the best for one's microgrid, according to its
unique constraints.

The paper proposed a methodology for solving a complex
optimisation problem, considering the uncertainties of weather
conditions and power demand. The algorithm considers the
penalty costs, as much stronger criteria for obtaining an
optimal solution.

Dividing the problem into two different problems (unit
commitment and voltage stability), which will be computed
separately by GA and PSO, will simplify this problem and
provide the optimal solution of the microgrid’s operation.

In future work, the implementation of the proposed
methodology on a test example and the results of that case
study will be presented and discussed.
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