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Abstract: This paper introduces a modification of the genetic algorithm aimed
at enhancing the selection process for reproducing the next generation. This
modification accelerates the optimization process and improves the outcome.
The case study analyzes a grid-connected microgrid comprising renewable
energy sources, a battery storage system, prosumers with installed photovoltaic
generators, and consumers. The effectiveness of the proposed modification is
validated through comparison with two selection algorithms commonly used in
the standard genetic algorithms.
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1. INTRODUCTION

The energy and financial crisis that many parts of the world face bring microgrids
to the centre of researchers’ and engineers’ attention. Their ability to provide sustainable
and clean energy with decreased distribution costs at any place makes them a better
solution than the standard centralized grid prone to outages. One of the main reasons for
the increased interest in microgrids is their decentralized control and optimization
system. This means they can run and supply energy to the local consumers even if one
of the generators is out. Microgrids can be placed anywhere according to the conditions.
They are present even in the cities, which makes clean power generation more
approachable to commercial consumers. The consumers who consume and produce
power at the same time are called prosumers. However, today’s microgrids are more
complex than the primary microgrids. This is due to the many different dispersed
generators connected, the inclusion of storage systems, backup generators, and
connection to the local grid or other microgrids. The use of the storage system in the
microgrids is recognized as a reliable source of energy that compensates for the
stochastic nature of renewable energy sources. In that way, the storage system provides
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the stability that microgrids lack. However, adding the power exchange to the local
power grid creates a complex system that requires proper optimization.

The microgrid optimization research inspects many ways to generate clean power
and conserve that power, to lower the power generation costs and make the whole
process even more applicable for commercial use [1]. For that purpose, many
evolutionary algorithms were inspected, analyzing the costs, power losses, and gas
emissions if there is a diesel generator included, as a backup system.

This paper presents a modification in the selection process of a genetic algorithm
for the unit commitment of a grid-connected microgrid that consists of prosumers and
consumers, photovoltaic and wind generators, and a battery system. The microgrid trades
with the local grid under real-time pricing conditions. Based on recent statistical power
consumption data, the prices are defined a day ahead and they change hourly. The
simulation analyses a 24-hour time period when the microgrid trades with the local
power grid.

The proposed algorithm has a prior of using the power generated from the renewable
energy sources connected to the microgrid, and deciding whether to use the battery or
the local grid for distribution of the excess or needed power. Additionally, the voltage in
the nodes has to be maintained within the defined limits.

2. LITERATURE GAP

The literature abounds with many different optimization methods for solving the
unit commitment problem of grid-connected microgrids. There are research that
considers the voltage variations as an important point during optimization in such a
microgrid. The analysis of voltage and frequency, using a genetic algorithm is presented
in [2]. Mainly, the optimization targets the operational costs and power losses. The
importance of the battery storage system and the benefit of trading with the local grid
for grid-connected microgrid is presented in reference [3]. The paper presents a
simulated optimization of dispersed generation and system for storing excess power in
grid-connected and islanded microgrids. The paper analyses two alternative optimization
functions. The first one minimizes the annual power losses, and the second one
minimizes the costs of power production. The best results are maintained when the
microgrid trades with the local grid and it has a storage system installed.

Today’s energy market enables consumers to plan their power consumption to shift
and reduce the load peaks so that the power system would not be burdened at a specific
part of the day. Therefore, there are power systems that charge different electricity prices
for each hour or part of the day. The research regarding that direction investigates the
best optimization technique so that the profit of microgrids’ operation would be the
highest.

A smart grid with two-way communication meters under a real-time pricing
mechanism is analyzed in [4]. The results show that the real-time pricing mechanism is
effective in load shifting if the response of the consumers is active enough, if the profits
on the supplier and consumer side are balanced, and if the costs of the power supplier
fluctuate dramatically.
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In [5] a genetic algorithm is used for scheduling the battery’s charge/discharge in a
microgrid with prosumers, by minimizing the power in the point of interconnection of
the microgrid with the main grid, and not the economic evaluation. The analysis is made
on two prosumers in a microgrid case.

Besides the genetic algorithm, other optimization techniques are used. However, all
of them compare their results with the gnetic algorithm as one of the most familiar and
trusted heuristics optimization methods. The reference [6] proposes a Particle Swarm
Optimization algorithm for solving the unit commitment problem of a microgrid with
multiple distributed generators in uncertain electricity market price conditions.

A modified particle swarm optimization is proposed in [7], for scheduling and
minimising the operational costs of a grid-connected microgrid with photovoltaic and
wind generators, under uncertain real-time prices.

Genetic algorithm is used to reduce the operational costs of a grid-connected
microgrid under real-time pricing conditions, in [8]. The case study analyses a microgrid
with photovoltaic and wind generators, a fuel cell, a battery system, and two consumers.

This paper proposes a modified genetic algorithm to solve the unit commitment
problem in a grid-connected microgrid with photovoltaic and wind generators, with
connected consumers and prosumers, equipped with photovoltaic generators and a
battery storage system that serves both the consumers and the prosumers. The microgrid
trades with the local power grid under real-time pricing conditions, while maintaining a
stable voltage.

3. PROBLEM DEFINITION AND PROPOSED ALGORITHM

The optimization involves integrating two functions: one to determine the utilization
of stored power from the battery or purchasing from the grid, and the management of
excess power by deciding whether to store it or sell it. Additionally, a function is
employed to minimize voltage drop. These functions are represented by equations (1)
and (2), respectively. The unit commitment problem is executed within specified
technical constraints as defined in this paper.

E<B>=max{i<BDER,i - gnd,w} 1)

i=l1
where, Bper represents the total profit and Cper represents the total costs from microgrid
operation. 7 represents the analyzed period and Af represents the time interval for data

sampling (1 hour).
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where, V; is the rated voltage, and » and x are the resistance and the reactance in
Ohms/meter, respectively. / denotes the distance between the nodes, and the permitted
voltage drop is denoted with AV.

The calculation of total active and reactive power are presented with (3) and (4).

P P +Pwmd + Z ( pv_ resm bat dis Pbatich buy sell Z ( loadl (3)

m=1
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O =0t Qbuy - Qgrid 4)
where, Py is the power generated from the photovoltaic generator, Pwind is the power
generated from the wind generator, Ppv res is the power generated from the photovoltaic
generators installed on the residential objects, Prat_gis denotes the power discharged from
the battery and Povat_oh denotes the power charged, Pruy denotes the power bought from
the grid, Psen is the power sold to the grid, and Piad denotes the load of the consumers.
Nprosumers denotes the total number of prosumers, and Neonsumers denotes the total number
of consumers Variables Qgria, Owina and QObuy represent the reactive power taken from the
grid to the load, the reactive power that the wind generator generates, and the reactive
power bought from the grid to maintain stable voltage levels, respectively.

The total profit and costs are outlined in equations (5) and (6). These equations do
not include the costs associated with power exchange among the prosumers and
consumers. It is assumed that these costs are attributed to individual profits rather than
to the community as a whole.

BDER = ])pv ’ ppv + ])wind ’ pwind + ])sell ’ p.vell + Rmt_dix ’ phat (5)

an'd = Pbuy Py Tt Byatﬂz " Pra (6)

The variables ppv, pwind, pseii, prar and pruy denote the prices for power generation from
the photovoltaic generator, the wind generator, the price for selling the excess power to
the grid, the price for charging/discharging the battery, and the price for buying power
from the grid, respectively.

The technical constraints regarding the installed equipment are presented in (7-12).
With (7) and (8) the power generation range of the photovoltaic and wind generator are
defined. Equation (9) defines the power generation range of the photovoltaic generators
installed on the prosumers.

PPV,min < va,i < PPV,max ,Viel0,T] @)
wind ,min "~ * wind ,i S Pwind,max > VZ € [07 T] (8)
pv_load ,min S [;w_load,i S I)pv_luad‘max ’Vl € [05 T] (9)

Battery’s minimal and maximal power exchange are presented with (10), and their
state of charge is presented with (11).

0 S Bmt,i S Pbat,max ’ VZ € [0’ T] (10)
0<8oC,,, <1L,Vie[0,T] (11)

Equation (12) defines the limits of power trading with the local power grid.
grid ,min < ])grd,i < ])grid,max 2 Vl € [0’ T] (12)

The voltage variation limits to the consumers are defined with (13) and to the
installed generators (photovoltaic and wind) with (14).

0,9V, <V <L1.V, (13)

load —

0,95-V. <V, <1,05-V (14)

DERs —

The voltage drop calculation is presented with (15).
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Fig. 1 shows a flowchart of the proposed modification of the genetic algorithm for

unit commitment optimization.
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Fig. 1. Flowchart of the proposed modification of the genetic algorithm
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In the initialization of the parameters, each parameter is assigned a hundred randomly
generated values that are in the defined range. This includes how much of the generated
power by each of the distributed generators will be used to supply the consumers, how
much power will be stored or taken from the battery, and how much power will be bought
or sold to the grid. Then, each of the values of the parameters is checked and scored with
a fitness score by the solution it provides. Next, the individuals with the best fitness scores
are selected to be parents and to produce the next generation. In this selection process, the
individuals with a score higher that the 90% of the best score are selected for further
reproduce. This decreases the number of potential parents, but creates more space for the
next generation of individuals, whose parents have the best genes. The next generation is
produced by mixing the genes of their parents, mutation some of the parents and using
the parents themselves. In this way, a set of individuals which have to be tested for the
optimization functions is created. The solutions that fit the best are conditionally optimal
solutions. If the next generation does not provide a better solution, then the current
conditionally optimal solution becomes the optimal one.

4. SIMULATION

The proposed modification of the genetic algorithm is tested on a case study of a
grid-connected hybrid system consisting of a photovoltaic and wind generator, battery
storage system, and a residential load community. The residential community consists
of three prosumers and two consumers. Prosumers can exchange surplus power amongst
themselves and provide power to consumers when available.

However, simultaneous power exchange and consumption are not feasible.
Additionally, the energy stored in the battery can be utilized to meet consumers' needs
during periods of high demand. The analysed microgrid is presented in Fig. 2. The case
study network is according to the IEEE low voltage test network, as presented in [9].
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Fig. 2. Diagram of the analysed microgrid according [9]
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The inclusion of a diesel generator in the microgrid is noted; however, its usage is
limited to instances of local power grid outages, which fall outside the scope of this
paper's research.

Table 1 outlines the technical constraints of distributed generators installed in the
microgrid, as well as those on residential objects, the battery, and power trade limits with
the grid.

Table 1. Technical constraints of the installed equipment.

Parameter Meaning Value  Unit
P, Installed capacity of the photovoltaic generator 10 kW
Proing Installed capacity of the wind generator 3 kW

Installed capacity of the photovoltaic generators

P e installed on the residential objects 7 kW
Prar_cn Maximal charge power 5 W
Prar ais Maximal discharge power
Phruy max Maximum power bought from the grid 20 kW
Pseit max Maximum power sold to the grid 35 kW
Char Battery’s capacity 20 kWh
SoChrat min Minimal battery state of charge 10 %
S0Chat max Maximal battery state of charge 100 %
ZCh Efficiency coefficient of charge/discharge 95 %

dis

5. RESULTS AND DISCUSSION

The results form a simulation of 24 hours are presented in this chapter. The change
of the electricity prices, along with the total power demand form the consumers and the
prosumers are shown in Fig. 3.
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Fig. 3. Power price variations and load curve over one day (24 hours)
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The Fig. 4 illustrates the unit commitment using the proposed genetic algorithm
modification. Positive power exchange values of the battery denote discharging, while
negative values indicate charging. Similarly, positive values with the grid signify power
purchase, and negative values indicate power sale.

The graph illustrates that during periods of increased power consumption and
correspondingly high electricity prices, the microgrid relies on the power stored in the
battery, leading to a minimal percentage of power bought from the grid.

From the obtained results it can be concluded that the proposed algorithm obtains
better results than the standard genetic algorithm when using a tournament and uniform
selection. That results in increased profitability, and higher battery utilization, as
summarised in Table 2. In this way, the microgrid is less dependable on the local power
grid and using optimally its resources.
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Fig. 4. Optimal unit commitment using modified genetic algorithm for a=0,9

Table 2. Comparison of the obtained results using different selection methods

GA with Tournament Standard GA with

Method . . . Modified GA
selection uniform selection
Total
profit(€ct) 224.0605 224.0685 224.0877
Pruy (kW) 0.513 0.513 0.513
Pgeni (KW) 13.817 13.816 13.814

6. CONCLUSION

In this paper, the optimization of a grid-connected microgrid with connected
prosumers and consumers was analysed. The optimization functions include the unit
commitment and voltage regulation in the critical nodes.
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The paper proposes a modification of the genetic algorithm to obtain better results
in the optimization process. The modification is in the selection process, and although
some of the potentially good individuals are lost during this type of selection, the results
show that the proposed modification provides better results than the standard selection
algorithms. This validation of the improvement paves the way for further enhancement.

In future work, the research could include the usage of different types of backup
systems and could analyze the demand response in real-time pricing conditions.
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