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ABSTRACT

This paper presents a bi-objective optimisation approach for grid-connected microgrids, aiming to minimise operational costs
and voltage deviation at the connection nodes of distributed energy resources and loads. Existing research typically addresses
these objectives separately, and the simultaneous consideration of economic performance and voltage deviation in grid-connected
community microgrids with multiple generation resources remains in an early stage of development. To advance the research
in this area, a novel mean-guided elite selection genetic algorithm (MGES-GA) is proposed to enhance the balance between
convergence and diversity in multi-objective optimisation. The proposed algorithm enhances the selection process by re-evaluating
low-performing individuals through gene mixing with elite solutions, thereby preserving diversity and avoiding premature
convergence. Comparative analysis of the MGES-GA with the enhanced genetic algorithm, differential evolution with heuristic,
and improved differential evolutionary optimisation algorithms demonstrates its superior performance in optimising the economic
dispatch of a grid-connected microgrid. In a bi-objective comparison with state-of-the-art algorithms, tested on a modified IEEE
European low-voltage test feeder and IEEE 33-bus network, MGES-GA demonstrates its effectiveness in balancing conflicting
objectives by producing lower voltage deviations at comparable or lower costs.

1 | Introduction demand, maintaining voltage levels within acceptable limits, and

addressing economic considerations, such as energy pricing. By

Urban development is rapidly evolving, placing increased pres-
sure on traditional power infrastructures, which often struggle
to meet modern energy demands. Frequent power outages and
rising electricity costs underscore the need for more flexible, cost-
effective, and environmentally sustainable energy systems [1].
Community microgrids have emerged as a promising solution,
offering small-scale, decentralised power systems that can gen-
erate and manage local renewable energy sources (RES) while
minimising transmission losses and associated costs.

When connected to the main grid, community microgrids
must ensure stable operation by balancing power supply and

considering the dynamic electricity pricing, the problem becomes
even more complex. Therefore, the microgrid’s Energy Manage-
ment System (EMS) plays a vital role in meeting these goals
by identifying optimal solutions within technical and economic
constraints.

The literature abounds with optimisation techniques for power
flow optimisation in microgrids, and researchers are continu-
ously striving to improve existing ones by considering different
scenarios or complementing the objective functions with addi-
tional parameters that define the microgrids’ operation. However,
in modern microgrids, the optimal power flow (OPF) can be
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conducted by managing the load, known as demand-side man-
agement (DSM). The EMS controls the generation, storage, and
load, and it can adjust the controllable loads in real time to
optimise system performance alongside generation and storage
resources. This is achieved by controlling, shifting, or curtailing
electricity consumption to match the generation availability [2].

Most research investigates how to implement different strategies
to optimise microgrid operational costs, power losses, and voltage
deviations by managing the power demand. In [3], the authors
conducted a comparative analysis of two different incentive-
based demand response (DR) policies for load curtailment.
The first policy employs a price elasticity matrix to incentivise
customers to reduce consumption during peak hours, while
the second policy focuses on compensating customers for load
shedding during peak periods. The research conducted in [4]
recommends a combined intellect method that considers carbon
tax as a constraint for lowering the pollutant emissions and
lowering the total costs of employing loads in a microgrid.

Another addition to the complexity of the modern microgrids
are the electric vehicles (EVs), which serve as flexible loads or
distributed energy storage systems. In order to maintain stability
and meet economic objectives, EMS controls the EVs by providing
a charging and discharging schedule. Additionally, the EMS
determines when the EVs should shift their load, ensuring that
both economic and technical objectives are met. The research
conducted in [2] and [5] introduces a hybrid DSM approach that
combines load shifting and load curtailment strategies to optimise
the operation of a microgrid integrated with plug-in hybrid
electric vehicles (PHEVs). In [6], a double-layer optimisation
framework to minimise the total operating costs of a low-
voltage grid-connected microgrid system is presented. The study
considers the integration of EVs of varying sizes and their impact
on microgrid operation. The research conducted in [7] introduces
a hybrid demand-side policy that combines load shifting and
curtailment strategies with a smart charging approach for PHEVs.

In [8], an innovative EMS that integrated both supply-side
management and DSM is introduced. The DSM optimises load
scheduling based on the electricity pricing, while the supply-
side management determines the power generation from the
photovoltaic (PV) system, energy storage system, and the utility
grid. Using the particle swarm optimisation (PSO), the electricity
costs and the peak-to-average ratio are decreased.

The research conducted in references [9-13] shows that PSO and
genetic algorithm (GA), along with its variations and hybrids
with other optimisation techniques, are the most commonly used
optimisation techniques for solving the OPF problem. Studies
indicate that GA often yields higher quality solutions, exhibits
low variability across iterations, and quickly converges to optimal
results [14]. For instance, in comparative studies such as [15],
GA outperforms PSO in solution quality, although PSO typically
converges faster. Additionally, GA offers greater flexibility in
selecting and tuning hyperparameters, making it well suited for
complex optimisation problems, as confirmed in multiple studies,
including [16].

The literature review indicates that the primary objective of OPF
research, regardless of the optimisation technique employed,

is the minimisation of operational costs, the minimisation of
gas emissions, or voltage/frequency variations. The analysis
conducted in [9] shows that GA, or its hybrids with other
optimisation algorithms, is still among the most commonly used
for energy management and optimisation of diverse objectives
regarding microgrids, indicating that using GA for the optimisa-
tion of microgrids is not a novelty. However, this demonstrates
the flexibility and adaptability of GA to different optimisation
problems.

In [17], an improved GA (GA + PSO) is presented, which
uses elite thinking and catastrophe thinking to optimise the
selection operation. Elitism preserves the most advantageous
traits from one generation to the next, while the catastrophe
approach aims to eliminate the top-performing individuals if they
remain unchanged after multiple iterations. The combination
of these two approaches ensures avoiding local optima. The
proposed algorithm optimises operational costs and scheduling
between microgrids in multi-microgrids. Reference [18] proposes
the dragonfly algorithm for minimising the operational costs of
grid-connected microgrids by integrating the demand response
program (DRP) into the EMS. The algorithm is tested on an
enhanced IEEE 34-node test system.

The research conducted in [19] proposes an improved adap-
tive GA (AGA) for optimisation of grid-connected microgrids
with RES and a standalone diesel generator (DG) system. The
algorithm dynamically adapts mutation and crossover rates to
avoid premature convergence, ensuring better exploration and
exploitation of the solution space. The EMS aims to minimise
operational costs, reduce emissions, and enhance reliability by
scheduling resources effectively. In [20], an efficient heuristic-
enhanced differential evolution (DE) approach is proposed for
operational costs optimisation considering the energy storage
degradation costs in community microgrids. The study balances
economic operation, renewable integration, and grid interaction.
Simulations are carried out under different operating conditions,
and results show that the proposed method enhances cost
savings, renewable penetration, and energy efficiency compared
to conventional strategies. In [21], a detailed comparative study
and multi-objective optimisation of AC and DC power system
structures using a multi-objective particle swarm optimisation
(MOPSO) algorithm are presented. The study aims to min-
imise total network cost while maximising system availability
by determining the optimal capacity and configuration of sys-
tem components. By analysing both AC and DC architectures
under different operational scenarios, the authors highlight
the trade-offs between cost, reliability, and efficiency. In [22],
an improved multi-objective improved differential evolutionary
(IMODE) optimisation algorithm is applied for multi-objective
optimisation with various equality and inequality limitations for
lowering operational costs and environmental pollution effects
of microgrids. The algorithm is tested on multiple different
situations regarding the power limitations of trading with the grid
and RESs engagement.

The research conducted in [23] proposes an improved
biogeography-based optimisation algorithm to optimally
size and operate a battery energy storage system (BESS) within
a microgrid with wind energy penetration. The objective is to
minimise the total cost (capital and operational) while respecting
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battery health constraints (depth of discharge and lifespan)
and ensuring supply-demand balance over hourly intervals.
Through simulation of three scenarios which consider no BESS,
a fixed-size BESS, and an optimally sized BESS, the authors show
that a 150 kWh battery yields the best trade-off, significantly
reducing operating costs compared to a fixed 100 kWh battery.

In [24], a novel framework for minimising voltage deviation and
operational costs in active distribution systems based on multi-
agent deep reinforcement learning is proposed. The research
proposes a multi-agent twin delayed deterministic policy gra-
dient (MATD?3) for solving the complex optimisation problem
that addresses key issues such as renewable intermittency, eco-
nomic operation, and system reliability. The authors propose an
optimisation-based control strategy that schedules power flow
among different resources while considering grid interactions.
Reference [25] introduces a simultaneous economic dispatch
(ED) and OPF optimisation framework. The study optimises
the allocation of the generation units to minimise the opera-
tional costs while ensuring system stability and power balance,
using the mixed-integer non-linear programming (MINLP). In
[26], a multi-objective framework for day-ahead scheduling is
presented. The study uses a quantum-inspired particle swarm
optimisation (QIPSO) approach to simultaneously minimise costs
and emissions. In [27], a two-stage framework for managing
modern distribution networks is presented. In the first stage, the
operational costs are optimised for consumers that participate in
the distribution network operator (DNO), while the second stage
involves a multi-objective optimisation for minimisation of power
losses, voltage deviation, operational costs, and gas emissions
using a combination of technique for order of preference by
similarity to ideal solution (TOPSIS) and elephant herding opti-
misation (EHO) techniques. In [28], the imperialist competitive
algorithm and GA are used for optimisation of voltage deviations
in microgrids through the DR strategy. The study suggests man-
aging load based on electricity prices and voltage deviation at the
nodes. However, the study does not investigate the power balance
and operational costs in the microgrid. The study conducted in
[29] used combined GA and model-predictive control (MPC) to
minimise the cost of energy and power imported from the grid.
In [30], an EMS for an islanded microgrid, equipped with PV
panels, fuel cells (FCs), microturbine (MT), and gas engine (GE),
is presented. The study uses mixed-integer linear programming
(MILP) for simultaneous optimisation of operational costs and
voltage deviations. The cost functions include operational costs
of DER units for generation of active and reactive power and
costs of RES power generation and load-shading expenses. In
[31], a MILP approach is used to reduce the operating costs,
considering energy losses, environmental impacts, and DR in
microgrids. The study incorporates multiple generation sources,
including PVs, wind turbines (WTs), FC, MT, DGs, and BESS. The
study analyses microgrids working in both grid-connected and
islanded mode. The multi-objective optimisation focuses on ED,
determining the optimal operating capacity of power generators
and storage systems. The study considers voltage levels as one
of the constraints. In [32], the joint minimisation of operational
cost and voltage deviation in grid-tied unbalanced microgrids,
incorporating distributed generation (PV, DG, and WT), battery
systems, and EVs, is analysed. Their contribution lies in applying
a ladder spherical evolution (LSE) search algorithm to this
multi-objective problem while modelling the system with a full

3-phase unbalanced power flow framework, thereby capturing
more realistic network constraints. The approach explicitly deals
with uncertainties in generation and load, and the authors report
that their method achieves substantially lower costs compared
to alternative metaheuristic approaches. The research conducted
in [33] proposes a novel multi-objective optimisation framework
for EV-integrated distribution grids, addressing challenges such
as energy losses, procurement costs, load shedding, and voltage
deviations. The model proposed employs the hiking optimisation
algorithm (HOA), which utilises an adaptive search mechanism
based on Tobler’s hiking function to enhance exploration and
avoid local optima. Simulations on an IEEE 33-bus distribution
grid demonstrate that integrating EVs leads to a reduction in
operational costs, a decrease in energy losses, a reduction in load
shedding, and an improvement in voltage deviations compared
to scenarios without EVs. The paper [34] aims to optimise
the voltage fluctuations and power losses caused by integrating
RES into the power grid. On the demand side, the integrated
coordination of DR following time-of-use electricity prices, on-
load tap changers, and switched capacitor banks in a flexible
interconnected distribution network maximises the consumers’
satisfaction, while load variance is minimised. Using a fuzzy-
transitive-closure method (FTCM) to segment periods and a
multi-objective NSGA-II optimiser, the authors aim to minimise
both operating costs and voltage deviation. In this way, the paper
aims to construct a demand-supply coordinated optimal scheme
for interconnected distribution networks.

A summary of related studies is presented in Table 1, highlighting
the optimisation techniques employed, the objectives considered,
and the types of distributed energy resources (DERs) and test
systems used. From the presented, it can be concluded that the
OPF problem in microgrids is analysed from many different
aspects, applying different optimisation techniques, including
simultaneous optimisation of operational costs and emissions,
optimisation of operational costs including DRP and optimisation
of operational costs and voltage deviations. The majority of the
work is applied on low-voltage toy microgrids or the IEEE 33-bus
system, without consideration of European low-voltage feeders
that better reflect community microgrid configurations. Addi-
tionally, the research that proposes a multi-objective optimisation
of operation costs and voltage deviations is limited to a small
number of DERs incorporated.

To address this gap in the literature, the present study introduces
an MGES-GA approach that jointly optimises costs and voltage
deviations, incorporates a wide range of DERs (PV, WT, FC, MT,
BESS, and power grid trade), and applies the methodology on a
modified IEEE European LV feeder, as well as the IEEE 33-bus
network.

The MGES-GA enhances traditional GA by selecting top-
performing individuals for breeding while also re-evaluating the
lower performing individuals to preserve population diversity and
mitigate premature convergence. The proposed algorithm is built
upon the enhanced genetic algorithm (EGA) that was presented
in [35], by refining the selection mechanism to improve diversity
and convergence of the optimisation process.

The proposed optimisation method is applied to a representative
microgrid incorporating PVs, WTs, BESS, an FC, and an MT.
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TABLE 1 | Literature review.
Objective(s)
Optimisation Cost Voltage System/ RES
Ref. method optimisation optimisation case study considered Main contributions
[17] Improved GA v X Grid-connected PV, WT, BESS Introduces elite and
and PSO multi-microgrid catastrophe thinking for
selection optimisation
[19] Improved AGA v X Grid-connected PV, WT, BESS, Minimisation of microgrid
microgrid DG operational costs through
energy allocation and
utilisation. There is a voltage
controller on the DC and AC
bus bar
[20] DE-H v X Grid-tied hybrid PV, WT, BESS, Proposes multi-objective
system FC, MT optimisation considering the
impact of the battery
degradation on the operation
costs
[21] MOPSO v X Residential PV, WT, BESS Optimisation considers the
microgrid operation costs of the RES
and their availability
[22] IMODE v X Typical PV, WT, BESS, Simultaneous optimisation of
low-voltage FC, MT costs and emissions is
grid-connected performed, considering
microgrid various equality and
inequality limitations
[24] MATD3 v v IEEE 33-bus PV, WT, BESS, Proposes a framework for
and 69-bus DG optimising power
distribution management of BESS and
networks DGs to reduce dependency on
the external grid and ensure
voltage stability
[25] MINLP v v Single-bus PV, WT, BESS, Proposes a framework for
islanded and CHP, DG, joint ED and OPF, analysing
three-bus Natural gas active and reactive power
grid-tied unit through busses and
microgrids maintaining voltage stability
[26] QIPSO v X Grid-connected PV, WT, BESS,  Proposes a novel PSO-based
microgrid FC,MT algorithm for balanced cost
and emission reduction
[27] TOPSIS and v v IEEE 33-bus PV, WT, DG Implements DRP for
EHO network maximising DNO profit and
customers’ power
curtailment, and
multi-objective optimisation
to reduce energy losses,
voltage deviation, total
operational cost, gas
emissions, and maximise the
voltage stability index
[29] GA and MPC v X Hybrid PV, WT, BESS, Cost optimisation and
microgrid FC reducing the carbon footprint,
considering battery
degradation and reduced
resilience on the main grid
(Continues)
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TABLE 1 | (Continued)
Objective(s)
Optimisation Cost Voltage System/ RES
Ref. method optimisation optimisation case study considered Main contributions
[30] MILP v v Islanded PV, WT, MT, Multi-objective optimisation
microgrid FC, GE of voltage deviations,
operational costs, and
pollution. The method aims to
minimise the absolute
magnitude of the expected
voltage fluctuations compared
to the steady-state values
before power fluctuations
occur
[31] MILP v X Islanded and PV, WT, BESS, The multi-objective
grid-connected FC, MT, DG optimisation focuses on
microgrids minimising the operating
costs and optimising the
storage capacity
[32] LSE v v Grid-tied PV, WT, BESS, Considers two objective
unbalanced DG, EV functions for the
microgrids minimisation of the operating
costs and the minimisation of
voltage deviations of
small-scale grid-connected
unbalanced microgrids
[33] HOA v v IEEE 33-bus PV, WT, BESS,  Multi-objective optimisation
network DG, EV that combines to minimise
the overall operational cost,
which includes energy losses,
electricity purchase, load
shedding, distributed
generation, energy storage,
and electric vehicle operation,
all over 24 h
[34] FTCM and v v IEEE 33-bus PV, WT, Coordinated demand-supply
NSGA-II network capacitor optimal operation considering
banks DR on the consumers’ side
and operational costs and
voltage deviation
minimisation on the supply
side
[35] EGA v v Grid-connected PV, WT, BESS  Simultaneous optimisation of
microgrid, IEEE operational costs and voltage
European deviations, considering a
low-voltage small-scale grid-connected
network microgrid with prosumers
Present MGES-GA v v IEEE European PV, WT, BESS, Proposes a novel selection
work low-voltage FC, MT method for GA.

network, IEEE
33-bus network

Multi-objective optimisation
considering operational costs
and voltage deviations
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The EMS oversees energy transactions with the grid, determining
whether to store or sell excess energy and whether to draw from
the grid or the BESS during shortages, all while maintaining
voltage stability at key nodes, including the point of common
coupling (PCC).

Comparative results with EGA and DE with heuristic (DE-H)
demonstrate the superiority of MGES-GA. It achieves cost reduc-
tions of 4.16% and 3.19% relative to DE-H and EGA, respectively,
while also producing more stable voltage profiles. This confirms
MGES-GA’s effectiveness in addressing the dual objectives of
operational cost minimisation and voltage control in complex
grid-connected community microgrid systems.

The main contributions of this research can be summarised as
follows:

1. A new variant of the GA is proposed, incorporating a
re-evaluation selection mechanism that enhances popula-
tion diversity by allowing low-performing individuals to
mix genes with elite solutions. This addresses premature
convergence and improves exploration of the solution space.

2. The algorithm is applied to the simultaneous optimisation
of operational costs and voltage deviations in grid-connected
microgrids, integrating both economic and technical objec-
tives that are often studied independently.

3. The method is verified by a comparison with state-of-the-art
optimisation algorithms (EGA, NSGA-II, DE-H, and IDE) for
a single-objective optimisation and with (EGA, NSGA-II, and
MATD?3) for a bi-objective optimisation.

4. The algorithm is implemented on a modified IEEE Euro-
pean low-voltage feeder representing a community microgrid
with multiple distributed generation and storage resources,
extending beyond the standard IEEE radial feeders com-
monly used in the literature.

5. Thealgorithm is also tested on a modified IEEE 33-bus system
benchmark to analyse its performance on a larger system.

2 | The Problem Definition

Today’s microgrids consist of many different generators on RES
(PVs, WTs, hydro, biomass, etc.), consumers and prosumers,
as well as storage systems (batteries, hydro-pumped storage,
and hydrogen storage) and backup generators (DGs, FCs). This
means that the microgrids could be either quite simple or very
complex systems that require proper management to operate
in balance with themselves and with the power grid to which
they are connected. Complex systems have multiple variables
that need to be considered in the optimisation process. Chief
among these is the need to simultaneously minimise operational
costs and maintain voltage stability across the system. These
two objectives often conflict, making their joint optimisation a
complex, multi-objective problem. Additionally, the intermittent
nature of RES and dynamic pricing schemes further complicate
energy management. Therefore, an EMS is a crucial part of
the microgrid’s stable and balanced operation, enabling optimal
usage, storage, and trade with the power grid while meeting all
relevant constraints [36].

This paper analyses the OPF problem of a grid-connected micro-
grid that consists of PVs and WTs, an FC, an MT, and a BESS.
The microgrid trades power with the power grid under defined
conditions and electricity prices. To solve this problem, a mean-
guided elite selection genetic algorithm (MGES-GA) is proposed.
The proposed algorithm considers individuals with fitness scores
higher than the population’s average fitness value to go directly
into the next phase. This explains the mean-guided part of
the algorithm’s name. Those with values below the average are
re-evaluated via recombination with the elite individual. The
offspring with the highest value that also surpass the average
threshold proceed to the next generation; otherwise, they are
discarded. Therefore, the name “elite selection” appears as part
of the algorithm’s name. This double-stage selection improves
the diversity of the population by preserving the high-quality
solutions and improving the quality of the individuals with poor
fitness values.

3 | Problem Solution and Proposed Algorithm
3.1 | Definition of Objective Functions

The algorithm integrates two functions: (f;), the cost function that
minimises the costs of the microgrid’s operation, and (f,), the
voltage drop function that minimises the voltage drop in the PCC,
presented with Equations (1) and (2).

f1=min { 2 (@) +Ci@Q) Ar)} )

P, i
f2=min{(7‘~r+%~x>-l—AV},

Vvt € [1,T], Vi [PV, WT, bat, FC, MT, grid, load], @)

j € [WT, grid]

The optimisation employs the weighted-sum method to define
the correlation between the two objective functions, as shown in
Equation (3).

g =min(fy, ) =wf, + (1 -w) f,, Yw €[0,1] 3

The cost function considers the microgrid’s revenue from selling
power to the power grid when there is excess power and the
revenue from power production from the PVs, WTs, FC, MT,
and the battery discharging, while the costs for the microgrid’s
operation include charging the battery and buying power from the
power grid, as shown in Equation (4). Equations (5)-(8) present
how each of these costs is calculated.

NgrEs Npg

C.(P)= 2, Cresit + Cyiar + Z Cooi, ¢ + Crarer VE € [1,T]
i1 i1
(C))

1= L

NRrEgs

2 CRES,t = va,t : cpv + Pwind,t * Cwind» vVt € [1’ T] (5)
i=1

Pgn'd,t * Couys Pgn’d,t >0

C = Pgrid,t * Csell» Pgrid,t <0 ’ vVt e [I’T] (6)

0’ P grid,t =0

grid,t
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Npg

Prc
Z Cpor = (_Crun,Fc + PrcCrmaint Fe
; Nrc

P
+ (,’}_://::Crun,MT + PMTCmaint,MT> ’ vt € [LT] (7)

Prats - Coas Poary >0
Cbal,l = Pbat,t : cbat’ Pbat,z < O’ Vt € [LT] (8)
03 Pbat,l =0

The battery can be charged only if there is excess power in the
system and the SOC is below the maximum value; otherwise, it
discharges. The SOC in each hour is calculated with Equation (9),
whether the battery is being charged or discharged [37, 38].

SOC (t) + Pbat,i’?ch? Pbat <0

Pai
SOC (f) — =24,

dis

SOC (f)

SOC(t+1) =

Py >0 )

Pbat=0

The power balance in the microgrid depends on the power
generation from the RES (PVs and WTs), BESS charge and
discharge, power from the FC and MT, as well as the trading with
the power grid, as described in Equation (10).

T T
Z(va,t + Pwind,t + Pbat,t + PFC,I + PMT,I + Pgrid,t) = 2 Pload,t

t=1 t=1
(10)
In this paper, it is assumed that the FC and MT can provide power
at all times under defined costs. The voltage variation limits to
the consumers are defined with Equation (11), and the voltage
limits to the installed generators (PVs, WT, BESS, FC, and MT)
are defined with Equation (12).

Vload,min < Vload,i S Vload,ma)w Vie [O’T] (11)

VDER,min S VDER, n,i S VDER,max’

Vi€ [0,T] A ¥n € [PV, WT,bat, FC, MT] (12)

where V),,4; denotes the voltage of the consumers that is located
further from the PCC of the transformer station for each hour,
and Vppg,; denotes the voltage in the nodes where each of the
generators (PVs and WT), BESS, FC, and MT is connected. The
voltage drop calculation is presented with (13).

SP(Orl+YQ,t)xl
V. :
Vi € [1,T], Vi [PV, WT, bat, FC, MT,grid,load], ~ (3

V(t,i+1) =V (i) +

Jj € [WT, grid]

3.2 | Genetic Algorithm Modification

This section describes the core structure of the MGES-GA. In
Figure 1, the flowchart of the proposed algorithm is presented,
and in Figure 2, a flowchart of the MGES-GA is shown.

3.2.1 | Initialisation

In the beginning, the algorithm retrieves data for the power
consumption (load), power production from the PVs and WTs,
and the battery’s SOC. Additionally, the technical constraints
are defined. Then, for each of the changing parameters, which
include the power drawn from the FC, the MT, the BESS, and the
interactions with the power grid, a hundred randomly generated
values that are in the defined range are assigned. This phase is
called the initialisation state.

3.2.2 | Fitness Evaluation

In the next step, each of the changing parameters is tested
for the randomly assigned value on the optimisation functions
with respect to the constraints. The results of how well each
of the values of the changing parameters performed represent
the fitness evaluation scores, which are scaled by rank scaling.
The output of the optimisation are values for how much of the
generated power by each of the distributed generators will be used
to supply the consumers, how much power will be stored or taken
from the battery, how much power will be generated from the FC
and/or MT, and how much power will be traded with the grid.

3.23 | Selection

In the selection process, the individuals are being selected to
serve as parents and generate the next generation, based on their
fitness values, following defined selection criteria. In standard
GA, individuals are often selected based on their fitness score
following fitness-proportionate selection. That means that the
fittest individuals have a higher chance to be selected, while the
individuals with a lower fitness score may not be considered
adequate to proceed to the breeding process.

In the proposed approach, the individuals with a fitness score
higher than the population’s average fitness value are promoted
directly to the next phase. The remaining individuals, with values
below the average, undergo a secondary evaluation. Specifically,
each individual is paired with the elite individual, the one with
the highest fitness score, to perform a single-point crossover.
Then, among the two offspring created, the one with the higher
value is selected and compared with the average value. If the
offspring meets or exceeds the average fitness value, it proceeds
to the next generation; otherwise, it is discarded. This strategy
ensures that only high-rated individuals and individuals with
sufficient improvement potential are kept, while promoting both
convergence efficiency and population diversity.

3.2.4 | Crossover

After the selection process, the individuals that proceeded for-
ward are subject to a crossover. In this paper, a scattered crossover
is performed. This type of crossover suggests creating an offspring
while taking the genes with value 1 from the first parent and the
genes with value 0 from the second parent. The set of offspring
s is called the children generation, and it is the generation
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FIGURE 1 | Flowchart of the proposed algorithm.

that proceeds to the final phase where the optimal solution is
conducted.

3.2.5 | Mutation

The children generation also consists of mutations. The muta-
tions are created by some of the parents. In this paper, the
mutation rate is 0.05. The value is selected for the utmost
performance of the algorithm.

3.2.6 | Stopping Criteria

The algorithm stops performing when it reaches the maximum
number of iterations or if the solution does not converge further.
4 | Simulation

The proposed optimisation methodology with an MGES-GA is
tested on a grid-connected microgrid with PVs, WTs, FCs, MTs,

MGES-GA(min{f1,2},Pyy gis,
Prc maxPMT max)

MGES-GA(min{f1,£2},Poy cn,

PFC mm:PMT mln)

End

and residential consumers. Additionally, a BESS, with a rated
capacity of 222 kWh, supports the microgrid. The minimum
and maximum capacities of the BESS are 40 and 200 kWh,
respectively. At the beginning of the analysed period, the battery
is set to the minimum value. The microgrid trades with the power
grid under defined electricity prices, and the power exchange is
limited to 50 kW of power sold and 100 kW of power bought from
the grid. For testing purposes, it is assumed that the purchase and
sale of electricity prices are the same.

The simulation analyses two benchmark systems to demonstrate
the trend of MGES-GA performance. The simulation of the pro-
posed system is analysed on an IEEE European low-voltage feeder
in Section 4.1 and on the IEEE 33-bus network in Section 4.2.

4.1 | European Low-Voltage Test Feeder
Simulation

The microgrid test data is taken from [20], and the grid topology
is the modified IEEE European low-voltage test feeder, based on
the one presented in [39]. The analysis considers a period of 24 h.
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FIGURE 2 | Flowchart of the proposed modification of the genetic algorithm.

The microgrid test system, with nodes numbered according to the
low-voltage test network, is presented in Figure 3.

The simultaneous charging and discharging of the BEES, as
well as simultaneous buying and selling power to the grid, is
not feasible. The EMS that controls the microgrid’s operation,
besides the initial input data, also receives real-time information
about the system’s performance and the electricity prices. The
system’s input data are presented in Figure 4, and the equipment’s
technical constraints and maintenance costs are presented in
Table 2.

4.2 | IEEE 33-Bus Network Simulation

To evaluate the generalisability of the proposed MGES-GA,
additional tests were performed on the modified IEEE 33-bus

network, which includes a larger number of nodes and dis-
tributed generation units compared with the European LV test
feeder.

The grid topology is based on the modified IEEE 33-node network
presented in [24], which represents a symmetrical system with
BESS, DERs, and DGs connected to multiple nodes. Additionally,
the proposed algorithm was tested on the same topology, but
instead of the DGs, FC and MT were placed as presented in
Figure 5. The active power constraints and BESS capacity are
given in Table 3. The analysis spans 24 h.

The input data for the power generated from the PVs and the
WTs, as well as the load curve and electricity prices, are taken
from [24] and presented in Figure 6. The electricity prices for
purchasing electricity from the grid vary by the following scheme:
2.6369 THB/kWh from 22:00 to 9:00, and 5.7982 THB/kWh from
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FIGURE 3 | Modified IEEE European low-voltage test feeder.

TABLE 2 | Technical constraints of the installed equipment.

Operational cost Maintenance cost
Min Max (€ct/kWh) according (€ct/kWh) according Cost ($/kWh)
Parameter (kW) (kW) to [20] to [20] according to [22]
PV 0 25 — 0.08 2.584
WT 0 15 — 0.11 1.073
BESS -30 30 — 0.02 0.38
FC 3 30 0.2 0.04 0.294
MT 6 30 0.4 0.12 0.457

TABLE 3 | DERSs’ active power and capacity at various nodes in the modified IEEE 33-bus system.

Total number Node Active power Capacity

Type of DER of units connection limits (KW) (kWh)
BESS 6 (5,10,14,19,24,31) [-1000,1000] 25,000
PV 4 (11,22,23,29) [0,2609.07] /
WT system 2 (6,32) [0,235.61] /
I variant DG 2 (16,26) [0,1000] /
II variant FC 1 (16) [0,1000] /

MT 1 (26) [0,1000] /
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FIGURE 4 | System input data [20, 22].

9:00 to 22:00. The electricity selling price is fixed throughout the
day, and it is 17.15 THB/kWh.

5 | Results and Discussion
5.1 | Results
5.1.1 | Single-Objective Function

The results obtained from the simulation of the MGES-GA are
presented in Figure 7. The negative values for the battery indicate
charging, and the negative values for the grid power indicate
power being sold to the utility grid.

It can be concluded that when the price of electricity is lower than
the costs for using power from the FC and MT, the microgrid buys
power from the grid to satisfy the consumption and to charge the
battery. In times of expensive electricity prices, and when buying
power from the utility grid is the costliest solution, the microgrid
sells the excess power to the grid and discharges the battery.
However, when a sudden drop of price occurs, the microgrid
buys power to satisfy the consumption and charge the battery
for further usage and uses the least costly resources available (FC
and/or MT).

Generally, electricity prices are lowest in the evenings, when the
power consumption is also at the lowest point, and the proposed
algorithm takes that into consideration. Therefore, by the end of

6 T T ' T T 10000
[ Electricity buying prices
PV 49000
5 || === WT
e |_oad 18000

= 7000
<4
= 6000 s
172 2
83 5000 %
: g
B 4000 &
B2
Q
= 3000
2000
1
1000
0 0
0 5 10 15 20
Time [h]

FIGURE 6 | Input data for PV and WT power generation, load, and
electricity price variation.
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FIGURE 7 | Optimal economic dispatch of the microgrid, using
MGES-GA.

the day, it tends to drain the battery to a minimum and start the
next day (01:00 h) with an empty battery.

In Table 4, the power traded with the grid and the total oper-
ational costs are presented. The results are compared with an
enhanced version of GA that deals with the same microgrid
optimisation problem, presented in [35], and a state-of-the-art
differential evolutionary algorithm (DE-H), presented in [20],

PV4 BESS6 | WT2
) 15
R 1

BESS1 WT 1

FIGURE 5 | Modified IEEE 33-node test system.

BESS2 PV BESS 3 FC
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TABLE 4 | Comparison of the obtained results using MGES-GA,
EGA [35], and DE-H [20].

Optimisation Fitness Energy production
method value (€ct) cost (€ct)
MGES-GA 518.26 1096.08
EGA 545.05 1118.85
DE-H 550.6 1160.6
Power scheduling
30

Power from battery, FC and MT [kW]
Power trade with the grid [kW]

30 | . L | 50

Time [h]

FIGURE 8 | Power scheduling using MGES-GA without limitations
of upstream exchange.

that analyses energy production costs on a similar microgrid
system. For a fair comparison with the DE-H algorithm, a single-
objective function was considered, not taking into consideration
the voltage variations.

Additionally, the study conducted in [22] evaluates a comparable
microgrid system under two operational scenarios: one without
limitations on upstream power exchange (from +100 kW to
—50 kW) and another restricting grid power exchange to +£30 kW.
The results from implementing the proposed MGES-GA on the
system analysed in [22] are presented in Table 5, alongside those
obtained with the IDE method for operational cost optimisation.

In Figures 8 and 9, the power scheduling when the upstream
power exchange is not limited and when the upstream exchange
is limited is presented, respectively.

30 Power scheduling

30

25

S 201

Power trade with the grid [kW]

Power from battery, FC and MT [KW
é o o
=
==
— =

¥ ‘
-10 - \ 4 | 1 2%
X S .
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0 ) 10 15 20 25
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FIGURE 9 | Power scheduling using MGES-GA with limitations of
upstream exchange.
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FIGURE 10 | Variations of the objective functions’ values with
respect to the weight factor w.

5.1.2 | Multi-Objective Optimisation

5.1.2.1 | IEEE European Low-Voltage Feeder. The multi-
objective optimisation considers both the operational costs and
voltage variations in the microgrid. Figure 10 illustrates the
variation of the two objective functions, in correlation to the
weighting factor w, used in the weighted-sum formulation. As
the weight assigned to the cost objective increases, the resulting

TABLE 5 | Comparison of MGES-GA and IDE performance in operation cost optimisation.

Without limitations of upstream

With limitations of upstream

exchange exchange
Optimisation Fitness Standard Fitness Standard
method value ($) deviation ($) value ($) deviation ($)
MGES-GA 335.229 40.51 544.11 26.01
IDE 618.91 45.22 661.37 10.81
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FIGURE 11 | Pareto front illustrating the trade-off between opera-
tional cost and voltage deviation obtained using the MGES-GA.

operational cost decreases accordingly, while the voltage devia-
tion increases, demonstrating the expected trade-off between the
two objectives. The point corresponding to w = 0.5 is highlighted,
representing the balanced case in which both objectives con-
tribute equally. This weight configuration is selected for further
analysis, since it provides a representative compromise solution
between economic efficiency and voltage quality.

The Pareto front when using MGES-GA is presented in Figure 11.
The MGES-GA was executed for each weight value, which was
varied from O to 1 in steps of 0.05. The resulting Pareto front
presents the mean operational costs and mean voltage deviation
from the 24-h analysis for each weight factor. The Pareto front
appears linear due to the proportional relationship between
operational cost and voltage deviation across the entire operating
range.

Additionally, the proposed algorithm is compared with NSGA-
I, as one of the most commonly used optimisation algorithms
for microgrid optimisation. Figure 12 shows the Pareto front
obtained when using MGES-GA, EGA, and NSGA-II indepen-
dently. The three algorithms demonstrate the expected trade-off
relationship, as lower operational costs are generally associated
with higher voltage deviations. However, notable differences
exist in the shape, spread, and smoothness of the Pareto
fronts, reflecting each algorithm’s convergence and diversity
capabilities.

The results show that when using MGES-GA, there is lower
voltage deviation (0.00022 or less); hence, there is better voltage
stability compared to EGA, when the highest voltage deviation is
0.001, and NSGA-II, when the highest voltage deviation is 0.028.

Regarding the costs, the highest operation costs are obtained
when using EGA, and the lowest when MGES-GA is applied.
However, since the voltage deviation is significantly higher when
using EGA, it can be concluded that MGES-GA outperforms EGA
and NSGA-IL.
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FIGURE 12 | Pareto front comparison between MGES-GA, EGA,
and NSGA-II.
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FIGURE 13 | Optimal DERs scheduling in an IEEE 33-bus system
(with two DGs).

5.1.2.2 | IEEE 33-Bus System. The proposed algorithm was
also tested on a more complex microgrid system on a benchmark
IEEE 33-bus system, as the one presented in Figure 5. The
performance of the MGES-GA is compared with the performance
of MATD3 presented in [24], because its formulation addresses
the same multi-objective microgrid scheduling problem on the
modified IEEE 33-bus test system and uses similar objective func-
tions and constraints (operational costs and voltage deviations).
Therefore, MATD3 is directly comparable. The results from the
simulation are presented in Tables 6 and 7, and the comparison
shows that MGES-GA excels MATD3 in total system profit and
average voltage deviation.

The results of power scheduling are presented in Figures 13
and 14, with DGs and with FC and MT units, respectively. It can
be noted that during the high-tariff periods, the microgrid sells
the excess power to the grid and does not engage the DGs and FC
and MT units much during that period. Instead, the power stored
in the battery is used to satisfy the power demand.
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TABLE 6 | Comparison of the operation costs and system profit under two different optimisation methods.

Model MATD3 MGES-GA (DGs) MGES-GA (FC+MT)
Operational costs BESS (THB) —32,038.99 —15,102 —16,411
Operational costs DGs (THB) —25,968.71 —5197.9 /
Operational costs FC and MT (THB) / / —5295.8
System profit (THB) 782,781.56 992,150.28 1,012,398.81
Total operation costs (THB) —56,837.85 —20,270 —21,676

Total system profit (THB) 725,943.71 971,879.92 990,722.39

TABLE 7 | Comparison of the voltage deviations under different
optimisation methods.

Average voltage Standard
Method deviation (p.u.) deviation (p.u.)
MATD3 0.0042 0.0065
MGES-GA (DGs) 0.21 x 107* 02 x 107
MGES-GA (FC+MT) 0.05 x 10~ 0.023 x 10~
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FIGURE 14 | Optimal DERs scheduling in an IEEE 33-bus system
(with FC and MT units).

Figure 15 represents the average Pareto front of the 24-h period
when MGES-GA is applied to the modified IEEE 33-bus net-
work. The resulting Pareto front shows a clear and continuous
trade-off between the two objectives, demonstrating that MGES-
GA preserves its convergence characteristics and ability to
identify non-dominated solutions in a higher dimensional search
space. The algorithm maintained stable performance with mod-
erate increases in computational time, confirming its suitability
for larger scale microgrid optimisation problems.

5.2 | Discussion of the Results

The results presented in Table 4 show that MGES-GA achieves
improvement in the final solution, resulting in 5.87% and 4.9%
lower fitness values compared to DE-H and EGA, respectively.
This means that more power is sold to the utility grid and
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FIGURE 15 | Pareto front of MGES-GA tested on a modified IEEE
33-bus system.

the consumption is mostly managed by the DERs connected
to the microgrid. Additionally, MGES-GA reduces the energy
production cost compared to the IDE algorithm, indicating that
the proposed algorithm maintains competitive performance with
the state-of-the-art algorithms in single-objective optimisation.
However, since the primary goal of MGES-GA is to optimise both
operational costs and voltage deviation, an additional comparison
in bi-objective optimisation is performed. Results presented in
Figure 12 show that MGES-GA ensures a more stable voltage
for end-consumers and shows better performance than EGA
and NSGA-II in this comparison by producing lower voltage
deviations at comparable costs. This means that fewer voltage
magnitude deviations are detected throughout the microgrid’s
nodes while maintaining the operation costs as low as possible.

The proposed algorithm was also tested on a modified IEEE
33-bus network, incorporating different types of DERs and a
storage system. In comparison to the MATD3 algorithm, MGES-
GA provides lower costs and voltage deviations, as shown in
Tables 6 and 7. Additionally, the analysis of incorporating an FC
and an MT, compared with the two-DG case scenario, shows an
increase in total profit but, at the same time, an increase in costs
and voltage deviation.

The overall results highlight the improvements MGES-GA pro-
vides, show its effectiveness as a multi-objective optimisation
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algorithm, and confirm its generalisability to larger, more com-
plex microgrid systems.

6 | Conclusion

This paper presented a novel MGES-GA for the joint optimisation
of operating costs and the voltage drop variations of the grid-
connected microgrids. The primary objective is to maximise
the internal use of RES, store excess generation efficiently, and
minimise operational costs, while maintaining voltage within
acceptable limits. Surplus energy is sold to the grid when storage
is full, whereas energy deficits are resolved through cost-effective
decisions between storage discharge and grid purchases. The key
improvement in the proposed algorithm lies in its modification
of the selection process. The improvement enables both the
more competitive and less competitive individuals to reproduce
the next generation, enhancing diversity and convergence while
providing a better solution to the problem.

Simulation results on a modified IEEE European low-voltage
test feeder show that MGES-GA performs better than both
conventional and state-of-the-art algorithms in single-objective
cost minimisation, achieving lower fitness values and reduced
energy production costs while preserving the grid trading pattern.
In the bi-objective case, in the comparative analysis of Pareto
fronts, it can be concluded that MGES-GA delivers superior
voltage regulation with lower operational costs compared to EGA
and NSGA-IIL.

The proposed MGES-GA was further evaluated on a modi-
fied IEEE 33-bus distribution network and compared with the
MATD3 algorithm reported for a similar case study. The results
demonstrate that MGES-GA achieves improved results compared
to MATD3 in both economic and technical performance by
obtaining lower operational costs while maintaining smaller
voltage deviations.

The comparative results between the base and extended test
systems highlight the superior convergence and Pareto front
diversity achieved by MGES-GA. These outcomes demonstrate its
effectiveness in balancing conflicting objectives and its capacity to
generalise well to larger, more heterogeneous microgrids.

Future work will extend the test system and evaluate the per-
formance of the MGES-GA on larger networks, including EV
integration and prosumers.

Nomenclature

g objective function

A operational costs function to be minimised

b voltage drop function to be minimised

T analysed period of time

At time interval for data sampling

C total costs of the microgrid

Ppy power generated from the photovoltaic generator

Py power generated from the wind generator

Ppat power charged/discharged from the battery

Pgiid power bought/sold from/to the grid

Pgc power discharged from the fuel cell

Pyr power discharged from the microturbine

Pioad load of the consumers

Q reactive power

Nch efficiency of charging the battery

Ndis efficiency of discharging the battery

Cpy costs for power generation from the photovoltaic
generator

Cwind costs for power generation from the wind generator

Corid costs for buying/selling the power to the grid

Chat costs for charging/discharging the battery

Crun,FC operational costs of the fuel cell

Crun,MT operational costs of microturbine

Cmaint,FC maintenance costs of the fuel cell

Craint,MT maintenance costs for microturbine

Vi rated voltage

AV permitted voltage drop

R longitudinal active resistance, Ohms/meter
longitudinal reactance, Ohms/meter

L distance between nodes

nFc efficiency of fuel cell

vt efficiency of microturbine
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