
AGROSYM)

XVI International Scientific Agriculture Symposium
"Agrosym 2025"

Jahorina, October 2-5, 2025

BOOK OF PROCEEDINGS

XVI International Scientific Agriculture Symposium "AGROSYM 2025"

Jahorina, October 2 - 5, 2025

Impressum

XVI International Scientific Agriculture Symposium "AGROSYM 2025"

Book of Proceedings Published by

Faculty of Agriculture, University of East Sarajevo, Republic of Srpska, Bosnia and Herzegovina Faculty of Agriculture, University of Belgrade, Serbia

Mediterranean Agronomic Institute of Bari (CIHEAM - Bari) Italy International Society of Environment and Rural Development, Japan

Balkan Environmental Association (B.EN.A), Greece

Centre for Development Research, University of Natural Resources and Life Sciences (BOKU), Austria

Perm State Agro-Technological University, Russia

Voronezh State Agricultural University named after Peter The Great, Russia

Tokyo University of Agriculture, Japan

Jiangsu University, People's Republic of China

Shinshu University, Japan

Faculty of Agriculture, University of Western Macedonia, Greece

Arid Agricultural University, Rawalpindi, Pakistan

National School of Agriculture, Meknes, Morocco

Enterprise Europe Network (EEN)

Faculty of Agriculture, University of Akdeniz - Antalya, Turkey

Selçuk University, Turkey

Department of Agriculture, Food, and Environment, University of Catania, Italy

University of Agronomic Sciences and Veterinary Medicine of Bucharest, Romania

Slovak University of Agriculture in Nitra, Slovakia

Ukrainian Institute for Plant Variety Examination, Kyiv, Ukraine

National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine Valahia University of Targoviste, Romania

National Scientific Center "Institute of Agriculture of NAAS", Kyiv, Ukraine

Saint Petersburg State Forest Technical University, Russia

Northwest Normal University, People's Republic of China

University of Valencia, Spain

Faculty of Agriculture, Cairo University, Egypt

Tarbiat Modares University, Iran

Chapingo Autonomous University, Mexico

Cangzhou Normal University, People's Republic of China

Department of Agricultural, Food and Environmental Sciences, University of Perugia, Italy

Higher Institute of Agronomy, Chott Mariem-Sousse, Tunisia

Watershed Management Society of Iran

Institute of Animal Science - Kostinbrod, Bulgaria

University Joseph Ki-Zerbo, Burkina Faso

University Abdou Moumouni, Niger

SEASN- South Eastern Advisory Service Network, Croatia

Faculty of Economics Brcko, University of East Sarajevo, Bosnia and Herzegovina

Biotechnical Faculty, University of Montenegro, Montenegro

Faculty of Agriculture, University of Zagreb, Croatia

Institute of Field and Vegetable Crops, Serbia

Institute of Lowland Forestry and Environment, Serbia

Institute for Science Application in Agriculture, Serbia
Agricultural Institute of Republic of Srpska - Banja Luka, Bosnia and Herzegovina
Maize Research Institute "Zemun Polje", Serbia
Faculty of Agriculture, University of Novi Sad, Serbia
Institute for Animal Science, Ss. Cyril and Methodius University in Skopje, Northern Macedonia
Academy of Engineering Sciences of Serbia, Serbia
Balkan Scientific Association of Agricultural Economics, Serbia
Institute of Agricultural Economics, Serbia

Editor in Chief

Hamid El Bilali

Tehnical editors

Sinisa Berjan Milan Jugovic Rosanna Quagliariello

Website:

http://agrosym.ues.rs.ba

CIP - Каталогизација у публикацији Народна и универзитетска библиотека Републике Српске, Бања Лука

631(082)(0.034.2)

INTERNATIONAL Scientific Agriculture Symposium "AGROSYM" (16; 2025; Jahorina)

Book of Proceedings [Електронски извор] / XVI International Scientific Agriculture Symposium "AGROSYM 2025", Jahorina, October 2-5, 2025; [editor in chief Hamid El Bilali]. - Onlajn izd. - El. zbornik. - East Sarajevo: Faculty of Agriculture, 2025

Системски захтјеви: Нису наведени. - Način pristupa (URL): Način pristupa

(URL): https://agrosym.ues.rs.ba/article/showpdf/BOOK OF PROCE EDINGS 2025 FINAL.pdf. - Ел. публикација у ПДФ формату опсега 1121 стр. - Насл. са насловног екрана. - Опис извора дана 20.11.2025. - Библиографија уз сваки рад. - Регистар.

ISBN 978-99976-070-5-8

COBISS.RS-ID 14353894

STUDY OF THE INFLUENCE OF STORAGE PERIOD ON THE ACCUMULATION OF HYDROXYMETHYLFURFURAL IN CANNED PRODUCTS BASED ON CARROT Zinaida YEGOROVA, Anastasia NAVROTSKAYA, Angelina BUTKO, Tatiana SHACHEK
THE HARMFULNESS OF LEAFMINER NAPOMYZA GYMNOSTOMA Loew (Diptera, Agromyzidae) IN BIJELJINA AREA (BOSNIA AND HERZEGOVINA) Dejana STANIĆ, Jovana OBRADOVIĆ
INFLUENCE OF GROWING LOCATION ON BIOACTIVE COMPOUNDS AND ANTIOXIDATIVE ACTIVITY OF 'CLERY' STRAWBERRY FRUITS IN HERZEGOVINA Maja KAZAZIC, Emina MEHIC, Amna OMANOVIC
ASSESSMENT OF NATURAL RADIOACTIVITY LEVELS IN AGRICULTURAL SOIL AND TRANSFER IN RICE IN THE KOCHANI REGION, NORTH MACEDONIA Aleksandra ANGELESKA, Radmila CRCEVA NIKOLOVSKA, Elizabeta DIMITRIESKA STOJKOVIKJ, Ljupco ANGELOVSKI, Igor ESMEROV, Risto UZUNOV
ASSESSMENT OF RADIOACTIVITY AND RADIOLOGICAL HAZARD FROM NATURAL RADIONUCLIDES CONTAINED IN RICE FROM NORTH MACEDONIA Aleksandra ANGELESKA, Radmila CRCEVA NIKOLOVSKA, Elizabeta DIMITRIESKA STOJKOVIKJ, Igor ESMEROV, Stefan JOVANOV, Ljupco ANGELOVSKI, Risto UZUNOV
SCIENTIFIC AND REGULATORY PERSPECTIVES ON IRRADIATED FOOD: DETECTION STANDARDS AND SAFETY EVALUATION Ljupco ANGELOVSKI, Elizabeta DIMITRIESKA STOJKOVIKJ, Radmila CRCEVA NIKOLOVSKA, Igor ESMEROV, Risto UZUNOV, Sandra MOJSOVA, Aleksandra ANGELESKA
THE ROLE OF RURAL TOURISM IN ADVANCING SUSTAINABLE DEVELOPMENT IN NORTH MACEDONIA Ljupco ANGELOVSKI, Aleksandra ANGELESKA, Radmila CRCEVA NIKOLOVSKA, Snezana DIMITROVSKA, Sandra MOJSOVA, Igor ESMEROV, Elizabeta DIMITRIESKA STOJKOVIKJ
LIST OF SOME INVASIVE INSECTS ESTABLISHED IN NORTH MACEDONIA Stanislava LAZAREVSKA, Sterja NACHESKI, Miroljub GOLUBOVSKI, Blagoj SURBEVSKI
MORINGA OLEIFERA OVERDOSE: ALLELOPATHIC EFFECTS OF HIGH-CONCENTRATION EXTRACT ON BAMBARA GROUNDNUT Abdel Kader NAINO JIKA
VIABLE BIOTECHNOLOGICAL WAYS FOR LEGUMICULTURE: INTEGRATION OF COMPOST AND BIOACTIVE SYSTEMS BASED ON BYOPOLIMERS Valentina-Elena GORGAN, Petronela NECHITA, Gabriela Elena BAHRIM

ASSESSMENT OF RADIOACTIVITY AND RADIOLOGICAL HAZARD FROM NATURAL RADIONUCLIDES CONTAINED IN RICE FROM NORTH MACEDONIA

Aleksandra ANGELESKA*, Radmila CRCEVA NIKOLOVSKA, Elizabeta DIMITRIESKA STOJKOVIKJ, Igor ESMEROV, Stefan JOVANOV, Ljupco ANGELOVSKI, Risto UZUNOV

SS Cyril and Methodius University in Skopje, Faculty of Veterinary Medicine – Skopje, Republic of North Macedonia
*Corresponding author: mizasandra@yahoo.com

Abstract

Studies on radioactivity in consumable food are becoming increasingly important from a safety perspective as it is necessary to estimate the dose of ingestion by the public. For this reason, the focus of this study was on determining the activity concentrations of ²²⁶Ra, ²³²Th, and ⁴⁰K. Thirty-eight rice samples were collected during 2024 from rice fields (city of Kochani) in the Republic of North Macedonia and the samples were analyzed by using a high-purity germanium (HPGe) detector for assessment of natural and artificial radioactivity. The average activity concentrations of ²²⁶Ra, ²³²Th, and ⁴⁰K of the tested samples were 2.17±0.70, 1.78±0.72, and 48.48±1.92 Bg/kg, respectively. No artificial radionuclide was found in any of these samples. The total absorbed dose (D) was 4.10 D (nGy h-1), while the average value of the radium equivalent activity in all samples was 8.10 Bq kg-1, which was less than the maximum permitted value of 370 Bg kg-1. The values of Hex, Hin and $I\gamma$ for the samples were 0.02, 0.027 and 0.064, which are less than one in all samples indicating the harmlessness of the samples. The average activity concentrations of ²²⁶Ra, ⁴⁰K, and ²³²Th (Bq kg-1) in the samples were used to calculate the annual effective dose equivalent (AEDE), whose average value for all samples was 0.005(µSv/y). The average calculated cancer risk due to the intake of the tested radionuclides found in the rice samples was estimated at 0.017, which is within the range of acceptable risk values recommended by USEPA. The results of this study indicate that the intake of radionuclides due to consumption of the mentioned food does not have a harmful effect on public health. These data would be useful for establishing a baseline for the concentrations of natural radioactivity in food products consumed in the Republic of North Macedonia.

Keywords: gamma spectrometry, radiation risk, rice, cancer risk.

Introduction

Researchers study the natural environmental radiation and radioactivity in soils to conduct background checks and detect environmental radioactivity (Angeleska et al., 2023). Radioactivity levels can be used to estimate public dose rates and radioactive contamination, and to predict changes in environmental radioactivity caused by nuclear accidents, industrial activities and other human activities (UNSCEAR,2000). Primordial radionuclides comprise of natural series such as ²³⁸U, ²³²Th, and the ⁴⁰K series, which are usually long-lived and have half-lives of more than 100 million years (UNSCEAR, 2000). These radionuclides can be found in all elements of the environment and are present in varying amounts in soil, water, air, vegetables, animals, and the human body itself (IAEA, 1989). Long-lived natural radionuclides can be transferred to plants, considering that the main part of the minerals that make up the plant body originates from the soil. Therefore, primarily the physical and chemical

characteristics of the soil are the main parameters that determine the amount of accumulated radioactive substances in plant organs. The levels of radionuclides in plants usually vary from several tens of Becquerel (Bq) to several hundred Becquerel per kilogram. Some plants are capable of incorporating large quantities of radioactive substances into their tissues without visible and demonstrable changes; however, their consumption can cause serious damage and diseases in human organisms. With the increase in the world population, the need for a larger amount of food increases, which encourages many countries to use phosphate fertilizers in plant production to increase their annual production. Fertilizers also contain radionuclides that are the decay series of uranium and thorium, as well as potassium. Farmers are increasingly using artificial fertilizers without expert assessment of the content of present radionuclides in the fertilizers. Therefore, there is a global interest in human radiation exposure due to intake of radionuclides from food (Alrefae, 2012). Rice is one of the most commonly consumed types of food in the world. Hence, studies on the radioactivity of rice have been carried out in different regions around the world. Rice also has an important share in the Macedonian diet, especially in the Kochani region, which is known for its rice fields. Therefore, this research was conducted to investigate the levels of radioactivity as a result of the natural radionuclides ²²⁶Ra, ²³²Th, and ⁴⁰K in rice, and to estimate the total absorbed dose, radium equivalent activity, external and internal hazard index, and gamma index. Based on the average concentrations of the examined radionuclides, an annual effective dose (AEDE) was determined, as well as the risk of cancer due to the intake of the examined radionuclides. The research was conducted in the Kochani region (Republic of North Macedonia), which, due to its favorable geographical location and mild continental and Mediterranean climate, contributes to the production of larger quantities of rice, which is often used in the diet of the population. Gamma spectrometry was used as a technique, while the analysis of the spectral data was carried out with the Genie 2000 software developed by CANBERRA.

Materials and methods

The study area, sampling and preparation

For the purpose of the study, a total of 38 rice samples were collected from 10 different locations. These locations were selected based on the availability of fields in the Kochani region. Rice plants were randomly selected from each location during harvest. All collected samples were cleaned of soil deposits by hand and then transferred to a polyethylene bag, sealed, and labeled in order to avoid cross-contamination. The samples were then transferred to beakers (Marinelli), sealed with adhesive rubber, weighed, and left to stand for several days to enable secular equilibrium between radon (222Rn) and 226Ra nuclides (Panghal et al., 2018). The prepared samples were analyzed with a high-purity germanium (HPGe) detector. Experimental set-up of gamma ray spectroscopy

The research is focused on determining the radioactivity level in rice by using a high-resolution HPGe detector. The gamma-ray spectrometry technique was used to determine the radioactivity of the tested samples. The spectrometer consisted of an HPGe detector, model 3020 (Canberra Packard, Meriden, CT, USA), with an active volume of 180 cm2, a relative efficiency of 30%, an operating voltage of 3000 V, and a resolution of 2 keV at 1332.5 keV. The detector was enclosed in a massive lead shield with a thickness of 12 cm and an inner high-purity copper sheath of 2 mm. The analysis of the spectral data was carried out with the Genie 2000 software developed by CANBERRA, and the contribution of background radiation during the counting was subtracted during the spectral analysis. The activity of ²²⁶Ra was determined from the gamma lines associated with the short half-life daughters of ²¹⁴Bi (609.31, 1120.29 and 1794.49

keV) and 214 Pb (351.93 keV). The 232 activity was determined with the 338.4, 911.2, and 969.1 keV gamma lines of 228 Ac and its decay products. The gamma line at 1460.8 keV was used to determine the activity of 40 K (Hauwa et al., 2018).

The activity concentration of ²²⁶Ra, ²³²Th, and ⁴⁰K was calculated by using the following relation

$$A = \frac{\frac{N}{t} - \frac{N_0}{t_0}}{\varepsilon \cdot \gamma \cdot m} \quad (Bq \cdot kg^{-1}) \quad (1)$$

Where, N is the clean surface of the peak value accumulated from a specific radionuclide in the analysis of a specific sample (number of readings), N_0 is the clean surface of the peak value accumulated from the spot of a specific radionuclide without an analysis of the sample (number of readings), t is live time of accumulation of the sample spectrum (s), t₀ is live time of accumulation of the phone spectrum (s), ϵ is detector efficiency for a given energy (for a specific peak), γ is intensity of gamma transition in radioactive decay for a respective radionuclide (%), and m is sample mass (kg).

Results and discussion

Activity concentrations of ²²⁶Ra, ²³²Th, and ⁴⁰K

0.08

(UNSCEAR,

2000)

Table (1) shows the activity concentrations of the examined natural radionuclides in rice samples in the Kochani region.

Sampling sites	A±SD (Bq kg ⁻¹)	A±SD (Bq kg ⁻¹)	A±SD (Bq kg ¹)
	²²⁶ Ra	²³² Th	40 K
WR1(n=3)	4.02±2.20	2.90±1.50	65.53 ± 2.50
WR2(n=2)	2.71±0.05	1.26±0.02	42.50±4.50
WR3 (n=4)	2.24±0.01	0.91±0.02	89.70±2.00
WR4 (n=2)	2.65±0.20	1.41±0.50	45.35±2.50
WR5 (n=5)	1.02±2.20	<mda< td=""><td>47.55±1.55</td></mda<>	47.55±1.55
WR6 (n=4)	2.06±0.12	<mda< td=""><td>26.11±2.50</td></mda<>	26.11±2.50
WR7 (n=3)	1.09±0.25	0.19±1.00	33.02±3.00
WR8 (n=1)	3.14±1.00	0.11±0.04	44.12±2.00
WR9 (n=1)	1.03±1.20	6.18±1.40	97.62±0.50
WR10 (n=3)	2.18±1.05	<mda< td=""><td>47.32±3.00</td></mda<>	47.32±3.00
WR11(n=4)	2.00±1.05	<0.03	24.71±2.00
WR12 (n=1)	3.91±0.11	1.24±1.30	40.50±0.50
WR13 (n=1)	2.13±0.09	<0.03	58.13±1.50
WR14 (n=1)	1.19±0.55	<mda< td=""><td>28.56±0.25</td></mda<>	28.56±0.25
WR15 (n=3)	1.17±0.35	<mda< td=""><td>36.35±0.55</td></mda<>	36.35±0.55
Average	2.17±0.70	1.78±0.72	48.48±1.92

Table 1. Activity concentrations of ²²⁶Ra, ²³²Th, and ⁴⁰K in rice

Table 1 shows that the activity concentration of ²²⁶Ra was within the range from 1.02 Bq/kg (R5) to 4.02 Bq/kg (R1) with a mean value of 2.17 Bq/kg, for the concentration of ²³²Th it was determined that there were samples with values lower than MDA and the mean value for this

0.003

radionuclide is 1.78 Bq/kg and the ⁴⁰K activity concentration was within the range from 24.71 (R11) to 97.62 Bq/kg (R9) with a mean value of 48.48 Bq/kg. The average activity concentration in this study for ²³²Th is lower than the world average value of 45 Bq/kg, the activity concentration of ²²⁶Ra is lower than the world average of 32 Bq/kg, and the activity concentration of ⁴⁰K is also lower than the world average of 412 Bq/kg (UNSCEAR, 2008). The findings of this study indicate that the levels of natural radionuclides in the analyzed rice samples are within acceptable limits.

Almost everyone who has investigated the radionuclide content of rice has found that the activity concentration of ⁴⁰K radionuclides in rice tends to be higher than that of ²²⁶Ra and ²³²Th, as shown in Table 1. The increased concentration of ⁴⁰K compared to other radionuclides can be attributed to its prevalence in soil and the widespread application of nitrogen phosphate (Solehah and Samat, 2017).

Radiological Parameters

Gamma Absorbed Dose Rate (D)

The total absorbed dose rate (nGy/h) outdoor at 1 m above the ground due to the activity concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K was calculated by using the following equation (Yassin et al., 2016)

 $D(nGy/h)=0.462A_{Ra}+0.604A_{Th}+0.042A_{k}$ (2)

where A_{Ra} , A_{K} and A_{Th} accordingly are the average activity concentrations of 226 Ra, 232 Th and 40 K, expressed in Bq/kg

Radium-equivalent activity (Raeq)

The radium-equivalent activity (Raeq) is commonly used as an important radiological index to provide the exact activity levels of evaluated radionuclides in the samples due to their uneven distribution

It is calculated by using equation (3) (Abdu et al., 2024)

Raeq (Bq/kg) =
$$A_{Ra}+1.43A_{Th}+0.07 A_{K}$$
 (3)

External hazard index (Heks)

In order to assess the equivalent average of the annual effective dose imposed to the residents of each area, the external hazard index for the soil samples was calculated.

$$H_{eks} = A_{Ra}/370 + A_{Th}/259 + A_k/4810 \le 1$$
 (4)

A_{Ra}, A_{Th}, A_k-specific activites (Bq·kg⁻¹), ²²⁶Ra²³²Th and ⁴⁰K, respectively (Abdu et al., 2024)

Internal hazard index (Hin)

Radon and its short-lived products are also hazardous to the respiratory organs. Hence, the internal exposure to radon and its short-lived products is quantified by the internal hazard index and is expressed mathematically as (Laith et al., 2015)

$$Hin = A_{Ra} / 185 + A_{Th} / 259 + A_k / 4810 \le 1 \quad (5)$$

Gamma Index (Iy)

The gamma index (I γ) for rice samples was calculated by using the following equation (Laith et al., 2015)

$$I\gamma = A_R/150 + A_{Th}/100 + A_k/1500 \le 1$$
 (6)

The annual effective dose equivalent (AEDE) was calculated by using equation (7):

AEDE (
$$\mu Sv/y$$
) = D x DCF x OF x T (7)

where D is the absorbed dose rate in air (nGy/h), DCF is the dose conversion factor (0.7 Sv/Gy), OF is the outdoor occupancy factor (0.2), T is the time (8760 h/y) (UNSCEAR ,2000)

The Excess Lifetime Cancer Risk was calculated by using equation (8):

$$ELCR = AEDE \times DL \times RF(8)$$

where DL is duration of life (70 years) and RF is risk factor (Sv-1). For stochastic effects, ICRP 90 uses values of 0.05 for the public (Abdulkarim, et al., 2023)

Table 2. Average values of activity concentration of ²²⁶Ra, ²³²Th, and ⁴⁰K in rice

Radionuclides	Bq kg – 1
²⁶ Ra	2.17±0.70
²³² Th	1.78±0.72
40 K	48.48±1.92

Table 3. The radiological hazard parameters due to the natural radioactivity in rice fields of the Kochani region in Macedonia

Sample	D (nGy h ⁻¹)	Ra _{eq} (Bq kg ⁻¹)	Hex	Hin	Ιγ	AEDE	ELCR
						(µSv/y)	
WR (1-15)	4.10	8.10	0.02	0.027	0.064	0.005	0.017

The absorbed dose in this study has an average value of 4.10 nGy/h (table 3), which is lower than the maximum permitted value of 51 nGy/h reported by (UNSCEAR,2000), emphasizing the negligible radiation hazard arising from naturally occurring terrestrial radionuclides. The values of radium equivalent activity in all rice samples varied with a mean value of 8.10 Bq kg-1 which is far below the internationally accepted value of 370 Bq kg-1. On the other hand, the values of Hex and Hin are also below the recommended value of one, respectively (UNSCEAR, 2003). The average value of I γ (0.064) for all rice samples is lower than the critical value. The annual effective dose equivalent (AEDE) was calculated with an average value of 0.005 μ Sv y-1, which is lower than the recommended value. The estimated world average for AEDIndoor is 0.34 mSv/y, respectively, as recommended by (UNSCEAR,2000). The average activity concentrations of natural radioactivity in rice from this study were compared with those from similar studies carried out in other countries. Variations in distribution behavior across studies may be due to differences in location, soil and physical properties of rice, climatic conditions, and fertilizers used for crop production (Mellawati et al., 2018).

Table 4. Comparison between the natural radioactivity levels in rice samples in this study and some other studies

Study location	²²⁶ Ra	²³² Th	⁴⁰ K	Refer
Malaysia	2.8	7.5	89.3	Asaduzzaman et al., 2015
Iraq	5.94	2.65	16.84	Abdulridha et al., 2019
Namibia	0.39	0.28	13.00	Onjefu et al., 2019
India	3.07	34.3	120.8	Shanthi et al., 2009
Iran	37	-	-	Fathabadi et al., 2017
Nigeria	54.29	63.70	235.81	Muhammada et al., 2024
Saudi Arabia	1.08	1.19	83.08	Al-Zahrani, 2016
Macedonia	2.17	1.78	48.48	

Conclusion

It was found that the values of the specific radioactivity of ²²⁶Ra, ²³²Th and ⁴⁰K in different rice samples are within the internationally permitted range.

All calculated values for the assessment of the radiological hazard are lower than the global average values. All tested rice samples are considered safe since there is no increase in the concentrations of natural radionuclides according to the internationally permitted limits.

However, it is necessary to conduct other similar studies on other basic food products in order to create basic data on consumed food products, as well as for the preparation of a radiological map in Macedonia.

References

- Abdu, N.M., Aznan, Fazli, I., Nuraddeen, N.G. (2024). Natural radioactivity in food crops and soil and estimation of the concomitant dose from tin mining areas in Nigeria. Journal of Taibah University for Science Vol. 18(No.1)
- Abdulkarim, M.S., Nurudeen, A.A., Abdullateef, O.O. (2023). Determination of Annual Effective Dose Equivalent and The Excess Lifetime Cancers Risk in Water Samples From A Mining Site in Jayfi, Pago Tungan Goro of Minna, Niger State, Nigeria. Dutse Journal of Pure and Applied Sciences (DUJOPAS), Vol. 9 (No. 3b)
- Alrefae, T. (2012). Investigation of 238U content in bottled water consumed in Kuwait and estimates of annual effective doses. Health Physics, Vol. 102 (No. 1), 85–89.
- Al-Zahrani, J.H. (2016). Natural radioactivity and heavy metals measurement in rice and flour consumed by the inhabitants in Saudi Arabia. Adv J Food Sci Technol.,12(12):698–704.
- Angeleska, A., Crceva Nikolovska, R., Dimitrieska Stojkovik, E., Dimzoska Stojanovska, B., Uzunov, R., Georgievski, S. (2023). Assesment of natural radioactivity levels and radiation hazards in agricultural soil and transfer in wheat in the region of North Macedonia. AGROFOR International Journal, Vol. 8 (No. 3)
- Asaduzzaman, K., Khandaker, M.U., Amin, Y.M. and Mahat, R. (2015). Uptake and Distribution of Natural Radioactivity in Rice from Soil in North and West Part of Peninsular Malaysia for the Estimation of Ingestion Dose to Man. Annals of Nuclear Energy, Vol. 76, 85-93. Fathabadi, N., Salehi, A.A., Naddafi, K., Kardan, M.R., Yunesian, M., Nodehi, R.N., et al. (2017). Radioactivity Levels in the Mostly Local Foodstuff Consumed by Residents of the High Level Natural Radiation Areas of Ramsar, Iran. Journal of Environmental Radioactivity, 169, 209-213.
- Hauwa Kulu S., Faizal M., Mayeen U.K. (2023). Radioactivity and concomitant radiation dose from Malaysian herbal plants. Radiat Phys Chem, Vol. 211, 11105.
- IAEA, 1989. Measurement of Radiation in Food and the Environment; A Guidebook. International Atomic Energy Agency (IAEA) Technical report series, No. 295.
- Mellawati, J., Madyaningarum, N., Fajrianshah, E.A., Jumpeno, E.B., Larasati, T.R.D., Mulyana, N., Nurtjahya, E., Khotimah, K. (2023). Radiation hazards from natural radionuclides contained in rice from former tin mining land. Global Journal of Environmental Science and Management (GJESM). Global J. Environ. Sci. Manage. Vol. 10(SI): 251-262
- Muhammad, A.N., Ismail, A.F. and Garba, N.N. (2024). Natural Radioactivity in Food Crops and Soil and Estimation of the Concomitant Dose from Tin Mining Areas in Nigeria. Journal of Taibah University for Science, 18, Article ID: 2366507. Onjefu, S.A., Hitila. M., Katanlogo, H. (2019) Measurement of radioactivity in

- concentration in various types of rice consumed in Windhoek, Namibia. Nigerian Journal of Physics, Vol. 28 (No. 2):124
- Panghal, A., Kumar, A., Kumar, S., Singh, J., Singh, P., & Bajwa, B. S. (2018). Estimation of natural radionuclides and exhalation rate in surface soils of four districts of Haryana, India. Journal of the Geological Society of India, Vol. 92 (No. 6), 695–703.
- Shanthi, G., Maniyan, CG., Allan Raj, G. and Kumaran, TT. (2009). Radioactivity in food crop from high background radiation area in Southwest India. Current Science. Vol. 97 (No. 9), 1331-1335.
- Solehah, A.R. and Samat S.B. (2017). Radiological impact from natural radionuclide activity concentrations in soil and vegetables at former tin mining area and non-mining area in Peninsular Malaysia. Journal of Radioanalytical and Nuclear Chemistry. 315:127–36.
- UNSCEAR, 2000. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation (Volume I). New York: United Nations. https://www.unscear.org/unscear/en/publications/2000_1.html
- UNSCEAR, 2003. Sources and effects of ionizing radiation United Nations Scientific Committee on the Effects of Atomic Radiation Effects of Atomic Radiation. Report to the General Assembly with annexes. United Nations, N. Y.
- Yassin, A.A., Masoud, S.M., Moamed, Y.H., Mohamed, S.E. (2016). Effective radiation doses from natural sources at Seila area South Eastern Desert, Egypt. Journal of Taibah University for Science. Vol. 10, 271–280.
- Younis, A.S. and Tawfiq, N.F. (2019). Assessment of Natural Radioactivity Level and Annual Effective Dose of Amber Rice Samples Cultivated in the South of Iraq. The 2nd International Conference on Renewable Energy and Environment Engineering, E3S Web of Conferences 122, 05004.