
ПРИЛОЗИ, Одделение за природно-математички и биотехнички науки, МАНУ, том 44, бр. 1–2, стр. xx–xx (2023) 

CONTRIBUTIONS, Section of Natural, Mathematical and Biotechnical Sciences, MASA, Vol. 44, No. 1–2, pp. xx–xx (2023) 

 

Received:                                                                                                                                                               ISSN 1857–9027 

Accepted:                                                                                                                                                           e-ISSN 1857–9949 

                                                                                                                                               UDC: 

DOI: 

 

                                                                                                                                                              Original scientific paper 
 

 

 

 

 

IN VITRO PATHOGENICITY TESTS OF SEVEN PHYTOPHTHORA SPECIES 

ON EUROPEAN CHESTNUT 
 

Mihajlo Risteski1,*, Biljana Kuzmanovska2, Katerina Bandzo Oreshkovikj 3, Vladimir Tanovski1,  

Rade Rusevski 2, Jakob Kjiprovski1, Kiril Sotirovski1 

 
1 Landscape Architecture and Environmental Engineering, Hans Em Faculty of Forest Sciences, 

Ss. Cyril and Methodius University in Skopje  
2 Faculty of Agricultural Sciences and Food, Ss. Cyril and Methodius University in Skopje 

3 Institute of Agriculture, Ss. Cyril and Methodius University in Skopje  
 

*e-mail: mihajlo.risteski@sf.ukm.edu.mk 

 
 

In this study, pathogenicity tests were conducted on seven Phytophthora species previously recorded on various 

tree species in North Macedonia. Single representative isolates of P. cactorum, P. colocasiae, P. taxon walnut, P. cin-

namomi, P. gonapodyides, P. inundata, and P. cambivora were inoculated onto European chestnut twigs, with 40 repli-

cates per isolate, categorized by two twig thicknesses. The results revealed a range of necrotic lesion lengths, from 1.6 

to 5.9 cm, highlighting the varying impacts of the pathogen species on chestnut twigs. A two-way ANOVA indicated 

significant differences in lesion lengths between the two twig thickness categories across all Phytophthora species. 

Overall, P. inundata caused the shortest total lesion lengths, while P. cactorum caused the longest. Notably, lesion 

length variability for P. colocasiae was consistent across both twig thicknesses, whereas P. inundata showed the greatest 

variability between the two thickness categories. 
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INTRODUCTION 
 

Species of the genus Phytophthora are among 

the most destructive plant pathogens, affecting a wide 

range of host plant species and causing significant 

economic losses worldwide [1]. They are responsible 

for severe diseases in numerous agricultural and hor-

ticultural crops, as well as in natural ecosystems and 

forests, making Phytophthora one of the best-studied 

genera of plant pathogens [2]. 

As members of the oomycetes, a group of 

filamentous eukaryotic microorganisms, Phy-

tophthora species are characterized by motile zoo-

spores with two distinct flagella and thick-walled 

oospores, enabling both rapid spread and survival 

in diverse environments [3]. Highly adaptable, 

these pathogens thrive in various climates, from 

tropical to temperate regions, and can persist for 

extended periods in soil, water, or plant tissue, al-

lowing them to spread over long distances [3-5]. 

Currently, more than 150 Phytophthora species 

have been described [6], with estimates suggesting 

a total of 400–600 species [7]. 

According to Tsao (1990), over 66 % of all 

fine root diseases and more than 90 % of collar rots 

in woody plants are caused by Phytophthora spe-

cies. However, misidentification is common, with 

abiotic factors or secondary pathogens often mis-

takenly identified as the primary cause of these 

diseases [8, 9]. An extensive survey in European 

forest nurseries and forests recorded 68 different 

Phytophthora species, 44 of which were previously 

unknown to science. These species infected more 

than 80 % of nursery stands in over 90 % of tested 

nurseries and affected two-thirds of young plant-

ings [10]. 
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The spread of Phytophthora is often facili-

tated by human activities, such as the international 

trade of plants and plant materials, which introduc-

es pathogens to non-native regions [11]. Environ-

mental factors like temperature, humidity, and wa-

ter availability also influence the growth and viru-

lence of these pathogens [3, 12, 13, 10]. 

One of the most infamous species, P. in-

festans, the causal agent of potato late blight, was 

the primary driver of the Great Irish Famine (ca. 

1845), which led to approximately one million 

deaths and the migration of over one million peo-

ple from Ireland within a decade. Ironically, these 

migrants unknowingly introduced P. infestans to 

new regions through propagative materials [14]. 

Other Phytophthora species continue to cause 

devastating epidemics in tree species worldwide, 

with P. cinnamomi and P. ramorum among the most 

well-known. P. cinnamomi is considered one of the 

most historically destructive plant pathogens, with 

over 1,000 host plant species [16], and has been 

linked to the decline of oak species in central and 

southern Europe [17, 18]. Meanwhile, the airborne 

P. ramorum causes Sudden Oak Death in western 

USA and has been recorded in Europe, where it in-

fects a wide range of host species [19–21]. 

Understanding the biology and ecology of 

Phytophthora species is critical for developing ef-

fective management strategies to control their 

spread and mitigate their impact on plant health. 

Research efforts focus on unraveling the genetic 

and molecular mechanisms underlying their patho-

genicity, as well as on developing diagnostic tools 

and management strategies [3]. 

Pathogenicity tests are essential for evaluating 

the virulence of Phytophthora species on different 

host plants. These tests involve inoculating plant tis-

sues with Phytophthora isolates and assessing disease 

development over time. By quantifying disease se-

verity, researchers can determine host susceptibility, 

pathogen aggressiveness, and the effectiveness of 

control measures [26]. Common methodologies for 

pathogenicity testing include leaf disc assays, root 

inoculation, and detached leaf or whole-plant inocu-

lation in controlled environments [27]. 

Advances in molecular genetics and ge-

nomics have greatly enhanced our understanding 

of Phytophthora pathogenicity mechanisms. Ge-

nome sequencing projects have identified genes 

encoding effectors, virulence factors, and compo-

nents of the oomycete secretome, shedding light on 

the molecular basis of host-pathogen interactions 

[29]. Transcriptomic and proteomic analyses have 

further clarified the dynamics of gene expression 

and protein secretion during infection, revealing 

key pathways involved in pathogenicity [30]. 

Studying Phytophthora pathogenicity is cru-

cial for understanding how these pathogens cause 

disease in plants, a fundamental step in developing 

targeted strategies for disease control and man-

agement. 

 

MATERIALS AND METHODS 
 

A single representative isolate from each of 

seven Phytophthora species (P. cactorum, P. colo-

casiae, P. Taxon walnut, P. cinnamomi, P. gonap-

odyides, P. inundata, and P. cambivora; Table 1), 

previously recorded on various tree species in 

North Macedonia [31], was selected from our col-

lection to assess pathogenicity on Castanea sativa 

(European chestnut) twigs. 

Dormant one-year-old shoots, ranging from 

10–15 mm in diameter [32], were used as test mate-

rial. Young shoots were collected from a single tree 

coppice immediately after bud development in May. 

Leaves were removed, and the twigs were cut into 

10–15 cm lengths and sterilized using 70 % ethanol. 

Twigs were inoculated with 5 × 5 mm agar plugs, 

placed with the mycelium side facing the cambium, 

taken from fresh cultures of the selected Phy-

tophthora isolates grown on V8 agar medium. The 

inoculation site was wrapped with Parafilm. 

 

 

Table 1. List of representative Phytophthora isolates used for the pathogenicity tests 
 

No. Isolate code Species Database 

Used DNA se-

quence for com-

parison 

Match 

% 

Difference 

in base 

pairs 

1 MKDF-102-1 P. cactorum Phytophthoradb.org PD_00278_ITS 100 % 0 

2 MKDF-3 P. colocasiae Phytophthoradb.org PD_01573_ITS 100 % 0 

3 MKDF-9 P. taxon Walnut Phytophthoradb.org PD_02830_ITS 100 % 0 

4 MKDF-33 P. cinnamomi Phytophthoradb.org PD_01976_ITS 100 % 0 

5 MKDF-08 P. gonapodyides Phytophthoradb.org PD_02725_ITS 100 % 0 

6 MKDF-46 P. inundata Phytophthoradb.org PD_02731_ITS 100 % 0 

7 MKDF-80 P. cambivora Phytophthoradb.org PD_01869_ITS 100 % 0 
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A total of 40 replicates were set per isolate, 

with 20 inoculations on twigs in the thickness 

range of 5–10 mm and 20 inoculations on twigs 

10–15 mm in diameter. The inoculations were ap-

plied superficially on exposed cambial tissue after 

bark removal (Figure 1). The inoculated twigs 

were placed in glass Petri plates (15 cm diameter) 

lined with moist filter paper (Figure 2), with ten 

replicates of a single isolate per plate. The plates 

were incubated at room temperature (24 °C ± 4 °C) 

in the dark for seven days. 

After the incubation period, the twigs were 

examined for necrosis. The lengths of the recorded 

necroses were measured precisely after debarking 

(Figure 3). Re-isolations from the necrotic tissue 

were performed on selective nutrient media 

(PARPNH and CARP+) to confirm the causal 

agent of the necrosis. 
 

 

 
 

Figure 1. Setting the inoculation assays with Phytophtora isolates 
 

 

 
 

Figure 2. Sets of ten replicates of Phytopthora isolates on chestnut twigs per dish, for incubation 
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Figure 3. Incidence of necrosis on chestnut twigs inoculated with a Phytophthora isolate 
 
 

RESULTS AND DISCUSSION 
 

After the incubation period, the examination 

of the inoculation sets revealed the presence of 

necrosis on nearly all twigs inoculated with the 

selected Phytophthora species. The measured di-

mensions of the induced necrosis on the inoculated 

twigs are presented in Table 2. 
 

 

Table 2. Lengths of necroses on chestnut twigs inoculated with isolates of the selected Phytophthora species 
 

Number of 

assays 

Twig 

diameter 

(mm) 

Lenghts of the induced necrosis according to species Phytophthora (cm) 

 
 

P.colocasiae P.cambivora 
P.taxon 

Walnut 

P. cinnamo-

mi 
P.inundata P.gonapodyides P.cactorum 

1 

5–10 

4.9 3.3 0 1.9 0 1.6 5.7 

2 3.2 2.9 4.2 3.5 2.1 2.4 4.9 

3 3.4 3.5 2.4 2.4 2.1 2.2 4.1 

4 0 2.2 2.2 2.4 2.4 2.4 4.7 

5 3.8 2.9 2.1 2.1 1.9 1.8 4 

6 5.1 3.1 0 3 2.2 3.4 2.9 

7 3.1 3.5 2 2.9 1.8 2.1 3.4 

8 4.7 3.1 2.4 3.1 2.3 2.2 4.7 

9 4.1 3 2.2 2.2 2.2 1.8 5.1 

10 3.2 3.4 2.1 2.2 1.9 1.9 3.9 

11 3.4 3.6 2.5 2.4 2.2 2.6 4.2 

12 3.9 2.4 2 2.4 2.6 2 4.6 

13 3 3 2 3.6 2 2.4 4.9 

14 4.7 2.2 2.5 2.6 2 3.6 5 

15 5 3.9 2.6 3.3 2.4 2.1 4 

16 3.2 3.3 2.5 2.9 2.5 2.6 5.9 

17 5.2 3 2.1 3.3 2 2.4 3.6 

18 3 3.9 2 2.3 2.6 2.4 3.2 

19 4.1 3.6 2.9 2 2.2 2 2.2 

20 4.9 3 3.9 2.6 2 2.7 3.1 

1 

10–15 

0 3.3 2.9 2.3 2.4 2 3.9 

2 3 2 2.2 2.7 2.3 2.7 3.5 

3 2.9 2.2 2.4 3.1 2.1 2 4.4 

4 4.1 2.2 1.9 2.9 2.2 2.9 4.9 

5 3.8 2.1 4.4 2.8 2.4 2.8 3.3 

6 0 2.2 2.1 1.9 2.2 2.9 3.9 

7 3 1.9 2.4 2.9 2.1 2.3 3.3 

8 3.3 3.1 1.9 2.4 2.7 1.9 4.9 
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Table 2 Continue        

9 

10–15 

2.9 2.9 1.9 3.1 2.9 2.9 3.8 

10 3.5 3.6 3.9 2.7 2 2.5 4.7 

11 3.6 3.6 2.2 3.6 2 2 5.3 

12 1.9 3.1 2.1 2.6 2.4 2 3 

13 3.9 3.5 2.3 2.4 2.4 2.4 3.9 

14 5.1 3.2 4.1 2.6 2.2 2.3 5.9 

15 5.1 3 4.1 3 2.5 2 5.5 

16 3.2 2.2 2.2 2.2 2.2 2.6 4.1 

17 3.2 3.4 2.1 3.2 2 2.4 4.1 

18 4.7 2.9 2.4 2 2.6 2.4 4 

19 3.3 3.1 2.1 2.2 2.1 2.3 3.1 

20 4.2 3.4 2.2 2.7 2.7 3.3 3.5 

 

 

For each Phytophthora species, the shortest 

and longest lengths of the observed necroses were 

recorded (Table 3). 

In Table 3, we present the minimum and 

maximum lengths of necrotic lesions developed on 

chestnut twigs caused by the Phytophthora cultures 

under assessment. The lesion lengths ranged from 

1.6 cm to 5.9 cm. A descriptive statistical analysis 

was performed on the pathogenicity test results 

(Table 4). Additionally, the differences in lesion 

length were analyzed using two-way ANOVA, 

with the two thickness categories of chestnut twigs 

(5–10 mm and 10–15 mm) as factors, and the sev-

en Phytophthora species as parameters. The de-

scriptive statistical results for each parameter (Phy-

tophthora species) are shown in Table 4. 

The descriptive statistical summary high-

lights significant variation in lesion lengths be-

tween the two twig diameter categories. Specifical-

ly, P. colocasiae showed consistent lesion variabil-

ity across both twig thickness categories. In con-

trast, P. inundata exhibited the greatest difference 

in lesion length variability between the two twig 

thickness categories. P. cactorum and P. cinnamomi 

induced lesions with considerable variability in both 

thickness categories. The total lesion size was 

smallest for P. inundata and largest for P. cactorum, 

which caused lesions twice as large as those induced 

by P. inundata. These findings suggest that P. inun-

data is the least pathogenic, while P. cactorum is 

the most pathogenic toward chestnut twigs. 

From the two-way ANOVA, it was conclud-

ed that there is no statistically significant difference 

in lesion length for individual Phytophthora species 

in relation to twig thickness (p > 0.005; F = 0.087). 

However, the analysis revealed a statistically signif-

icant difference in lesion length between the Phy-

tophthora species themselves (p > 0.005; F = 

34.97), indicating that lesion development depends 

on the inoculated species. The results also indicate 

that twig thickness is not a crucial factor in deter-

mining necrosis length in this case. 
 

 

Table 3. Values for the shortest and longest observed necroses, for each of the tested Phytophthora species 
 

Diameter 

(mm) 
 Used Phytophthora species for pathogenicity tests 

 
 P.colocasiae P.cambivora 

P.taxon 

Walnut 
P.cinnamomi P.inundata P.gonapodyides P.cactorum 

5-10 

 

Shortest 

necrosis 

lengths 

(cm) 

3,3 2,2 2,1 1,9 1,8 1,6 2,2 

Longest 

necrosis 

lengths 

(cm) 

5,2 3,9 4,2 3,5 2,6 3,6 5,9 

10-15 

Shortest 

necrosis 

lengths 

(cm) 

1,9 1,9 1,9 1,9 2,0 1,9 3,1 

Longest 

necrosis 

lengths 

(cm) 

5,1 3,6 4,4 3,6 2,9 3,3 5,9 
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Table 4. Results from the descriptive statistics of dimensions of necroses developed on chestnut twigs  

after seven days of inoculation with selected Phytophthora isolates 
 

5–10 mm 
P. colocasi-

ae 
P. cambivora 

P. taxon 

Walnut 

P. cinnam-

omi 
P. inundata 

P. 

gonapodyides 

P. 

cactorum 

Mean 3.795 3.14 2.23 2.655 2.07 2.33 4.205 

Standard Error 0.266 0.108 0.216 0.115 0.121 0.111 0.213 

Standard 

Deviation 
1.191 0.485 0.966 0.512 0.539 0.497 0.954 

Sample 

Variance 
1.417 0.235 0.934 0.263 0.291 0.247 0.911 

Range 5.2 1.7 4.2 1.7 2.6 2 3.7 

Minimum 0 2.2 0 1.9 0 1.6 2.2 

Maximum 5.2 3.9 4.2 3.6 2.6 3.6 5.9 

Count 20 20 20 20 20 20 20 

10–15 mm 
       

Mean 3.235 2.845 2.59 2.665 2.32 2.43 4.15 

Standard Error 0.303 0.131 0.184 0.096 0.058 0.088 0.183 

Standard  

Deviation 
1.353 0.588 0.822 0.431 0.259 0.392 0.819 

Sample  

Variance 
1.832 0.346 0.676 0.186 0.067 0.154 0.671 

Range 5.1 1.7 2.5 1.7 0.9 1.4 2.9 

Minimum 0 1.9 1.9 1.9 2 1.9 3 

Maximum 5.1 3.6 4.4 3.6 2.9 3.3 5.9 

Count 20 20 20 20 20 20 20 

Total 
       

Mean 3.515 2.993 2.410 2.660 2.195 2.380 4.178 

Standard Error 0.204 0.087 0.143 0.074 0.069 0.070 0.139 

Standard  

Deviation 
1.290 0.553 0.904 0.467 0.436 0.445 0.878 

Sample  

Variance 
1.663 0.305 0.817 0.218 0.190 0.198 0.772 

Range 5.2 2 4.4 1.7 2.9 2 3.7 

Minimum 0 1.9 0 1.9 0 1.6 2.2 

Maximum 5.2 3.9 4.4 3.6 2.9 3.6 5.9 

Count 40 40 40 40 40 40 40 

 

 

Figures 4 and 5 further illustrate the data. 

The highest lesion dimensions, regardless of twig 

thickness, were caused by P. cactorum. The small-

est lesions were caused by P. inundata. Table 3 

provides the minimum and maximum lesion 

lengths for each Phytophthora species across both 

twig diameters, excluding cases where no lesions 

developed (length = 0). 

All seven species, previously recorded on 

various tree species in North Macedonia [31], ex-

hibit characteristics typical of many Phytophthora 

species known for their omnivorous nature and 

remarkable ability to infect a wide array of hosts, 

including agricultural crops, forest trees, and or-

namental plants [5, 6, 7, 11, 16, 22]. 

P. cactorum infects over 200 plant species 

across 150 genera in 60 families, including Fagus 

spp., Juglans regia, Malus pumila, and Castanea 

sativa [5]. It causes necrosis on inoculated stems of 

Quercus robur [18], lesions on apple, strawberry, 

and rhododendron with host specificity [33], and is 

part of the complex causing ink disease [34]. P. 

cambivora is associated with cankers and root rot 

in plants across 30 genera and 15 families, primari-

ly woody plants, often alongside other Phytophtho-

ra species [5, 34, 37]. P. gonapodyides is consid-

ered a minor pathogen, affecting a limited number 

of hosts, and is often isolated from aquatic sludge 

[34]. P. inundata primarily causes root and basal 

rot in deciduous trees and shrubs, including Aescu-

lus, Olea, Salix, Prunus, and Vitis [39]. P. colo-

casiae has a relatively narrow host range, primarily 

infecting Colocasia esculenta and Arecaceae spe-

cies [5, 40]. P. taxon walnut is pathogenic in natu-

ral ecosystems and agricultural crops, causing foli-

ar diseases in walnuts [39, 41]. P. cinnamomi in-

fects numerous woody hosts across 266 genera and 

90 families [5]. 
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Figure 4. Length of induced lesions on chestnut twigs induced by Phytophthora isolates as per category of twig diameter 
 
 
 

 
 

Figure 5. Length of the induced necrotic lesions on chestnut twigs induced by isolates of the selected Phytophthora species 
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The pathogenicity tests on C. sativa twigs 

provided valuable insights into the variability and 

severity of the lesions caused by the selected Phy-

tophthora species. Lesion lengths ranged from 1.6 

cm to 5.9 cm, indicating diverse pathogenic poten-

tial among the species. Statistical analyses showed 

significant variation in lesion sizes across the spe-

cies, with P. cactorum being the most pathogenic 

and P. inundata the least pathogenic. 

These findings reflect the potential impact of 

these pathogens on European chestnut trees and 

underline the importance of continued monitoring 

and management efforts for Phytophthora species 

in natural stands. 

 

CONCLUSION 
 

Pathogenicity tests were conducted on 

chestnut twigs using isolates from seven Phy-

tophthora species. Among them, P. cactorum was 

identified as the most pathogenic, while P. inunda-

ta was the least pathogenic, regardless of twig 

thickness. 

In conclusion, these results highlight the 

varying pathogenic potential of the tested Phy-

tophthora species on chestnut twigs and may re-

flect their potential impact on European chestnut 

trees in natural stands. This research contributes to 

disease management strategies aimed at improving 

plant resistance against these pathogens. 
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IN VITRO PATHOGENICITY TESTS OF SEVEN PHYTOPHTHORA SPECIES 

– македонски превод 

 

Михајло Ристески1, Биљана Кузмановска2, Катерина Банџо Орешковиќ 3, Владимир Тановски1,  
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3 Земјоделски Институт, Универзитет „Св. Кирил и Методиј“ во Скопје  

 

Во оваа студија беа извршени тестови за патогенитет на седум видови Phytophthora, претходно 

регистрирани на различни дрвни видови во Северна Македонија. Единечни репрезентативни изолати од P. cac-

torum, P. colocasiae, P. taxon walnut, P. cinnamomi, P. gonapodyides, P. inundata и P. cambivora беа инокулирани на 

отсечени гранчиња од питом костен, со 40 репликати по изолат, поделени во две категории според дебелината на 

гранчињата. Резултатите покажаа широк опсег на должини на предизвиканите некротични површини, од 1,6 до 

5,9 cm, потенцирајќи го различното влијание на секој вид патоген врз костеновите гранчиња. Двонасочната 

ANOVA статистичка анализа покажа значајна варијабилност во должината на некрозите меѓу двете тестирани 

категории на дебелина кај сите репрезентативни изолати на Phytophthora. Севкупно, најкратка должина на 

лезиите беше забележана кај P. inundata, додека најдолга беше кај P. cactorum. Дополнително, кај P. colocasiae 

варијабилноста на должината на лезиите беше конзистентна кај двете категории дебелина на гранчињата, додека 

P. inundata покажа најголема варијабилност меѓу двете категории. 

 

Клучни зборови: Castanea sativa; Oomycetes; растителен патоген; инвазивни алохтони видови 

 

 

 

 


