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Abstract:  In the context of rapidly evolving industrial environments, optimizing decision-making for quality control is 

crucial. This paper develops a Markov Decision Process (MDP) model aimed at enhancing automated quality 

control and reducing scrap in manufacturing systems, addressing challenges posed by complex and uncertain 

decision scenarios. The study focuses on improving the sub-key element of quality-accuracy within a 

Performance Measurement System (PMS) framework, specifically targeting scrap minimization and cost 

reduction. The research employs a mathematical model that integrates vector random processes, each 

representing critical factors such as machine condition, operator behaviour, tools, and materials. These factors 

are modeled as individual one-dimensional MDPs, which are combined to create a multi-dimensional MDP 

capable of monitoring and offering optimal policy for minimizing scrap rates and costs. The research 

methodology leverages advanced data analytics, statistical modeling, and real-time monitoring to accurately 

estimate transition probabilities and optimize policies. Different MDP models and methods are explored to 

enhance adaptability and iterative learning, allowing for optimal policy refinement over time. The proposed 

model is validated through its application to a real-world printing enterprise identified critical element, 

demonstrating a reduction in scrap and costs. This improvement underscores the model’s effectiveness in 

practical settings, offering structured, subsystem-specific interventions that enhance manufacturing quality 

control. The results hold both theoretical and practical significance. Theoretically, the study contributes to the 

body of knowledge on MDP modeling for industrial quality control, providing a scalable approach that 

addresses complex interdependencies and decision-making under uncertainty. Practically, the model offers a 

robust tool for optimizing manufacturing processes, supported by modern IT systems, integration of advanced 

technologies, predictive maintenance, and data-driven decision-making. This integrated approach enables 

manufacturers to proactively identify and mitigate quality issues, enhancing operational efficiency, reducing 

waste, and driving continuous improvement in industrial systems. 

1 INTRODUCTION 

Enterprises today are compelled to evolve due to a 

convergence of technological advancements, 

globalization, shifting market demands, economic 

fluctuations, regulatory pressures, and internal 

transformations such as workforce and cultural 

changes. These factors collectively influence 

enterprise performance and require agility and 

innovation to maintain competitiveness in a dynamic 

environment. Various innovative approaches have 
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been introduced to address these changes, particularly 

in improving enterprise functionality and 

adaptability. 

The belief that "You cannot improve what you 

cannot measure" reflects the prevailing mindset 

among today's business leaders. Performance 

Measurement Systems (PMS) emerged as a central 

focus in the early 1990s, becoming a key concept for 

guiding enterprises in a dynamic environment 

towards improvement and competitive advantage. 

Over time, numerous PMS concepts have been 

developed, all centered around a common goal: to 

segment the enterprise's operations into distinct areas 

and monitor performance by evaluating these areas. 

Initially in our study, we aimed to improve a PMS 

by introducing and applying mathematical models to 

support decision-making in enterprise restructuring 

while coping with rapid changes. The PMS under 

consideration is referred to as COMPASS 

(COmpany’s Management Purpose ASSistance) [1]. 

COMPASS focuses on key areas of success, 

including time, quality, costs, flexibility, and 

productivity. Due to their broad nature, these areas 

are further refined into sub-key elements of success 

(subKEs), resulting in a total of 18 subKEs. The 

extensive range of elements within PMSs poses 

challenges when it comes to generating actionable 

improvements, known as Success Factors. Each 

subKE may be influenced by multiple factors, and 

each factor can be enhanced through various actions. 

Given the complexity and interdependencies, action 

generation is typically approached heuristically, but 

modern systems increasingly leverage data analytics, 

real-time monitoring, and automation to support the 

decision making. 

Therefore, in this study, when we refer to new 

approaches, we primarily focus on mathematical 

modeling. However, it is essential to consider related 

IT advancements supported by mathematical 

modeling which are further observed. Regarding 

mathematical modeling specifically, a diverse range 

of models and tools have been implemented in recent 

years to enhance organizational performance. 

Markov Decision Processes (MDPs) are utilized 

to model specific aspects of enterprise operations due 

to their proven capabilities and advantages. MDPs are 

supported by a well-developed theory and have 

become a mature modeling tool. Their successful 

application is largely due to the availability of 

efficient algorithms for finding optimal solutions. 

Furthermore, MDPs provide a flexible framework for 

solving optimization problems across a wide range of 

fields and are particularly valuable in sequential 

planning applications where accounting for process 

uncertainty is critical [2]. 

Applying MDP to solve a restructuring, decision-

making, or planning problem within an enterprise, 

while managing the dimensionality of the problem, 

yields an optimal policy based on a specified 

optimality criterion. If this criterion aligns with a key 

performance metric for a specific subKE (e.g., 

percent of scrap for the subKE quality-accuracy), it 

implies that the subKE is being optimized. This 

approach enables the generation of success factors or 

improvement actions for various elements of the PMS 

using quantitative methods supported by software, 

rather than relying on heuristic approaches. 

To accurately assess the performance of subKEs, 

a specific measure must be assigned to each subKE. 

The primary objective of monitoring and recording 

these measures is to identify issues and generate 

actions for continuous improvement. Additionally, it 

is essential to pinpoint the influential factors 

contributing to a given situation. 

Taking all of this into consideration, the primary 

research challenge of this study was to develop a 

mathematical model based on MDP to enhance one 

aspect of the PMS, quality-accuracy, by managing its 

key measure: the percent of scrap. 

Further we look at the MDPs extensive utilization 

in real-world scenarios that require decision-making 

under uncertainty, highlighting the pivotal role of 

modern IT systems. Advanced IT tools facilitate data 

collection, processing, and real-time analysis, 

enabling more precise modeling and optimization of 

complex decision processes, thereby enhancing the 

practical implementation of MDPs. They are 

particularly valuable in enhancing the automation of 

industrial processes by improving efficiency, 

adaptability, and reliability. MDPs can optimize 

various aspects, including process optimization and 

control, quality control and inspection, predictive 

maintenance, inventory, supply chain management, 

logistics, scheduling and resource allocation, 

adaptive process control in dynamic environments, 

etc. By leveraging MDPs, automated industrial 

systems can effectively manage complex, 

interdependent decisions, striking a balance between 

short-term costs and long-term efficiency and 

sustainability. This results in highly efficient, 

resilient, and sustainable enterprise environments. 

2 LITERATURE REVIEW 

The evolution of PMS has been driven by the need to 

better understand, measure, and improve 

organizational performance beyond traditional 

financial metrics. Early systems primarily focused on 
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financial indicators, which often failed to capture the 

complexity and multidimensional nature of modern 

business operations [3]. This limitation paved the way 

for the development of more holistic frameworks, 

such as the Balanced Scorecard by Kaplan and 

Norton [4], which integrated financial measures with 

non-financial perspectives, including customer 

satisfaction, internal processes, and organizational 

learning and growth. Concurrent with the 

development of the Balanced Scorecard, Total 

Quality Management (TQM) approaches, 

championed by Deming [5] and Juran [6], 

emphasized continuous improvement, customer-

centric performance metrics, and process 

optimization. These methodologies highlighted the 

need for aligning strategic goals with operational 

measures, laying a foundation for comprehensive 

PMS approaches. As businesses faced rapid 

globalization, technological advances, and increased 

complexity, PMS evolved further to incorporate 

dynamic and flexible measurement tools such as the 

implementing MDPs. Modern systems increasingly 

leverage data analytics, real-time monitoring, and 

automation to provide more granular insights and 

facilitate agile decision-making [7]. With advances in 

data collection, artificial intelligence, and business 

intelligence systems, PMS has become more 

sophisticated, enabling organizations to optimize 

their performance and respond effectively to market 

changes [8]. Today, PMS is recognized as a critical 

tool for guiding strategic initiatives, measuring 

success, and fostering continuous improvement and 

competitiveness. 

On the other hand, advancements in MDPs have 

allowed their adoption across a wide range of 

applications, greatly supported by the latest 

developments in Information Technology (IT). MDPs 

are a mathematical framework for modeling decision-

making in environments where outcomes are partly 

random and partly under the control of a decision-

maker. The foundation of MDPs dates back to the 

work of Andrey Markov in the early 20th century, 

who introduced the concept of Markov chains to 

model stochastic processes [9]. MDPs extend these 

concepts by incorporating actions and rewards, 

allowing for optimization of long-term outcomes 

through sequential decision-making. The 

formalization of MDPs for decision problems was 

developed in the 1950s by Richard Bellman, who 

introduced the principle of dynamic programming as 

a method to solve MDPs and coined the term 

"Bellman equation" to describe the recursive 

decomposition of value functions [10]. This 

framework has since become foundational in 

operations research, artificial intelligence, and 

control theory, providing a structured way to handle 

uncertainty in decision-making. Throughout the late 

20th century, MDPs were further refined with the 

development of exact algorithms such as value 

iteration and policy iteration [2]. However, many 

real-world applications present challenges such as 

large or continuous state spaces, which led to 

advancements in approximation methods and 

reinforcement learning algorithms, including Q-

learning and policy gradient methods [11]. For this 

study it was important to examine the development of 

application of MDPs in quality control. For instance, 

Markov Chains to model and simulate transitions 

between different product quality states in 

manufacturing processes were used in [12]. Their 

approach identifies influential factors and proposes 

measures for continuous quality improvement, 

highlighting the value of stochastic modeling in 

industrial quality management. Today, MDPs are 

widely used in fields such as robotics, automated 

control systems, finance, healthcare decision-making, 

and artificial intelligence for complex planning and 

optimization problems under uncertainty [13]. A 

methodology for determining the transition 

probabilities of MDP for quality accuracy 

improvement inside a PMS framework was proposed 

in [14]. Modern applications continue to push the 

boundaries of scalability and efficiency in different 

MDP models and solutions through techniques like 

Monte Carlo methods, approximate dynamic 

programming, deep reinforcement learning, Q-

learning, etc. Some of the reviewed references like 

[15], [16], [17], [18], [19], [20] were found insightful 

for this work. 

3 METHODOLOGIES 

As mentioned before, the PMS methodology 

COMPASS served as the foundational framework 

within which the research was conducted. The 

approach leverages mathematical modeling to 

address real-world challenges, utilizing operations 

research models and methods, with a particular focus 

on MDP models and the policy iteration optimization 

technique. Extensive literature review was conducted 

in order to select the right model for the modeled 

quality control problem. During the modeling and the 

application of the mathematical model to a specific 

enterprise problem, various management techniques 

were employed to analyze the organization, 

complemented by statistical methods for data 

collection and processing. To identify and address the 

causes of scrap, quality management tools such as 
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data collection lists, process flowcharts, Ishikawa 

diagrams, histograms, scatter plots, and control charts 

were utilized. This research developed methodologies 

to calculate transition probability matrices and 

revenue (cost) matrices for each factor individually, 

as well as collectively, to monitor the percentage and 

cost of scrap for each influential factor and overall 

[14]. Custom software is developed to perform the 

calculations with the provided data. 

All stages of the research were synthesized into a 

model for generating optimal decision policies and 

success factors, specifically targeting the 

management of the critical quality-accuracy element 

within the selected PMS. This model is designed to 

facilitate practical implementation within a real 

enterprise, enhancing the functionality and 

effectiveness of its PMS. 

The methodology introduced in [14] has 

influenced subsequent research by providing a robust 

framework for applying MDP models in quality 

management, facilitating better understanding and 

control of key performance factors through precise 

probabilistic modeling. It has contributed the way for 

more accurate and data-driven decision-making 

strategies across various applications in quality and 

operational management [15]. 

4 MATHEMATICAL MODELING 

OF A REAL SYSTEM USING 

FOUR-DIMENSIONAL MDP 

The model for managing quality-accuracy, 

specifically focusing on scrap and scrap cost 

management, serves as a decision-making support 

tool for stochastic, multi-stage planning processes. 

This model represents a system comprising a single 

job station, consisting of one machine and one 

operator. Due to prolonged usage, both the machine 

and its tools experience deterioration, resulting in 

decreased quality and increased scrap production. 

However, additional factors can contribute to scrap 

generation. SubKE quality-accuracy can be 

influenced by various elements, such as the machine, 

operator, tools, materials, environment, and methods. 

To strike a balance between model complexity and 

realism, this study focuses on the most significant 

factors—machine, operator, tools, and materials. 

However, with advancements in modern IT, the 

model can be further expanded, addressing previous 

limitations and enhancing its capabilities. The model 

aims to provide a detailed breakdown of scrap 

production by cause, as well as overall scrap levels. 

To achieve this, stochastic processes represented by 

random variables are defined to describe the 

conditions of the machine, operator, tools, and 

materials, specifically in terms of their contributions 

to scrap production. Subsequently, a vector random 

process is constructed, comprising these four 

individual stochastic processes to capture both the 

individual and cumulative scrap production for the 

system. At the conclusion of each production cycle, 

the conditions of the four factors, in terms of the 

percentage of scrap they generate, are recorded and 

classified into a finite number of states, which 

represent the values of the random processes. 

Historical data was used to determine the transition 

probabilities for each possible state change between 

production cycles, for each influential factor. One of 

the major challenges today lies in the need for 

extensive data to implement these models, which is 

difficult to obtain using traditional methods. 

However, advancements in modern IT provide 

powerful tools for capturing, recording, processing, 

and utilizing data effectively in determining the 

decision-making policy. Since the transition 

probabilities are independent of the states from 

previous cycles, these stochastic processes can be 

modeled as discrete-time, finite, homogeneous 

Markov chains. Finite action spaces are defined for 

each Markov chain, representing available decision 

alternatives. The revenue structure associated with 

each process yields matrices corresponding to all 

possible transitions, with the revenue function 

reflecting gains or losses through scrap percentages 

and costs for each transition step. As a result, four 

one-dimensional MDPs are derived, which are then 

combined into a four-dimensional MDP represented 

as a vector random process, with a specifically 

designed action space and revenue structure based on 

the one-dimensional MDPs. The first one-

dimensional MDP is described by the random process 

“the condition of the machine after every run”, as one 

of the most important influence factors or cause for 

scrap identified in quality-accuracy management, and 

for quality measure the percent of scrap is chosen. For 

the random variable 𝑋𝑛
1 which is the condition of the

machine in a discrete moment 𝑛, it is assumed that the 

stochastic process {𝑋𝑛
1|𝑛 ∈ ℕ} is homogeneous

Markov chain. At any point of time 𝑛, the condition 

of the machine can be classified in one of several 

possible states and the random variable 𝑋𝑛
1 in a given

moment 𝑛, takes values from the defined state space 

for the condition of the machine. It is assumed that in 

every discrete moment of time the random 

variable 𝑋𝑛
1, takes values from the same state space,

and further for simpler notation, this random process 

will be denoted only by 𝑋1 for every transition 
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moment and this is valid for the other stochastic 

processes. It is assumed that all random variables 

describing the given Markov chains are mutually 

independent. The second random process 𝑋2, i.e. the 

second Markov chain, which is “the condition of the 

operator after every run of the work place”, expressed 

by the caused percent of scrap from the operator. The 

third one-dimensional MDP is the random 

process 𝑋3, which is “the condition of the machine 

tools after every run of the work place”, expressed by 

the caused percent of scrap from the tools. The fourth 

one-dimensional MDP is the random process 𝑋4, 
which is “the condition of the materials after each run 

of the work place”, expressed by the caused percent 

of scrap from the materials. Let the random 

process 𝑋𝑙, 𝑙 ∈ {1, 2, 3,4}, takes |𝑅𝑋𝑙| = 𝑛𝑙 values.

For example, let the sets of values for these stochastic 

processes are 𝑅𝑋𝑙 = {𝑥1
𝑙 , 𝑥2

𝑙 , 𝑥3
𝑙 }, 𝑛𝑙 = 3. To

simplify, the same notations for the states of the one-

dimensional MDPs and the values of associated 

random variables are used. 𝐴𝑙, denote the sets of 

primary actions (decisions) for the one-dimensional 

MDPs and |𝐴𝑙| = 𝑚𝑙 are their numbers, for 𝑙 ∈
{1, 2, 3,4}. For example, let 𝐴𝑙 = {𝑎1

𝑙 , 𝑎2
𝑙 , 𝑎3

𝑙 }, |𝐴𝑙| =
𝑚𝑙 = 3. 

One significant limitation of the MDP model is 

the challenge in accurately determining transition 

probabilities. Typically, historical data are used to 

estimate these probabilities, but such data are often 

unavailable, hard to collect, or outdated. 

Additionally, transition probabilities can be 

influenced by a variety of changing factors in the 

environment, making them susceptible to fluctuation 

over time. As a result, the values of these probabilities 

may shift, leading to potential inaccuracies in the 

model and impacting the reliability of the decision-

making process. In an automated environment, 

systematically tracking causes, and recording and 

categorizing failure data can help address this 

challenge. By continuously collecting accurate data 

on failure patterns and updating the MDP model 

accordingly, the system can adapt more effectively to 

changes in the operational environment, improving 

the accuracy of transition probabilities over time. 

This model assumes that transition probabilities do 

not change over time, i.e. Markov chains are 

homogenous. The transition probabilities are denoted 

with 𝑝𝑖𝑗
𝑘 (𝑙), and they are the conditional probabilities

that the random variable 𝑋𝑙 takes value 𝑥𝑗
𝑙 if its

previous value was 𝑥𝑖
𝑙, under the influence of the

action 𝑎𝑘
𝑙 ,𝑖 ∈ {1, 2, 3}, 𝑗 ∈ {1, 2, 3}, 𝑘 ∈ {1, 2, 3}, 𝑙 ∈

{1, 2, 3,4}. For the given example, the matrices of the 

transition probabilities are: 

𝑎𝑘
𝑙 𝑥1

𝑙  𝑥2
𝑙  𝑥3

𝑙  

𝑥1
𝑙  𝑝11

𝑘 (𝑙) 𝑝12
𝑘 (𝑙) 𝑝13

𝑘 (𝑙)

𝑥2
𝑙  𝑝21

𝑘 (𝑙) 𝑝22
𝑘 (𝑙) 𝑝23

𝑘 (𝑙)

𝑥3
𝑙  𝑝31

𝑘 (𝑙) 𝑝32
𝑘 (𝑙) 𝑝33

𝑘 (𝑙)

Each transition probability matrix is followed by 

revenue or cost matrix. 

𝑎𝑘
𝑙 𝑥1

𝑙  𝑥2
𝑙  𝑥3

𝑙  

𝑥1
𝑙  𝑐11

𝑘 (𝑙) 𝑐12
𝑘 (𝑙) 𝑐13

𝑘 (𝑙)

𝑥2
𝑙  𝑐21

𝑘 (𝑙) 𝑐22
𝑘 (𝑙) 𝑐23

𝑘 (𝑙)

𝑥3
𝑙  𝑐31

𝑘 (𝑙) 𝑐32
𝑘 (𝑙) 𝑐33

𝑘 (𝑙)

The state space 𝒮 for the four-dimensional MDP 

is defined as the set of all ordered quadruplets formed 

by the elements of the value sets of 𝑋1, 𝑋2, 𝑋3, and 

𝑋4, and that is 𝒮 = {(𝑥𝑖
1, 𝑥𝑗

2, 𝑥𝑘
3, 𝑥𝑙

4), 𝑖 ∈

{1, 2,… , |𝑅𝑋1|}, 𝑗 ∈ {1, 2,… , |𝑅𝑋2|}, 𝑘 ∈

{1, 2,… , |𝑅𝑋3|}, 𝑙 ∈ {1, 2,… , |𝑅𝑋4|}} and it consists of

|𝒮| = |𝑅𝑋1| ∙ |𝑅𝑋2| ∙ |𝑅𝑋3| ∙ |𝑅𝑋4| = 𝑛1 ∙ 𝑛2 ∙ 𝑛3 ∙ 𝑛4  
states. The number of all possible transitions between 

the states of the system is calculated by |𝒮|2. The 

action space is defined similarly as the state space 

𝒜 = {(𝑎𝑖
1, 𝑎𝑗

2, 𝑎𝑘
3, 𝑎𝑙

4), 𝑖 ∈ {1,2,… , |𝐴1|}, 𝑗 ∈

{1,2, … , |𝐴2|}, 𝑘 ∈ {1,2,… , |𝐴3|}, 𝑙 ∈ {1,2,… , |𝐴4|}}

and it consists of |𝒜| = |𝐴1| ∙ |𝐴2| ∙ |𝐴3| ∙ |𝐴4| =
𝑚1 ∙ 𝑚2 ∙ 𝑚3 ∙ 𝑚4  actions. Using the fact that the 

random processes are independent, a method for 

calculating the joint transition probabilities is 

proposed, knowing those transition probabilities in 

the one-dimensional MDPs. The number of transition 

probabilities is |𝒮|2 ∙ |𝒜|. For the transition 

(𝑥𝑖1
1 , 𝑥𝑖2

2 , 𝑥𝑖3
3 , 𝑥𝑖4

4 )
(𝑎𝑘1
1 , 𝑎𝑘2

2 , 𝑎𝑘3
3 , 𝑎𝑘4

4 )

→    (𝑥𝑗1
1 , 𝑥𝑗2

2 , 𝑥𝑗3
3 , 𝑥𝑗4

4 ),

where 𝑖1, 𝑗1 ∈ {1, 2, … , |𝑅𝑋1|}, 𝑖2, 𝑗2 ∈

{1, 2,… , |𝑅𝑋2|}, 𝑖3, 𝑗3 ∈ {1, 2,… , |𝑅𝑋3|}, 𝑖4, 𝑗4 ∈

{1, 2,… , |𝑅𝑋4|}, 𝑘1 ∈ {1,2,… , |𝐴1|}, 𝑘2 ∈
{1,2, … , |𝐴2|}, 𝑘3 ∈ {1,2, … , |𝐴3|}, 𝑘4 ∈
{1,2, … , |𝐴4|}, the transition probability is calculated

by 𝑝𝑖1𝑗1
𝑘1 (1) ∙ 𝑝𝑖2𝑗2

𝑘2 (2) ∙ 𝑝𝑖3𝑗3
𝑘3 (3) ∙ 𝑝𝑖4𝑗4

𝑘4 (4), and the 

corresponding revenue is calculated by 𝑐𝑖1𝑗1
𝑘1 (1) +

𝑐𝑖2𝑗2
𝑘2 (2) + 𝑐𝑖3𝑗3

𝑘3 (3) + 𝑐𝑖4𝑗4
𝑘4 (4).

The primary transition matrices are stochastic, 

∑ 𝑝𝑖𝑙𝑗𝑙
𝑘𝑙 (𝑙)𝑗𝑙

= 1, so 

∑ ∑ ∑ ∑ 𝑝𝑖1𝑗1
𝑘1 (1)𝑗4𝑗3 𝑝𝑖2𝑗2

𝑘2 (2)𝑝𝑖3𝑗3
𝑘3 (3)𝑝𝑖4𝑗4

𝑘4 (4)𝑗2𝑗1 =

∑ 𝑝𝑖1𝑗1
𝑘1 (1)∑ 𝑝𝑖2𝑗2

𝑘2 (2)∑ 𝑝𝑖3𝑗3
𝑘3 (3)∑ 𝑝𝑖4𝑗4

𝑘4 (4)𝑗4𝑗3𝑗2𝑗1 =

1, i.e. the new matrices are also stochastic. For 

example, if 𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 3, 𝑚1 = 𝑚2 =
𝑚3 = 𝑚4 = 3, the system has 12 primary transition 
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matrices 3х3, and that is 9 ∙ 12 = 108 primary 

transition probabilities. The number of primary 

revenues is the same. The state space has 34 = 81 

states, and the number of actions in the action space 

is the same. The number of all possible transitions 

between the states of the system is 38 = 6561, and 
|𝒮|2 ∙ |𝒜| = 38 ∙ 34 = 312 = 531441 is the number 

of the joint transition probabilities. The number of the 

joint revenues is the same as the number of the joint 

transition probabilities. Exhaustive enumeration of all 

stationary policies is only practical in problems with 

small dimensions. In this model the number of all 

stationary policies is |𝒜||𝒮| and it is a very big

number. For the example, this number is 8181 ≈
3,87 ∙ 10154. So, the ranking of all stationary policies 

is not practical and the focus is on finding the optimal 

decision i.e. planning policy using some optimality 

method that can handle these dimensions. Later the 

policy iteration method is chosen (with and without 

discount rate). Convergence and optimal solution 

existence are considered in the research for the real 

data, collected in concrete enterprise. Table 1 gives 

the summary of the state space and the action space 

for the created four-dimensional MDP, for the MDP 

real example. 

Table 1: State and Action spaces for the MDP example. 

State 

Number 

State Action 

Number 

Action 

1 (𝑥1
1, 𝑥1

2, 𝑥1
3, 𝑥1

4) 1 (𝑎1
1, 𝑎1

2, 𝑎1
3, 𝑎1

4)
2 (𝑥1

1, 𝑥1
2, 𝑥1

3, 𝑥2
4) 2 (𝑎1

1, 𝑎1
2, 𝑎1

3, 𝑎2
4)

… … … 

22 (𝑥1
1, 𝑥3

2, 𝑥2
3, 𝑥1

4) 22 (𝑎1
1, 𝑎3

2, 𝑎2
3, 𝑎1

4)
… … … 

27 (𝑥1
1, 𝑥3

2, 𝑥3
3, 𝑥3

4) 27 (𝑎1
1, 𝑎3

2, 𝑎3
3, 𝑎3

4)

28 (𝑥2
1, 𝑥1

2, 𝑥1
3, 𝑥1

4) 28 (𝑎2
1, 𝑎1

2, 𝑎1
3, 𝑎1

4)
29 (𝑥2

1, 𝑥1
2, 𝑥1

3, 𝑥2
4) 29 (𝑎2

1, 𝑎1
2, 𝑎1

3, 𝑎2
4)

… … … 

49 (𝑥2
1, 𝑥3

2, 𝑥2
3, 𝑥1

4) 49 (𝑎2
1, 𝑎3

2, 𝑎2
3, 𝑎1

4)
… … … 

54 (𝑥2
1, 𝑥3

2, 𝑥3
3, 𝑥3

4) 54 (𝑎2
1, 𝑎3

2, 𝑎3
3, 𝑎3

4)
55 (𝑥3

1, 𝑥1
2, 𝑥1

3, 𝑥1
4) 55 (𝑎3

1, 𝑎1
2, 𝑎1

3, 𝑎1
4)

56 (𝑥3
1, 𝑥1

2, 𝑥1
3, 𝑥2

4) 56 (𝑎3
1, 𝑎1

2, 𝑎1
3, 𝑎2

4)
… … … 

76 (𝑥3
1, 𝑥3

2, 𝑥2
3, 𝑥1

4) 76 (𝑎3
1, 𝑎3

2, 𝑎2
3, 𝑎1

4)
… … ... 

81 (𝑥3
1, 𝑥3

2, 𝑥3
3, 𝑥3

4) (𝑎3
1, 𝑎3

2, 𝑎3
3, 𝑎3

4)

The calculated values of the primary transition 

probabilities and the primary revenues are input for 

the software designed to calculate the joint transition 

probabilities and the associated revenues for the four-

dimensional MDP. Because of the relatively small 

number of states and actions in the example and the 

relatively short time of finding the optimal solution, 

the discounted policy iteration method to solve the 

MDP is chosen. It gives the optimal decision policy 

and the respective state-value functions for every 

state for the optimal policy, i.e. the average expected 

returns for every state. The optimal policy, 

determines the associate matrix of transition 

probabilities 𝑃 and the matrix of revenues 𝑅. The 

vector 𝑋 = (𝑥1, 𝑥2, … , 𝑥81)
𝑇 of the long-run

stationary probabilities for the optimal policy is 

determined by solving the system of linear equations 

obtained from the matrix equation 𝑃 ∙ 𝑋 = 𝑋 and the 

equation 𝑥1 + 𝑥2 + …+ 𝑥81 = 1. Further vectors 

𝑣 = 𝑑𝑖𝑎𝑔(𝑃 ∙ 𝑅𝑇) and 𝐸 = 𝑋𝑇 ∙ 𝑣 are calculated. The 

value of 𝐸 is the expected revenue of the optimal 

policy per transition step and later it reflects the 

improvement of the condition of the system [14]. 

5 REAL APPLICATION AND 

RESULTS 

The mathematical model, developed as part of the 

methodology for generating optimal decision policies 

and success factors, was applied to a specific 

enterprise within the printing industry to address a 

real-world quality-accuracy management issue 

focused on minimizing scrap and reducing associated 

costs. According to their PMS, the sub-key element 

of success quality-accuracy is located as critical. The 

opinion of the experts from the company was that the 

importance of the sub-key element quality-accuracy 

in this company is 0.7. The performance of this 

element was measured by the indicator percent of 

scrap. The average value of percent of scrap for the 

selected sample was 13.59%, which was grade 4 as 

per the scale for the performance-axis in the I/P 

(Importance/Performance) matrix. The developed 

mathematical model proposed optimal or suboptimal 

decision policy to improve the performance of the 

located critical sub-key element. 

The printing machine is linked to the design studio 

through specialized software and includes 

functionality to record total scrap production. 

However, it does not categorize scrap by individual 

causes. Instead, operators manually document these 

causes in detailed daily reports, which are 

subsequently processed into specific forms to track 

scrap sources. This system provides a clear method 

for identifying the root causes of scrap, but as 

discussed earlier, this can be enabled with the new IT 

development. A portion of these records was made 

available for this research. The collected data for 

scrap production referred to 396 consecutive orders 
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(printing machine runs), possible causes for scrap, 

appropriate corrective actions and associate costs. 

This information was instrumental in modeling the 

real problem. Considering the expert’s opinion and 

the analysis of two measures, percent of scrap and 

number of scrap sheets, it is concluded that it is more 

appropriate to use the measure (the indicator) percent 

of scrap and the average of percents of scrap in 

defining the states of MDPs. Real data of available 

corrective actions were used to define action spaces 

for MDPs. Clearly, the available sets of states and 

corrective actions are too big and complex and the 

model needed to simplify the state and action sets in 

order to avoid the problem of dimensionality. 

According to the opinion of the experts from the 

company and the collected real data for 396 

consequent series with different number of sheets 

printed on the monitored machine, it is decided that 

it’s appropriate to consider three intervals of percents 

of scrap for the scrap cause – the machine. This 

defined the states for the random process “condition 

of machine” based on percent of scrap it caused for 

the considered sample. The limits are determined 

according to the average of percents of scrap for all 

series. The percents of scrap caused by the machine 

for the monitored sample were provided from real 

records. The operator as factor of influence is most 

difficult to evaluate, because of its complex and 

unpredictable behavior in different situations. 

Therefore, the systems in which the influence of the 

operator is greater are more difficult for modeling and 

analyzing. The modeling and the analysis in this 

paper mainly rely on collected real data. The 

condition of the operator is defined in terms of the 

induced percent of scrap, for which the cause is the 

operator. The condition of the tools is defined in 

terms of the induced percent of scrap, for which the 

cause are the tools. The condition of the materials is 

defined in terms of the induced percent of scrap, for 

which the cause are the materials. Intervals of 

percents of scrap to define the states of all four causes 

are determined based on real data, the average of 

percents of scrap of the considered sample for this 

cause and experts’ opinion. 

Based on corrective actions taken in reality, three 

types of actions were selected for each cause. To 

make the model more realistic in the future, the 

spaces of states and actions should be more detailed 

and more comprehensive, but large size problems 

require more complex algorithms and software for 

solving. However, the mathematical model is open in 

this sense and has opportunity to explore larger 

issues. 

The collected real data were used to calculate the 

transition probabilities with the formula 𝑝𝑖𝑗
𝑘 (𝑙) =

𝑁𝑖𝑗
𝑘 (𝑙)

𝑁𝑖
𝑘(𝑙)

, where 𝑁𝑖
𝑘(𝑙) denotes the number of times the

one-dimensional MDP described by the random 

process 𝑙 was in state with index 𝑖, under the influence 

of primary action with index 𝑘, and 𝑁𝑖ј
𝑘(𝑙) denotes the

number of times  it made transition from state with 

index 𝑖 to state with index 𝑗,  under the influence of 

primary action with index 𝑘. The notations of the 

primary states and actions are simplified identifying 

them with their indexes. For the given example, 𝑖 ∈
{1,2,3}, 𝑗 ∈ {1,2,3}, 𝑘 ∈ {1,2,3}, 𝑙 ∈ {1,2,3,4}.  

Real data give information of all transitions from 

one state to another under the influence of certain 

action. Thus, the transition probabilities were 

determined [14].  

The enterprise uses special price lists and software 

to calculate the price for an order. These information 

were used to calculate the elements of costs matrices. 

The revenue matrices that follow the percent of scrap 

from the collected real data of percent of scrap 

divided by cause were obtained. They were calculated 

separately for each cause. First the differences 

between the percents of scrap for all consecutive 

transitions from one state to another under the 

influence of some action were calculated. Then they 

were divided in 18 columns representing the feasible 

transitions. Those representing the same transition 

under the same action were put in the same column. 

After that, averages for each column were calculated, 

for the considered sample, and for every cause the 

average percent of scrap’s increase or decrease for 

every transition under the influence of every action 

was obtained. These values were denoted by 𝑟𝑖𝑗
𝑘(𝑙),

𝑖, 𝑗, 𝑘 ∈ {1,2,3}, 𝑙 = 1,2,3,4. Clearly, for a larger 

sample, more accurate results should be obtained. 

Thus, the percent of scrap is followed individually for 

each cause and totally for the whole system. Also, the 

optimal decision policy was obtained, minimizing the 

percent of scrap. For all unfeasible transitions, for 𝑙 =
1,2,3,4, 𝑟21

1 (𝑙) = 𝑟31
1 (𝑙) = 𝑟32

1 (𝑙) = 𝑟12
2 (𝑙) =

𝑟13
2 (𝑙) = 𝑟23

2 (𝑙) = 𝑟12
3 (𝑙) = 𝑟13

3 (𝑙) = 𝑟23
3 (𝑙) = 0.

For the considered model the output from the 

designed software was 81 transition probabilities 

matrices with dimensions 81x81 and 81 revenue 

matrices with the same dimensions. Applying policy 

iteration method, for different discount rates, 

different optimal policies were obtained represented 

in the form of two vector columns with dimensions 

81x1, which means that for every state of the system 

(numerated from 1 to 81 in Table 3), optimal policy 

suggests the corrective action numerated in Table 4. 

The other output vector column consists of state-
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value functions i.e. the average expected return for 

every state. Optimal policy determines transition 

probability matrix 𝑃 and revenue matrix 𝑅. Vector 

𝑋 = (𝑥1, 𝑥2, … , 𝑥81)
𝑇 of the stationary probabilities is

solution to the system of linear equations obtained 

from 𝑃 ∙ 𝑋 = 𝑋 and 𝑥1 + 𝑥2 + …+ 𝑥81 = 1. 

Further, vectors 𝑣 = (𝑣1, 𝑣2, … , 𝑣81)
𝑇,

𝑣 = 𝑑𝑖𝑎𝑔(𝑃 ∙ 𝑅𝑇) are determined and 𝐸 = 𝑋𝑇 ∙ 𝑣 is 

obtained. The obtained value is 𝐸 = 5.2107% which 

is the expected percent of scrap for the optimal policy 

per transition step and grade 8. The results for 

discount rate 0.99 are given in Table 2. The optimal 

decision policy can be compared to any other decision 

policy, or any two stationary policies can be 

compared. Figure 1 shows the revised I/P matrix. 

Table 2: Results from the optimization of the percent of 

scrap for discount factor 0.99. 

State 

 i 

Optimal 

policy 

V 

*1.0e+03
𝑥𝑖 𝑣𝑖

1 

2 
. 

. 

. 
14 

15 

. 

. 

. 

80 

81 

81 

81 
. 

. 

. 
78 

78 

. 

. 

. 

81 

81 

1.2577 

1.2580 
. 

. 

. 
1.2601 

1.2624 

. 

. 

. 

1.2831 

1.2831 

0.0164 

0.0116 

. 

. 

. 
0.0009 

0.0019 

. 

. 

. 
0.0705 

0.0705 

-36.5635

-30.7814

. 

. 

. 
7.4408 

8.2197 

. 

. 

. 
30.6179 

30.6179 

The average value of percent of scrap for the 

selected sample is 13.5928%, and with the optimal 

policy it decreased to 5.2107%. This improved value 

for the performance of the sub-key element quality-

accuracy is entered in the revised I/P matrix, which 

shows the improvement of the condition of the 

system.  

In order to examine the sensitivity of the model to 

changes in transition matrices, the performed 

sensitivity analysis led to the conclusion that the 

model is not very sensitive to such changes.

Determination of cost matrices was also needed to 

find the optimal decision policy minimizing costs. In 

these matrices costs are with negative sign, and the 

revenue with positive sign. For all unfeasible 

transitions, for 𝑙 = 1,2,3,4, 𝑐21
1 (𝑙) = 𝑐31

1 (𝑙) =
𝑐32
1 (𝑙) = 𝑐12

2 (𝑙) = 𝑐13
2 (𝑙) = 𝑐23

2 (𝑙) = 𝑐12
3 (𝑙) =

𝑐13
3 (𝑙) = 𝑐23

3 (𝑙) = 0. Other costs are computed with

the 𝑐𝑖𝑗
𝑘(𝑙) = −𝑡𝑙

𝑘 +
𝑟𝑖𝑗
𝑘(𝑙)∙1470∙12.7

100
, 𝑖, 𝑗 ∈ {1,2,3}, 

𝑙 = 1,2,3,4, 𝑘 ∈ {2,3}, and for k=1, 

𝑐 𝑖𝑗

1

(𝑙) = −
𝑟𝑖𝑗
1(𝑙)∙1470∙12.7

100
, where 1470 is the average 

of the sum of the order size and the number of scrap 

sheets for the considered sample. 12.7 is the average 

price of one finished sheet calculated according the 

methodology of the enterprise.  The research included 

analysis of costs 𝑡𝑙
𝑘 for the corrective actions for each

cause, which gives Table 3, illustrated with matrix. 
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Figure 1: Revised I/P matrix. 

Table 3: Costs for the corrective actions for each cause. 

𝑡𝑙
𝑘 Action 1 Action 

2 

Action 

3 

Machine 0 250 1000 

Operator 0 150 230 

Tool 0 200 1473 

Material 0 300 1395 

The calculated average costs induced with the 

transitions between the states, under the influence of 

the primary actions for all the MDPs, were calculated 

and presented with cost matrices and joined table, 

similarly as for the transition probabilities in [14]. 

Table 4: Results from the optimization of the scrap costs for 
discount factor 0.99. 

State 
 i 

Optimal 
policy 

V 
*1.0e+05

𝑥𝑖 𝑣𝑖
*1.0e+03

1 
2 

. 

. 

. 
14 

15 

. 

. 

. 

80 

81 

49 
50 

. 

. 

. 
50 

50 

. 

. 

. 

50 

50 

1.3159 
1.3151 

. 

. 

. 
1.3200 

1.3233 

. 

. 

. 

1.3558 

1.3558 

0.0527 
0.0080 

. 

. 

. 
0.0017 

0.0010 

. 

. 

. 

0.0031 

0.0031 

-4.7413
-4.7913

.

. 

. 
0.8922 

-0.1339

.

. 

. 

-0.3511

-0.3511
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Same methodology as for determining the optimal 

decision policy for minimization of percent of scrap 

is used to get the optimal decision policy for 

minimization of costs of scrap and the computed 

value was 𝐸 = −546.0880 which is the expected 

cost for scrap for the optimal policy, per transition 

step. Table 4 shows the results from the calculations 

with the respective currency. 

To compare, in the same way the expected costs 

per transition step are calculated, for the optimal 

policy obtained previously minimizing the percent of 

scrap, and the value is 𝐸 = −1189. 

6 EMERGING CHALLENGES 

AND FUTURE PROSPECTS 

Markov Decision Processes (MDPs) are highly 

suitable for automating manufacturing processes due 

to their ability to model decision-making in complex 

and uncertain environments, where current actions 

influence future states and outcomes. Automated 

quality control systems benefit from MDPs as they 

provide a framework for optimizing inspection 

frequencies and methods, thereby ensuring consistent 

product quality. Key advantages of incorporating 

MDPs in manufacturing automation include data-

driven decision-making, adaptability to changing 

conditions, operational efficiency and cost savings, 

and enhanced predictive capabilities. Within 

automated quality control systems, various MDP 

models are particularly effective in managing 

uncertainty and adapting policies based on quality 

metrics and outcomes. 

However, the successful application of MDPs, 

especially in automated quality control systems, is 

subject to several challenges and risks that can limit 

their effectiveness in real-world industrial settings. 

Key challenges include inaccurate transition 

probabilities, oversimplified system assumptions, the 

need for a stationary environment, data quality and 

availability issues, the exploration versus exploitation 

trade-off, model overfitting, computational 

complexity, and human factors. To address these 

challenges, industries must prioritize robust model 

validation and verification, continuously update 

transition probabilities with real-time data, and 

incorporate adaptive mechanisms to respond to 

evolving conditions. Regular testing and refinement 

of models based on actual operational data are 

essential for maintaining the accuracy and efficiency 

of automated quality control systems and reducing 

scrap in manufacturing. 

To further enhance flexibility and adaptability, 

MDPs can be extended through vector random 

processes, enabling the simultaneous management of 

multiple quality and process metrics within a single 

system. In some models, independent state 

variables—representing different subsystems such as 

machines, operators, tools, and materials—simplify 

the MDP structure by allowing separate consideration 

of each subsystem's dynamics and transitions. This 

approach enables a multi-dimensional MDP 

framework in which each subsystem functions as a 

one-dimensional MDP, focusing on minimizing scrap 

by addressing significant contributors individually. 

Monitoring each subsystem's state facilitates targeted, 

subsystem-specific interventions, optimizing quality 

control in manufacturing environments. 

Reinforcement Learning (RL)-enhanced MDPs 

and hierarchical MDPs offer additional adaptability 

in multi-dimensional contexts, allowing coordinated 

control across subsystems. These models are 

particularly promising for reducing scrap in complex 

manufacturing setups, as they learn and refine 

optimal policies over time. Nonetheless, determining 

accurate transition probabilities from historical data 

remains a challenge and requires ongoing attention to 

data integrity and validation. 

In MDP-based manufacturing quality control 

models, subsystems are treated as stochastic 

processes governed by different probability 

distributions, which capture the uncertainty and 

variability in state transitions. These distributions 

form the basis for modeling scenarios such as 

machine failure, tool wear, material defects, and 

operator errors. By incorporating these distributions 

into MDP frameworks, manufacturers can make 

informed decisions on process adjustments to 

minimize defects and improve overall accuracy. 

Specialized software tools like MATLAB/Simulink, 

AnyLogic, Arena, Python, @Risk, R, and Simio 

facilitate the simulation and optimization of MDP 

models, allowing tailored probability distributions to 

enhance decision-making and production efficiency. 

To further enhance quality control, integrated 

technologies such as sensors, wearable devices, 

predictive maintenance systems, and data analytics 

platforms can be used for failure detection and 

responsibility assignment within subsystems. These 

tools, when combined within unified systems like 

Manufacturing Execution Systems (MES), enable 

precise tracking of defects and their causes, 

enhancing accountability and proactive mitigation 

efforts. Emerging technologies, including machine 

learning (ML), artificial intelligence (AI), predictive 

analytics, IoT, and cloud-based solutions, are shaping 

the future of automated quality control by enabling 
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more accurate, proactive defect detection and process 

optimization. 

7 CONCLUSIONS 

This study introduces a comprehensive methodology 

for integrating MDPs into industrial quality control 

systems, emphasizing automation and decision-

making under uncertainty. By developing a four-

dimensional MDP model within a PMS framework, 

the research effectively minimizes scrap and 

associated costs. Application in a real-world printing 

enterprise validated the model's practical value, 

achieving significant scrap reductions and cost 

savings while providing a structured approach to 

addressing inefficiencies. 

Key contributions include methodologies for 

transition probability estimation and revenue 

matrices, alongside policy iteration optimization to 

generate actionable decisions. The study highlights 

the adaptability and scalability of MDPs, 

accommodating additional factors and larger datasets 

to tackle complex manufacturing challenges. 

Integrating advanced IT tools, such as real-time 

monitoring and data analytics, enhances model 

accuracy and responsiveness, improving efficiency, 

product quality, and sustainability. Future work 

should expand state-action spaces, leverage machine 

learning and IoT, and address data challenges to 

advance automation and industrial competitiveness. 
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