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ABSTRACT

Accurate semantic segmentation of remote sensing imagery is critical for various Earth observation
applications, such as land cover mapping, urban planning, and environmental monitoring. However,
individual data sources often present limitations for this task. Very High Resolution (VHR) aerial
imagery provides rich spatial details but cannot capture temporal information about land cover
changes. Conversely, Satellite Image Time Series (SITS) capture temporal dynamics, such as seasonal
variations in vegetation, but with limited spatial resolution, making it difficult to distinguish fine-scale
objects. This paper proposes a late fusion deep learning model (LF-DLM) for semantic segmentation
that leverages the complementary strengths of both VHR aerial imagery and SITS. The proposed
model consists of two independent deep learning branches. One branch integrates detailed textures
from aerial imagery captured by UNetFormer with a Multi-Axis Vision Transformer (MaxViT)
backbone. The other branch captures complex spatio-temporal dynamics from the Sentinel-2 satellite
image time series using a U-Net with Temporal Attention Encoder (U-TAE). This approach leads to
state-of-the-art results on the FLAIR dataset, a large-scale benchmark for land cover segmentation
using multi-source optical imagery. The findings highlight the importance of multi-modality fusion
in improving the accuracy and robustness of semantic segmentation in remote sensing applications.

Keywords Earth observation, semantic segmentation, remote sensing, multi-modality fusion, deep learning

1 Introduction

Remote sensing data is captured from a distance by sensors or instruments mounted on various platforms such as
satellites, aircraft, drones, and other vehicles. This data collects information about the Earth’s surface, atmosphere,
and other objects or phenomena without requiring direct physical contact [1]. There are two main techniques of
remote sensing data acquisition: aerial and satellite. Satellite data is collected by satellites orbiting the Earth, capturing
information over large areas at regular intervals. This provides a broad view of the entire planet. In contrast, aerial
data is captured from airplanes or drones flying closer to the ground. This data covers smaller areas but with much
finer detail, making it ideal for studying specific locations. Sensors are essential to remote sensing systems, as they
collect data used to create images and other forms of information. Various types of sensors employed in remote sensing
include optical sensors, radar sensors, lidar sensors, and electromagnetic sensors [1].
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Remote sensing data has four key properties: spectral, spatial, radiometric, and temporal resolution [2]. Spectral
resolution refers to the range of wavelengths a satellite sensor can detect. The more wavelengths a sensor can capture,
the richer the information content of the imagery and the greater the detail it reveals about land use and cover. These
captured wavelengths span a vast spectrum, including ultraviolet, visible light, near-infrared, infrared, and microwave.
Some sensors capture just a few broad bands (multi-spectral), like Sentinel-2 with its 12 bands. Others, like Hyperion,
are hyper-spectral, gathering thousands of narrow bands for a highly detailed spectral view [2]. Spatial resolution
refers to the size of each pixel in the image. Higher spatial resolution means smaller pixels, capturing finer details
on the ground. Radiometric resolution describes how well the sensor can detect variations in radiated energy from
the earth’s surface. Higher resolution allows for better detection of subtle changes. Landsat 7 captures 8-bit images,
distinguishing 256 distinct gray values of reflected energy, whereas Sentinel-2 features a 12-bit radiometric resolution,
allowing it to discern 4095 gray values. Temporal resolution refers to how often a specific location is imaged. For
example, polar-orbiting satellites exhibit varying temporal resolutions, ranging from 1 to 16 days (e.g., ten days for
Sentinel-2). This is important for monitoring changes over time.

Machine learning is revolutionizing the way we analyze and understand remote sensing data [3]. A particularly exciting
area of research is the semantic segmentation of remote sensing data. The goal is to partition the image into meaningful
regions, enabling detailed analysis and understanding of the Earth’s surface. Accurate semantic segmentation of remote
sensing imagery is essential for a wide range of Earth observation (EO) applications, including land cover mapping,
urban planning, and environmental monitoring [2]. The emergence of deep learning, particularly Convolutional Neural
Networks (CNNs) and Fully Convolutional Networks (FCNs), ignited a revolution in semantic segmentation [4]. These
models automated the learning of complex, hierarchical representations from data, paving the way for significant
advancements. FCNs, often paired with encoder-decoder architectures, became the dominant approach. Early methods
relied on successive convolutions and spatial pooling to generate dense predictions. Subsequent innovations like U-Net
and SegNet introduced upsampling techniques to combine high-level features with lower-level ones during decoding
[4]. This fusion aimed to capture both global context and precise object boundaries. To address the limited receptive
field of standard convolutions in earlier layers of deep learning models, techniques like dilated (or atrous) convolutions
were introduced by DeepLab [5]. These convolutions allow capturing a larger context while maintaining the resolution
of the feature maps. Subsequent advancements incorporated spatial pyramid pooling (SPP) to capture multi-scale
contextual information in higher layers, as seen in models like PSPNet [4] and UperNet [6]. DeepLabV3+ built upon
these advancements by combining atrous spatial pyramid pooling with a straightforward and efficient encoder-decoder
architecture [7]. However, recent developments like PSANet [8] and DRANet [9] have moved beyond traditional
pooling, instead using attention mechanisms on top of encoder feature maps to capture long-range dependencies more
effectively. Most recently, the adoption of transformer architectures, which utilize self-attention mechanisms and capture
long-range dependencies, has marked additional advancement in semantic segmentation. Transformer encoder-decoder
architectures like Segmenter, SegFormer, and MaskFormer harness transformers to enhance performance [10].

The abundance of diverse remote sensing modalities, like LiDARs, RGB-D cameras, and thermal cameras, has fostered
the development of deep multimodal fusion techniques. These complementary sensors offer a richer picture of the scene,
especially in complex environments. Deep learning excels at leveraging this data to reduce uncertainties and create
a more comprehensive understanding. The core objective of deep multimodal fusion in segmentation is to learn an
optimal joint representation by combining the strengths of individual modalities [11]. This joint representation captures
the rich and complementary features of the same scene, leading to more accurate segmentation results. For example,
Very High Resolution (VHR) aerial imagery excels at providing rich spatial details, making it ideal for identifying
fine-scale features such as individual buildings, roads, and small vegetation patches. This high level of detail is crucial
for tasks that require precise mapping and analysis of specific locations. However, VHR aerial imagery typically
lacks temporal information, which is essential for capturing changes over time to monitor dynamic processes such as
seasonal variations in vegetation, urban growth, or the progression of environmental degradation. On the other hand,
Satellite Image Time Series (SITS) data offers valuable temporal insights by capturing images of the same area at
regular intervals. This capability is particularly useful for observing and analyzing temporal dynamics, such as the
phenological cycles of crops, changes in land cover due to deforestation or reforestation, and the impact of natural
disasters over time. However, SITS data generally has lower spatial resolution compared to VHR aerial imagery, which
can make it difficult to distinguish fine-scale objects and detailed features on the ground.

Deep multimodal fusion methods can be broadly categorized based on the stage at which information from different
modalities is combined [11]. Early fusion occurs at the raw data level (e.g., concatenating RGB and LiDAR data)
or feature level (combining extracted features from each modality). This approach allows the model to learn a joint
representation from the very beginning. Late fusion strategy involves processing each modality separately through
individual deep learning branches. Then, the resulting feature maps are combined at a later stage (e.g., before the
final prediction layer) using operations like concatenation, addition, or weighted voting. This approach offers greater
flexibility in designing individual models for specific modalities. Hybrid fusion combines elements of both early and
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late fusion. It might involve initial feature-level fusion followed by late fusion of higher-level features. This allows
for a more adaptive learning process based on the specific data and task. By effectively leveraging the complementary
information from multiple modalities, deep multimodal fusion techniques are pushing the boundaries of semantic
segmentation accuracy and robustness, particularly in complex remote sensing scenarios.

This paper tackles the challenge of accurate semantic segmentation in remote sensing by proposing a late fusion
deep learning model (LF-DLM) that leverages the complementary strengths of VHR aerial imagery and SITS data.
This approach aims to overcome the limitations inherent in single-source data, ultimately leading to more robust and
informative land cover segmentation. The proposed LF-DLM architecture employs a dual-branch strategy, capitalizing
on the specific advantages of each data source. Our research can be summarized by the following primary contributions:

• Introduction of a late fusion deep learning model that leverages the complementary strengths of VHR aerial
imagery and SITS data, tailored to enhance semantic segmentation of remote sensing imagery.

• Through comprehensive experimental evaluation, we demonstrate that the LF-DLM model effectively combines
spatial and temporal information, leading to improved segmentation accuracy across various land cover types
while maintaining efficient inference times.

• Our LF-DLM model achieves state-of-the-art results on the FLAIR dataset, surpassing previous benchmarks,
thus establishing a new standard for semantic segmentation in multi-source optical imagery.

The subsequent sections of this paper are structured as follows: Section 2 provides an overview of the dataset utilized
in the research. Section 3 details the key features of the proposed late fusion deep learning model. Section 4
comprehensively outlines the experimental design and setup, including data preprocessing, training protocols, model
parameters, and evaluation metrics. Section 5 presents the experimental results alongside relevant discussions. Finally,
Section 6 concludes the paper, summarizing the findings and contributions.

2 Dataset

The FLAIR dataset1 includes diverse sources of acquisition, each with unique characteristics and varying spatial,
spectral, and temporal resolutions. This dataset provides detailed VHR aerial images, elevation models, and satellite
image time series [12]. Each aerial image measures 512 × 512 pixels, with a spatial resolution of 20 cm per pixel,
and includes four spectral bands: red, blue, green, and near-infrared. The dataset comprises 77762 patches. To ensure
high-quality images, the aerial data is captured only during favorable weather conditions, specifically between April
and November from 2018 to 2021. Each aerial image includes an elevation value. This value is derived from combining
a digital elevation model and a digital surface model, obtained through photogrammetry on the aerial images, ensuring
temporal consistency.

Each aerial image patch in FLAIR is accompanied by a corresponding time series of satellite images from the Sentinel-2
constellation [13]. These satellite images offer a broader view with a spatial resolution of 10 meters per pixel and come
in a size of 40×40 pixels, centered on the corresponding aerial image, and only 10×10 center pixels correspond to
the aerial image patch. Each pixel provides information across 10 spectral bands, capturing data from the visible to
the medium infrared spectrum. The time series for each patch spans the entire year during which the aerial image was
acquired. The number of images within a series can vary between 20 and 110, depending on satellite availability and
orbital characteristics. The dataset includes acquisitions with cloud cover and provides cloud and snow probability
masks, obtained with Sen2cor [14], along with information about the satellite and its orbit. Example patches from the
FLAIR dataset are given in Figure 1.

The VHR images are annotated with segmentation masks containing 18 different labels/classes, along with an ’other’
class for unknown land cover. Due to significant under-representation (less than 1% of the complete dataset), five of
these classes are combined into the ’other’ class. This results in a nomenclature of 12 classes plus the ’other’ class.
The classes are: ’building’, ’pervious surface’, ’impervious surface’, ’bare soil’, ’water’, ’coniferous’, ’deciduous’,
’brushwood’, ’vineyard’, ’herbaceous vegetation’, ’agricultural land’, and ’plowed land’. Annotations are not provided
for the satellite images. Instead, these images are intended to support the aerial images by providing spatial context.
The distribution of pixels within the labels across the train, validation, and test sets of the FLAIR dataset is shown in
Figure 2.

The dataset comprises 50 spatial domains, each representing various landscapes and climates of metropolitan France.
The training set includes 32 spatial domains, the validation set contains 8, and the remaining 10 domains are allocated to
the test set. The dataset is part of the FLAIR #2 challenge where a key requirement is to leverage both aerial and satellite

1https://github.com/IGNF/FLAIR-2
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R-G-B NIR-R-G Elevation Segmentation map

Satellite image time series

Figure 1: Example patches from the FLAIR dataset. Each patch contains an aerial image with red, green, blue (RGB),
and near-infrared (NIR) values; a pixel-precise digital surface model providing an elevation for each pixel; segmentation
map with labels for each pixel; and an optical time series from several months, centered on the aerial image. The red
frame marks the area that corresponds to the aerial image.
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Figure 2: The distribution of pixels within the labels across the train, validation, and test sets of the FLAIR dataset.

4



A PREPRINT - OCTOBER 2, 2024

imagery to achieve optimal semantic segmentation results. The FLAIR #2 challenge introduces a second requirement:
computational efficiency to ensure a balance between accuracy and practicality, considering the vast amount of data
involved. The proposed approach’s inference time needs to be within 2.5 times the execution speed of the baseline
model offered by the dataset creators [12]. Within this paper, we have carefully designed our solution to effectively
utilize both data sources while staying within the allowed inference time for the FLAIR #2 challenge.

3 Model Architecture

This paper introduces a late fusion deep learning model (LF-DLM) for semantic segmentation, designed to exploit the
complementary strengths of both Very High Resolution (VHR) aerial imagery and Satellite Image Time Series (SITS).
The proposed model features two independent deep learning branches. The first branch integrates detailed textures from
aerial imagery using a UNetFormer [15] with a Multi-Axis Vision Transformer (MaxViT) encoder [16], effectively
capturing high-resolution spatial details. The second branch focuses on capturing complex spatio-temporal dynamics
from the Sentinel-2 satellite image time series by employing a U-Net with Temporal Attention Encoder (U-TAE)
[17], which processes and interprets temporal information. In the late fusion deep learning model, the probability
scores from each branch are combined using a weighted geometric mean to obtain the final segmentation map. This
dual-branch approach enables the model to leverage both spatial and temporal data for enhanced semantic segmentation
performance.

The first branch of the LF-DLM model builds upon the Unet-like transformer UNetFormer. Originally it consists
of a convolutional neural network (CNN) based encoder and a transformer-based decoder. The transformer-based
decoder is constructed using global-local Transformer blocks (GLTB) that employ an efficient global-local attention
mechanism with an attentional global branch and a convolutional local branch, enabling the capture of both global
and local contexts for enhanced visual perception. We propose a modification to UNetFormer by replacing its CNN
encoder with MaxViT, a hybrid vision transformer architecture. MaxViT introduces a novel building block called
Multi-axis Self-Attention (Max-SA). This block allows the model to attend to information along multiple axes within
an image feature map, including spatial, channel-wise axes, or combination. Compared to standard full self-attention
in ViTs, Max-SA captures long-range dependencies (global information) more efficiently without requiring complex
computations. MaxViT utilizes a hierarchical architecture where each stage in the hierarchy consists of a MaxViT block,
which combines Max-SA with a convolutional layer. This combination leverages the strengths of both approaches:
Max-SA for global context and convolutions for efficient local feature extraction. The network begins by downsampling
the input through Conv3x3 layers in the stem stage (S0). The body of the network contains four stages (S1-S4), with
each stage having half the resolution of the previous one with a doubled number of channels (hidden dimension). The
feature maps generated by each stage are fused with the corresponding feature maps generated by the GLTB of the
decoder using a weighted sum operation.

The MaxViT model can be scaled up by increasing the number of blocks per stage and the channel dimension. There
are several MaxViT variants including MaxViT-T, MaxViT-S, MaxViT-B, MaxViT-L, and MaxViT-XL. These variants
progressively increase in complexity (number of blocks and channels) and likely performance, potentially reaching a
trade-off between accuracy and efficiency [16]. In this study, we are using MaxViT-T as an encoder in the UNetFormer
architecture. We are utilizing MaxViT-T, pre-trained on the ImageNet-1K dataset, to leverage its learned general visual
features, which can be highly beneficial for semantic segmentation tasks.

To effectively analyze both spatial and temporal information within the Sentinel-2 satellite image time series, we
leverage a U-Net with temporal attention (U-TAE) model, which serves as the second branch in the LF-DLM model.
This branch extracts multi-scale spatio-temporal feature maps from SITS using a combination of spatial convolution
and temporal attention. U-TAE encodes a given sequence in three key steps [17]. First, each image in the sequence is
embedded simultaneously and independently by a shared multi-level spatial convolutional encoder. Next, a temporal
attention encoder collapses the temporal dimension of the resulting sequence of feature maps into a single map for
each level. Finally, a spatial convolutional decoder produces a single feature map with the same resolution as the input
images. By combining these steps, U-TAE allows effective exploitation of the rich spatio-temporal information present
in the SITS, leading to a more comprehensive understanding of the scene dynamics.

4 Experimental Design and Setup

The primary objective of our study is to develop, evaluate, and compare a late fusion deep learning model (LF-DLM) for
semantic segmentation of remote sensing imagery by leveraging the complementary strengths of VHR aerial imagery
and SITS. Our experimental design is structured around the main hypothesis, that the fusion of these multi-source
optical images will improve the semantic segmentation performance compared to using either data source alone. To test
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the hypothesis, we use VHR aerial imagery processed through the UNetFormer with MaxViT-S backbone to capture
detailed spatial features, and SITS processed through a U-Net with Temporal Attention Encoder (U-TAE) to capture
complex spatio-temporal dynamics. Our evaluation strategy involves training and assessing each model separately to
determine their performances and conducting a comparative analysis to highlight the benefits of combining these data
sources with weighted late fusion as a strategy.

The experimental setup involves data pre-processing, a configuration of the models, and hyperparameter selection.
While no additional pre-processing is applied to the aerial patches, we address the potential influence of clouds and
snow in the Sentinel-2 time series by implementing two pre-processing strategies using the provided mask files. Cloud
filtering focuses on the probability of cloud or snow occurrence in the masks. We exclude images from the training
process where the number of pixels exceeding a specific probability threshold (set to 0.5 in our experiments) surpasses
a designated percentage of the total image pixels. This approach mitigates the impact of cloudy or snowy data on the
training process. Additionally, we apply temporal monthly averaging to address challenges posed by the large number
of dates within the time series. Here, a monthly average is computed using only cloudless dates within each month. If
no cloudless dates are available for a particular month, the U-TAE branch might receive less than 12 images as input.

The UNetFormer model leverages a pre-trained MaxViT-T encoder on the ImageNet-1K dataset. This encoder receives
five-channel aerial patches containing red, green, blue, near-infrared, and elevation data. The resolution of the aerial
patches is 512× 512 pixels. We add two channels to the initial layers to accommodate the near-infrared and elevation
pixel values, with the weights of these added channels initialized randomly. The number of learnable parameters in
this UNetFormer model is approximately 31 million. We use the default U-TAE parameters [17], [12], with the only
modification being the widths of the encoder and decoder, which we adjusted to [64, 64, 128, 128]. This list specifies
the number of channels for the successive layers of the convolutional encoder, and the same configuration applies to the
decoder. The input to this model is the SITS data with dimensions T × 10× 40× 40, where T represents the number
of images in the time series (with a maximum of 12), 10 is the number of spectral bands, and 40 × 40 is the pixel
resolution. The number of learnable parameters in this U-TAE model is approximately 2.9 million. To ensure spatial
alignment, the U-TAE outputs are first cropped to match the size of the corresponding aerial patch. Then, they are
upsampled to the same resolution (512× 512 pixels) as the aerial mask files. We experimented with different weight
combinations for the late fusion, and the best performance was achieved when the UNetFormer branch was assigned a
weight of 0.7 and the U-TAE branch had a weight of 0.3 in the weighted geometric mean.

To train both the UNetFormer and U-TAE models effectively, we employed several common deep learning techniques.
To prevent overfitting and optimize hyperparameters, we employed a training process with hyperparameter selection and
early stopping. The training data was used to train the model. Hyperparameter selection was performed on the validation
split to identify the optimal configuration for the model’s hyperparameters. To prevent overfitting, we implemented
early stopping using the validation loss. If the validation loss did not improve for a predefined patience period (15
epochs in this case), training was terminated. The model with the best performance on the validation set, determined
by the chosen evaluation metric, was then saved as the final model. This model was subsequently evaluated on the
unseen test data to obtain an unbiased assessment of its predictive performance. The maximum training duration was
set to 30 epochs. To improve the robustness and generalization ability of our model, we employ data augmentation
techniques during training. This process involves applying random geometric transformations to the training data.
Specifically, we utilize horizontal flips, vertical flips, and random rotations at predefined angles (0, 90, 180, and 270
degrees). We fixed the batch size at 12 for our experiments. We employed the AdamW optimizer with a learning rate
of 0.0001 [18]. A polynomial decay scheduler was used to gradually decrease the learning rate throughout training.
This approach, with a carefully chosen decay rate, has been shown to improve model performance [19]. The scheduler
applies a polynomial function to the AdamW optimizer, starting with an initial learning rate of (1 × 10−4) and reaching
a final learning rate of (1 × 10−7) within the specified number of decay steps. To achieve a balanced approach to
semantic segmentation, we combined Cross Entropy Loss and Dice Loss. Cross Entropy Loss measures the similarity
between predicted and ground truth masks at each pixel, while Dice Loss focuses on accurate boundary localization.
This combination effectively addresses both object localization and overall segmentation accuracy.

All models were trained on NVIDIA A100-PCIe GPUs with 40 GB of memory running CUDA version 11.5. We
configured and ran the experiments using the deep learning framework PyTorch Lightning [20]. In the experimental
setup, we carefully considered the constraints and requirements of the FLAIR dataset, as it is part of the FLAIR #2
challenge. Our solution was designed to effectively utilize both data sources while adhering to the allowed inference
time for the FLAIR #2 challenge. The FLAIR #2 challenge specifies a maximum inference time that cannot exceed 2.5
times the baseline method. By measuring the inference time of the provided FLAIR #2 challenge baseline code on our
environment, we determined that it takes approximately 396 seconds to generate segmentation maps for all images in
the test set. Since the challenge restricts inference time to a maximum of 2.5 times the baseline, our model’s inference
time must not exceed 2.5 times 396 seconds, which translates to approximately 990 seconds. We assess the model
performance using label-wise intersection over union (IoU ) which denotes the area of the overlap between the ground
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truth and predicted label divided by the total area. We also report the mean intersection over union (mIoU ) averaged
across the different labels. The evaluation metrics are computed for the first 12 classes, excluding the ’other’ class.

5 Results

Table 1 summarizes the performance of each model on the FLAIR dataset. Label-wise Intersection over Union (IoU)
and mean IoU (mIoU) are reported in percentage. As expected, the U-TAE model achieved the lowest mIoU (39.68%)
due to the limited spatial resolution of the satellite image time series. The UNetFormer model, leveraging the high
spatial detail of aerial imagery, significantly improved upon this with a mIoU of 62.81%, representing a 23.13% increase.
This outcome is expected given that the satellite imagery has a spatial resolution 50 times lower than the aerial imagery
(10 m versus 0.2 m). Notably, the Late Fusion Deep Learning Model (LF-DLM) achieved the best overall performance
with a mIoU of 63.10%. This represents an improvement of 0.29% compared to the UNetFormer alone. These findings
support our hypothesis that combining information from both aerial imagery and satellite time series data through late
fusion leads to improved semantic segmentation performance.

Table 1: Mean intersection over union (mIoU %) and Intersection over Union (IoU %) for each label of the UNetFormer,
U-TAE, and LF-DLM models over the FLAIR dataset.

Label \ Model UNetFormer U-TAE LF-DLM

building 85.40 35.53 85.14
pervious surface 57.69 31.36 58.31
impervious surface 74.95 38.67 74.66
bare soil 63.89 39.02 65.01
water 90.77 74.75 91.08
coniferous 65.67 54.74 66.89
deciduous 73.83 56.36 74.32
brushwood 27.68 11.35 26.77
vineyard 67.19 49.48 67.59
herbaceous vegetation 50.93 26.80 50.86
agricultural land 56.16 45.43 56.59
plowed land 39.55 12.67 39.96

mIoU 62.81 39.68 63.10

The LF-DLM shows improvement in IoU for most labels compared to the UNetFormer model. This is evident in
labels like ’pervious surface’ (0.62%), ’bare soil’ (1.12%), ’water’ (0.32%), ’coniferous’ (1.22%), ’deciduous’ (0.5%),
’vineyard’ (0.41%), ’agricultural land’ (0.43%), and ’plowed land’ (0.41%). This suggests that the late fusion strategy
effectively combines the strengths of both U-TAE (capturing spatio-temporal information) and UNetFormer (capturing
high spatial details) to improve segmentation accuracy across various land cover types. This is particularly evident
for labels like ’coniferous’ where SITS data, containing temporal information, might be crucial to distinguish them
from ’deciduous’ trees exhibiting seasonal changes in spectral properties. The improvement is also notable for the
’bare soil’ label, potentially benefiting from the complementary information provided by SITS data. However, the
LF-DLM shows a slight decrease in IoU for labels like ’building’ (-0.26%), ’impervious surface’ (-0.29%), ’brushwood’
(-0.91%), and ’herbaceous vegetation’ (-0.07%). This could be due to several factors like class/label imbalance or fusion
complexity where the late fusion process might introduce additional complexity for these specific labels, leading to
slight performance drops compared to the UNetFormer model. Potentially we can explore the possibility of employing
label-specific weighting or fusion techniques during late fusion to potentially address challenges faced by specific land
cover types.

Examining the confusion matrix depicted in Figure 3 reveals that the best LF-DLM model achieves high prediction
accuracy, with minimal misclassification in the majority of labels. However, it tends to confuse the labels "coniferous"
and "deciduous", "brushwood" and "herbaceous vegetation", "brushwood" and "deciduous", as well as "agricultural
land" and "herbaceous vegetation". This is rather expected given the semantic similarity between these labels.

Figure 4 shows several example images, ground truth masks, and predicted masks from the FLAIR dataset. Obtaining
accurate segmentation maps is very challenging due to factors like complex scenes, occlusion between different land
cover areas, and the semantic similarity between land cover types.

To ensure compliance with the inference time constraints of the FLAIR #2 challenge, we measured the inference times
of our proposed models. Table 2 presents these measurements along with their corresponding ratios compared to the
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Figure 3: Confusion matrix for LF-DLM on the FLAIR dataset.

baseline model inference time. All measurements were conducted on the same machine equipped with an NVIDIA
A100-PCIe GPU with 40 GB of memory. The challenge restricts inference time to a maximum of 2.5 times that of the
baseline model. As the table indicates, our models currently operate within this limit. This suggests potential for further
improvement in our model’s predictive performance while maintaining compliance with the challenge’s constraints.

Table 2: Inference times and their corresponding ratios compared to the baseline model inference time for our proposed
models.

Model Inference time (sec.) Relative time

U-TAE 229 0.58
UNetFormer 429 1.08
LF-DLM 594 1.5

To enhance predictive performance while adhering to the FLAIR #2 challenge’s inference time constraint, we incor-
porated a second UNetFormer model into the late fusion scheme. This second model was trained using identical
parameters, with the sole difference being a variation in the random seed. The resulting late fusion deep learning model
comprises the U-TAE model, two UNetFormer models (with different random seeds), and the late fusion layer. This
configuration achieved a mIoU value of 64.52%, an inference time of 943 seconds, and a relative inference time ratio of
2.38. Importantly, this remains well within the challenge’s allowed constraints.

To comprehensively evaluate our best model configuration’s predictive performance, we compared it with previously
employed methods on the FLAIR dataset. The challenge organizers provided a U-Net baseline with a ResNet34
backbone in combination with a U-TAE model using a mid-stage fusion of features from both models [12], achieving a
mIoU of 57.58%. Our best model surpasses the baseline by a significant margin of 6.94%. The current state-of-the-art
on this dataset was an ensemble model consisting of four base models. The base models are similar to the baseline model
provided by the challenge organizers, the only modification is the replacement of the ResNet34 backbone with MiT and
ResNeXt backbones in the U-Net model [21]. Additionally, a two-stage training procedure is proposed to boost the
predictive performance. This ensemble model achieved a mIoU of 64.13% and ranked first in the competition. Notably,
our proposed model with a mIoU of 64.52% outperforms this previous best result, establishing a new state-of-the-art for
semantic segmentation on the FLAIR dataset.
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Figure 4: Example images, ground-truth masks, and inference masks from the FLAIR dataset. The first row shows
example images. The second row shows the corresponding ground-truth masks. The third row shows the prediction
results of the LF-DLM.

6 Conclusion

This work investigated the effectiveness of late fusion for semantic segmentation of remote sensing imagery, leveraging
the complementary strengths of Very High Resolution (VHR) aerial imagery and Satellite Image Time Series (SITS)
data. We proposed a Late Fusion Deep Learning Model (LF-DLM) that integrates a UNetFormer branch for capturing
spatial details from aerial imagery and a U-TAE branch for capturing spatio-temporal dynamics from SITS data.
The LF-DLM achieved state-of-the-art performance on the FLAIR dataset, a large-scale benchmark for land cover
segmentation using multi-source optical imagery. Compared to the UNetFormer model alone, the LF-DLM achieved
an improved mIoU of 0.29%. This signifies the effectiveness of late fusion in combining information from both data
sources to enhance segmentation accuracy across various land cover types.

Furthermore, our best model configuration with a mIoU of 64.52% surpasses the previous state-of-the-art on the FLAIR
dataset, demonstrating its robustness and efficiency while adhering to the challenge’s inference time constraints. These
findings highlight the potential of late fusion deep learning models for improving the accuracy and robustness of
semantic segmentation in remote sensing applications. Future work can explore label-specific fusion techniques and
class imbalance mitigation strategies to address remaining challenges and further enhance performance for specific land
cover types.

9



A PREPRINT - OCTOBER 2, 2024

References
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