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One of the main challenges in tissue engineering is developing constructs that restore damaged tissues. This has
led to the growth of classes of materials with tuneable mechanical and absorption properties. Among others,
hydrogels are particularly fascinating because they can be functionalized to self-repairdamage like the native
living tissues. This work proposes an improved thermo-responsive alginate-gelatine (SA-Gel) hydrogel capable of
self-repairing, whose mechanical properties are enhanced by the addition of optimal concentration of graphene

oxide (GO). The initial results show that the novel hydrogel’s formulation improves self- healing and mechanical
properties making them a potential candidate for biomedical applications.

1. Introduction

Tissue engineering aims to create biomaterials mirroring natural
tissues, with self-healing being a crucial goal. This involves using
polymers-based hydrogels, due to their analogy with the extracellular
matrix (ECM) [1]. Self-healing hydrogels are intelligent biomaterials
that repair themselves by crosslinking damaged polymer chains [2],
through external triggers like temperature, pH or light. Typically, they
are derived from natural or synthetic polymers through dynamic cova-
lent and non-covalent bonding of polymer chains in a mobile phase. To
the best of our knowledge, in the state-of-the-art collagen-based
hydrogels are presented as the best solution to achieve self-healing
properties[3,4]. However, Gelatine (Gel) being a protein and its ease
of modification is a best substitute for collagen [4]. In recent years,
carbon based materials like graphene oxide (GO) due to its excellent
physical properties, and biocompatibility are used as fillers to enhance
the mechanical property of hydrogels [5,6]. The layered structure and
multiple reactive sites on GO form hydrogen bonds with alginate and
interactions with Ca2" results in interconnected flexible polymer
network. Moreover, the toxicity of the graphene oxide is reduced when
by dispersing them within polymers to create polymer nanocomposites
[7]. The primary aim of this research is to optimise a material combi-
nation that is easily available and can yield mechanically tough self-
healing hydrogels compliant for biomedical applications.
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2. Materials

Sodium alginate (SA) and Calcium chloride (CaCl2) were purchased
from Sigma-Aldrich. Gelatine was purchased from VWR Chemicals and
graphene oxide (GO) was purchased from Cambridge Graphene Centre.

3. Hydrogels preparation

For this study, four samples with different concentrations of gra-
phene oxide (GO) were prepared; the concentrations used were: 0 %; 1
%; 2 % and 3 %. A 5 % (w/v) solution of SA was prepared by mixing SA
in distilled water until it became homogeneous and then degassed to
remove the air bubbles.

To prepare the gelatine solution, 2 g of gelatine were dissolved in 20
mL distilled water by stirring for 15 min at 30 °C. To this solution, added
5 mL of 5 % (w/v) SA water solution and mixed for 30 min. GO was
added to this solution and stirred until it was homogeneous mixture. All
the solutions were degassed and transferred into Teflon moulds. Next,
the moulds were immersed for 3 h in a 2.5 % (w/v) calcium chloride
water solution to cross-link. Finally, the hydrogels were placed in
distilled water.
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Fig. 1. A) bended healed hydrogels; b) two healed hydrogel fragments with
food dye.

4. Methodology
4.1. Healing test

To test the healing properties of the proposed material, the SA
hydrogels were cut into half and placed in contact with each other in a
Petri dish. Temperature was used as an external stimulus, the hydrogel
segments were heated at body temperature, i.e., 37 °C. The self -healing
resulted from the reversibility of hydrogen bonds and the molecular
diffusion of physical crosslinks when the cut surfaces are kept in contact.
This test was repeated and confirmed using all the samples.

4.2. Tensile test

The tensile test on dumbbell-shaped samples (ASTM D412 standard)
was used to understand the effect of varying GO concentration in the SA-
Gel hydrogel. The Uniaxial SHIMADZU AUTOGRAPH AGS-X tensile
machine measures the force and the displacement with a crosshead
speed of 0.02 mmy/s. The load data were converted into stress and strain
by measuring the dimensions of the samples. Stress (¢) and strain (¢)
were then calculated as

F
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where F is the force, A the sample area calculated as thickness x
width, and Al is the difference between the final and the initial (10)

length of the sample. The Young’s modulus or modulus of elasticity was
calculated from the slope of the linear part of the stress—strain curve, as
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4.3. Molecular structure test

The molecular structure of the pre-healed and post-healed hydrogels
was analysed with the Fourier transform infrared (FT-IR) spectroscopy,
FTIR Jasco 6600 (Japan) with a wavelength range from 400 to 4000
em™!. This was performed on the samples without GO, since the dark
samples, makes it impossible to use the FTIR.

4.4. Swelling ratio

This test was used to investigate the absorption properties. To
measure the swelling ratio, samples dried for 24 hrs, determined the dry
weight (Wy). The samples were soaked in distilled water for 10 min and
weighed as W, weight of swollen sample. This procedure was repeated
every ten minutes until one hour. The swelling ratio was calculated as

W\ — Wd

d

Swelling ration (%) = x 100 (C)]
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Fig. 2. Mechanical properties: Tensile curves of the self-healed hydrogels.
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Fig. 3. FTIR of the SA-Gel hydrogels.
5. Results
5.1. Healing test

The temperature assisted self-healing ability were confirmed from
the attached hydrogel segments. The healed hydrogel was obtained
within body temperature 36-40 °C in less than 10 min. Theself-healed
hydrogel displayed the characteristics of a single sample rather than
two fragments and do not separate when bent (Fig. 1).

5.2. Tensile test

The tensile test data in Fig. 2 depicts that GO addition alters the
hydrogel mechanical properties. The polar groups of alginates interact
with the oxygen-containing groups of GO in the form of hydrogen bonds
and Ca* via ionic interactions, improving the mechanical strength of
hydrogel [5]. This result in an interconnected flexible polymer network.
Increasing GO concentration increases the repulsion between the
COO™ groups of SA and GO showing weak mechanical properties.

5.3. Molecular structure test

Fig. 3 shows the FTIR spectrum of the SA healed hydrogels, the
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Fig. 4. Swelling test of the self-healed hydrogels.

spectra of samples before healing overlap with the spectra of the post-
healing sample. The coincidence of the two graphs point out that the
healing process did not interfere with the internal composition of the
material.

The peak at 1646 cm ™! corresponds to the functional group of so-
dium alginate, resulting from the interaction of the carboxylic groups
with Ca®" ions. The peak at 1587 cm™! corresponds to the stretch vi-
bration of -COO™ [8] and are specific to ionic binding [9]. The peaks at
2936 cm™! and 3440 cm™! correspond to the functional groups of
gelatine, from the aliphatic -CH and —-NH stretching vibrations respec-
tively [10].

5.4. Swelling test

The swelling ratio of more than 500 % after 1 h for the SA-gel
hydrogels are shown in Fig. 4, whereas the hydrogels with GO repre-
sents a ratio of 300 % in the same time interval. An accelerated increase
of the swelling ratio is observed in SA-Gel hydrogel in comparison to the
swelling ratio of hydrogels with different GO concentrations.

6. Discussion

Self-healing hydrogels are intelligent biomaterials that can remend
by themselves at the damage site [1]. The experiments presented in this
study, depict the self-healing properties of a SA hydrogel using tem-
perature stimuli. Gelatine-based material makes the hydrogels time and
cost convenient[11,12]. In the healing test, SA hydrogel fragments in-
tegrated to confirm their self-healing property. Mechanical properties
were assessed via tensile testing, resulting in greater elasticity or
Young’s modulus compared to a vein (0.0053 MPa) [13]. The FTIR
spectrum corroborates the presence of SA and gelatine even after the
healing process. The swelling test confirmed the absorption property of
hydrogels with SA hydrogel having a higher swelling ratio. These results
prove that SAGO1 hydrogel shows improved rigidity and elasticity and
the swelling ratio increases at a slower rate with the concentration of
GO.

7. Conclusions

In this study, a set of experiments were conducted to investigate the
self-healing properties of a new and improved SA based hydrogel. Since

the mechanical properties is one of the most important feature for tissue
engineering, this study found that embedding of GO in hydrogel, in-
crease the mechanical integrity without compromising the biocompat-
ibility. The best solution is given by the SAGO1 sample. Besides, another
advantage is the preparation time (i.e., less than 10 mins), hydrogels’
cost effectiveness and the possibility of using body temperature as
stimuli. In conclusion, the hydrogel SAGO offers an optimal balance
between the desired properties: biocompatibility and mechanical
strength.
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