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• We show that there is a direct equivalence between mixing and standard mea-
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world economies, and demonstrate its application using the USA longitudinal
data.
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Abstract

Measures of economic mobility represent aggregate values for how individual wealth
changes over time. As such, these measures may not describe the feasibility of a
typical individual to change their wealth. To address this limitation, we introduce
mixing, a concept from statistical physics, as a relevant phenomenon for quantifying
how individuals move across the wealth distribution. We display the relationship
between mixing and mobility both theoretically and using data. By studying the
properties of an established model of wealth dynamics, we show that some individuals
can move across the distribution when wealth is a non-mixing observable. Only in
the mixing case every individual is able to move across the whole wealth distribution.
There is also a direct equivalence between measures of mixing and the magnitude
of the standard measures of economic mobility, but the opposite is not true. We
then describe an empirical method for estimating the mixing properties of wealth
dynamics in practice. We use this method to present a pedagogical application using
the USA longitudinal data. This, approach, even though limited in data availability,
leads to results suggesting that wealth in the USA is either non-mixing or that it
takes a very long time for the individuals to mix within the distribution. These
results showcase how mixing can be used in tandem with measures of mobility for
drawing conclusions about the extent of mobility across the whole distribution.
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1. Introduction

Economic mobility describes “dynamic aspects of inequality” [1]. It quantifies how
wealth (or income) changes within a population over a given time period [2]. Intu-
itively, when mobility is high, the chances of an individual to change their wealth
(either in absolute or relative terms) over the time period are high. When mobility
is low, individuals are unlikely to change their wealth over time, or such changes are
slow.

Mobility measures are assumed to be derived from the joint distribution of wealth at
two points in time. On this basis, Shorrocks [1] described several required properties
for the statistical measurement of mobility and set the standard for such measures.
A particular feature of measures of economic mobility is that they represent an
aggregation of the observed changes in the individual wealth [3]. This means that
whenever there is a change in the wealth of any individual wealth, the measures
will suggest the existence of mobility. As a result, in certain circumstances mobility
measures may not describe the feasibility of the typical individual to change their
wealth.

Here we address this issue by introducing mixing as a relevant concept when quan-
tifying the feasibility of every individual in the economy to change their wealth.
Mixing is a well-known concept in statistical physics. It describes the property of a
dynamical system being strongly intertwined. The idea is that in a mixing economy,
if the wealth of a group describing the typical individuals is followed over time, the
distribution of wealth within this group will gradually converge to the population
wealth distribution. This means that any measure of mixing will evaluate the extent
to which every individual in an economy is able to move across the whole wealth
distribution. When the convergence is rapid, we could interpret that as high wealth
mixing. Long convergence times is interpreted as low mixing. If wealth dynamics
are non-mixing, measures of mixing will suggest that there is no convergence.

It is important to clarify that there is no strict empirical evidence to confirm that the
wealth of any group of individuals will invariably converge to the population’s wealth
distribution over time. However, the theoretical concept of “mixing” in an economy
provides a valuable framework for exploring this potential convergence. This paper
delves into the conditions and dynamics within an economy that could allow for
the wealth of what we term as ‘a group describing the typical individuals in the
economy’ to align with the overall wealth distribution. Conversely, we also explore
the characteristics and economic scenarios that might inhibit this convergence.

We introduce two measures of mixing: 1) the relaxation time and 2) the mixing
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time, and use them to investigate the relationship between mixing and mobility
both theoretically and using empirical data. The relaxation time represents the time
it takes for a wealth distribution to converge to a target distribution, essentially
measuring the speed at which individuals mix into the overall wealth distribution.
The mixing time in contrast, is defined as the time at which the wealth distribution
of individuals first becomes statistically identical to a target distribution, offering a
different perspective on the timescale of economic mixing. Both measures quantify
the timescale over which individuals mix into the wealth distribution (lower values
imply higher mixing), but have distinct estimation procedures. On the one hand,
the relaxation time can be easily estimated in theoretical models by exploiting their
spectral properties. This measure, however, is difficult to quantify in practice. On
the other hand, the mixing time can be easily calculated using empirical data, but
difficult to study analytically.

In this work, we present results about the mixing of wealth and compare them to
intragenerational mobility. The focus on intragenerational mobility arises from the
convenience of available data and the established analytical properties of mathemati-
cal models specifically designed for studying intragenerational wealth dynamics. The
same ideas can be applied to income and/or intergenerational mobility, but for the
purpose of this study, we use the terms “mobility” and “intragenerational mobility”
interchangeably.

In particular, we use the relaxation time to study the theoretical properties of mix-
ing in a model that is able to distinguish between mixing and non-mixing wealth
dynamics, called Reallocating Geometric Brownian Motion (RGBM) [4, 5, 6, 7, 8, 9].
RGBM is a null model of an exponentially-growing economy [10, 11, 12]. It has
three parameters representing common economic growth, random shocks to individ-
ual wealth, and economic interaction among agents, quantified by a reallocation rate.
The advantage of using RGBM is that the model distinguishes mixing and non-mixing
regimes solely by the sign of the reallocation parameter. Besides this, the model is
also known to reproduce several important stylized facts, such as the often-observed
Pareto tail of the population wealth distribution, thus making it easily relatable to
real-world wealth dynamics. We find that in the mixing regime of RGBM, the relax-
ation time scales with the inverse of the reallocation rate. Then there is also a direct
relationship between the relaxation time and three standard measures of economic
mobility: the Spearman rank correlation, the intragenerational earnings elasticity,
and the wealth transition matrices. As the reallocation rate becomes higher, i.e., as a
larger share of each individual’s wealth is pooled and then shared per unit time, the
relaxation time becomes shorter proportionally, implying that mixing occurs sooner
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and that mobility increases. As the reallocation rate approaches zero, relaxation
times get longer, and mobility lower. Finally, when the reallocation rate is below
zero, even though standard measures of economic mobility might suggest the exis-
tence of mobility, there is no mixing. Thus, if we use standard measures of mobility
in a non-mixing system, we may conclude misleadingly that everyone is able to move
across the wealth distribution.

We use the mixing time to devise an empirical method for evaluating the wealth mix-
ing within an economy. This empirical method is inherently flexible and not model
dependent. It requires longitudinal data and tracks the time until the distribution
of a subsample of the population representing the typical individuals resembles the
wealth distribution of the whole economy. We showcase its application using survey
data on the USA household wealth taken from the Panel Study of Income Dynamics
(PSID) dataset [13]. We find results which suggest that wealth is either non-mixing
or that it takes a long time for the individuals to mix within the distribution. Never-
theless, the PSID dataset has several limitations that restrict its practical application
and therefore the analysis presented here is only pedagogical. We believe that with
the rapid development of data gathering methods and the improved understanding
of wealth dynamics within a population, some of this shortcoming will be overcome,
yielding a more in-depth interpretation of mixing in real economies.

These results improve our understanding about the measurement of mobility by
showcasing how physical measures of mixing can be used to track the mobility of the
typical individual in the economy. As such, they can help policy makers in designing
interventions that target the well-being of these individuals. More importantly, they
can be used in tandem with standard measures of mixing for deriving a more holistic
interpretation about the extent of mobility in the economy.

The paper is organized as follows. In Section 2 we discuss the approaches to the
measurement of mobility and describe how our study about mixing can provide
new valuable information. Then, in Section 3 we define mixing mathematically
and compare its characteristics to those of standard mobility measures. In the same
section, we introduce the relaxation and mixing times as measures that evaluates the
degree of mixing in an economy. Section 4 relates mobility and mixing in reallocating
geometric Brownian motion as a model of wealth. Section 5 presents the empirical
method for evaluating the mixing state of an economy. We discuss our findings
in Section 6.
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2. The measurement of economic mobility

The literature has identified two approaches for measuring economic mobility: rela-
tive and absolute mobility [14, 15].

The relative approach measures economic mobility by comparing the ranks of indi-
viduals (or groups of individuals) between two time points. For instance, Prais [16]
used ranks to measure the mobility between social classes in the United Kingdom
, whereas White [17] used them to study the income dynamics in Denmark. Moti-
vated by these analyses, Shorrocks [1] laid down the theoretical groundwork for the
properties of these measures. The author introduced axiomatic properties to which
rank-based mobility measures should adhere to and postulated that measures can
adhere to one or multiple of these axioms, but never to all of them (these axioms will
be addressed in more detail in the subsequent section). Shorrocks then discussed
several mobility measures and showed how they fared in satisfying the axiomatic
properties. This opened up the floor for the empirical use of rank-based mobility
measures. Indeed, today these measures have been used to track the relative mo-
bility in various economies [18]. Nevertheless, the rank approach is not without
limitations. Specifically, rank-based measures indicate mobility whenever there are
changes in the positions of at least two individuals. As a consequence, they are
usually inconclusive about the source and direction of mobility. To illustrate this,
consider the change in rank between two individuals. Rank-based measures will in-
dicate mobility in this case, but we are not sure whether the mobility is because
the wealth of one of the individuals increased, or the wealth of the other individual
decreased. It could also be the case that the wealth of both individuals increased or
decreased, but the rate of change may be higher for a certain individual.

The absolute approach investigates mobility through the direct changes in the wealth
of an individual between two time points. A standardly used measure for this kind
of mobility is the earnings elasticity, defined as the slope of the regression between
the wealth in an initial year and the wealth in a final year [19, 20, 21]. These
measures usually do not have the limitation of the rank-based measures as they will
indicate mobility whenever there is a change in the magnitude of wealth of at least
one individual. However, they cannot tell us much about the changes in the social
ordering. Therefore, studies have usually coupled results derived from these measures
with rank-based measurements [18].

A common feature of both approaches is that they look at wealth of each individual
within a population at an initial date and at a final date. They calculate the change
in individual wealth either in raw or rank values, and then aggregate these values into
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a measure of economy-wide mobility. This aggregation can be seen as a limitation
of both approaches as it may lead to results which underestimate or overestimate
the mobility of certain groups of individuals. For example, studies have shown that
mobility is dependent on gender [22], ethnicity [23], and many other socio-economic
factors [24]. These factors are usually not accounted for in both rank-based and
raw-based measurements. To reduce this limitation, the more recent literature has
developed measures that disaggregate mobility to a higher resolution. For instance,
Bhattacharya and Mazumder [25] suggest the use of a measure that disaggregates
changes to the level of a demographic group. Yet, still these measures do not tell us
the feasibility of everyone in the group to change their wealth.

As we will show subsequently, this is not the case with measures of mixing. These
measures do not aggregate the individual values but instead construct indicators that
describe the ability of each individual member of the population to move across the
wealth distribution. The idea of mixing is frequently used in probability theory and
statistical physics for tracking the convergence of probability distributions to their
stationary values [26, 27]. Recently, it has also been applied in the economic inequal-
ity literature to evaluate the ability of mathematical models of income and wealth to
mimic the speed of convergence towards the tail of the real world distribution [28].

Our contribution complements all these studies on economic mobility and physical
measurements. Its distinguishing result is showing how mixing can be used in tandem
with measures of mobility for drawing conclusions about the extent of mobility across
the whole distribution.

3. Mixing and mobility

3.1. Definition

Mixing describes the property of a dynamical system being strongly intertwined. In
physical terms, this means that, for any set of particles in a dynamical system, the
fraction of the particles found within a particular region in the phase space (the space
of the variable x characterizing the particles, wealth in our case), is proportional to
the volume of that region in the phase space. Figuratively, we can think of an
economy as a cup of coffee and of some person’s wealth as milk poured in the coffee.
If the system is mixing, then the milk will spread across the coffee over time and
eventually it will be spread equally in the cup.

To define and analyze mixing, we will use the individual as our basic unit of ob-
servation. Nevertheless, we point out that other units such as households can be
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used to measure mixing (In fact we will use the household as our unit of observa-
tion in the empirical analysis). On this basis, we define mathematically mixing as
follows. Let xi(t) denote the wealth in year t of the i-th individual in a popula-
tion of size N . Moreover, let yi = xi/〈x〉N , where 〈x〉N =

∑

i xi/N is per capita
wealth, be the rescaled wealth of individual i and P (y(t), t) be the probability den-
sity function that describes the distribution of rescaled wealth in the same year,
with the initial condition being a Dirac delta function with a mass centered at 1, i.e.,
P (y(0), t0) = DiracDelta(y − 1). If the economy is mixing, then starting from an
initial year t = 0 in which everyone has identical rescaled wealth y(t0) = 1, then the
distribution P (y(t), t) will in each subsequent time point resemble more and more
a predefined target wealth distribution P ∗(y). More importantly, it will eventually
converge to the target distribution. A standard way for evaluating this property
is through the β-mixing coefficient. The coefficient measures the total variational
distance between the wealth distribution in year t and the target distribution, i.e.,

β(t) = ||P (y(t), t)− P ∗(y)||, (1)

where ||g(y)|| =
∫

|g(y)|dy is the L1 norm of g. Formally, the wealth dynamics is
said to be “β-mixing” if β∗ = limt→∞ β(t) = 0 [29, 30].

In economic terms, mixing implies that the system does not discriminate between
individuals on the basis of their history: it is possible for everyone to change their
position in the distribution over time.

Although mixing is naturally linked to economic mobility, as defined by standard
measures of mobility, the two are not always the same: Mobility, fundamentally rep-
resents the ability of individuals to change their wealth or rank within the wealth
distribution. As we will see in Section 4.3, there is always a relationship between
measures of mixing and standard mobility measures, when mixing exists in the sys-
tem. However, the standard measures may still indicate that there is some level of
mobility even when mixing does not occur. For instance, a finite value of β(t) in a
non-mixing economy can still signify the presence of mobility, reflecting the extent
to which individuals are moving within the distribution. Yet, the existence of such
mobility, a degree of which always exists practically, does not guarantee mixing, as
this observation depends on the existence of mobility between every quantile in the
wealth distribution [31].
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3.2. Examples for mixing measures

Any statistical measure that is derived from the properties of β(t) can be interpreted
as a measure for the degree of mixing within an economy. In this work, we consider
two such measures: 1) the relaxation time, and 2) the mixing time.

By assuming an exponential growth model (which is a common assumption in wealth
dynamics), we define the relaxation time Trel as the reciprocal of the rate of conver-
gence, r, towards the target distribution, i.e.,

Trel = 1/r, (2)

where

r = − lim
t→∞

1

t
log β(t). (3)

The mixing time, in contrast, is twice the time point at which P (y(t), t) is for the
first time statistically identical to P ∗(y). Usually, this is defined as the first time
point at which the total variational distance is less than a threshold ε [26], i.e.,

Tmix = 2× inf{t : β(t) < ε}, (4)

where inf is the infimum of the set of all time points t at which the total variational
distance β(t) is less than the threshold ε. For simplicity, here we will use ε = 1/4
as a threshold. This exact value is most often used in Markov Chains to track the
convergence to the steady state [32, 33, 34, 35]. Additionally, this choice leads to
approximate equivalence between the Mixing time and the Relaxation time in the
theoretical model that we study (see Appendix 1). We nevertheless stress out that
other thresholds, which may lead either to more restrictive or loose definitions for
mixing, can also be used in practice.

Both measures are naturally measured in years and provide a characteristic timescale
over which individuals mix into the wealth distribution. In the coffee analogy, they
would quantify the time required for the milk to blend with the coffee. This en-
ables the measures to be used for appropriate comparison between different time
periods and economies. The relationship between these two measures and mobility
is intuitive. That is, when the relaxation time or the mixing time is short relative
to a relevant window of observation, then there is high wealth mobility and strong
mixing. Slow relaxation and mixing times are interpreted as indicating low mobility
and weak mixing. More importantly, when the relaxation time and mixing time are
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infinite, then wealth is not a mixing observable, but this does not mean that there
is no mobility.

Both measures, however, exhibit different features when it comes to their estima-
tion procedures. On the one hand, the relaxation time can be easily estimated in
theoretical models by exploiting their spectral properties. This measure, however,
is difficult to quantify in practice. This is because when the relaxation time is esti-
mated using empirical data, one uses an estimate for the wealth distribution based
on a histogram [36]. Histograms can resemble the theoretical distribution only to a
certain extent since they are a finite sample size approximation. As a result, β(t)
will not always decay to zero, and it will be difficult to numerically track the rate of
convergence.

On the other hand, the mixing time can be easily estimated using empirical data
because it does not rely on the model assumptions. Yet, its analytical estimation in
theoretical models can be an exhausting task as it involves advanced mathematical
apparatus [34].

Therefore, in the theoretical analysis described in Section 4 we will use the relaxation
time as a measure of mixing, whereas in Section 5 we will use the mixing time to
devise our empirical method for quantifying the degree of mixing in a real economy.
We refer to Appendix 1 for more background about the relationship between mixing
time and relaxation time.

3.3. Axiomatic properties of mixing measures

As a means to understand the differences in the information provided by measures of
mixing and measures of mobility, we compare the axiomatic properties of the relax-
ation time and the mixing time to those of standard measures of mobility. A mobility
measure M

(

{f (Y (t))}t∈[t0,tf ]
)

is a continuous real function that maps monotonic

transformations f(·) of observations of the population wealth Y (t) = [yi(t)], observed
between periods t0 and tf , into a single value. Specifically, in the case of the relaxation
time and the mixing time, f (Y (t)) = y(t). Moreover, given the practical limitation
that t → ∞ is not feasible in real data (but we have it in the definition of mixing),
we suppose that tf be significantly larger than t0 and use approximate definitions for
M function describing the relaxation and mixing time. Namely, by keeping in mind
that we are working with finite data, and by combining equations (1), (2), and (3),
we derive the expression for the mobility measure in terms of the relaxation time as

M
(

{Y (t)}t∈[t0,tf ]
)

= − tf
log ||P (Y (tf ))− P ∗(y)|| .
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Similarly, utilizing equations (1) and (4), the expression for the mobility measure in
terms of the mixing time is given by

M
(

{Y (t)}t∈[t0,tf ]
)

=

{

2×min{t ∈ [t0, tf ] : ||P (Y (tf ))− P ∗(y)|| < ε} if such t exists,

∞ otherwise.

For the comparison we utilize three such measures: the Spearman’s rank correlation,
the intragenerational earnings elasticity (IGE), and the Gumbel copula [37]. In all
of the measures that we study, lower values indicate higher mobility. More details
about the technical background for these mobility measures is given in Appendix 2.

We consider four axiomatic properties that a mobility measure may have [1, 3]: 1)
normalization, 2) monotonicity, 3) period dependence, and 4) distribution depen-
dence. In Table 1, we detail the properties that are satisfied by the standard mobil-
ity measures which we study. The table also gives the properties of the relaxation
and mixing times, when these measures are used to evaluate the mobility within an
economy.

Table 1: Properties of mobility measures and relaxation time.

Measure Property

Normalization Monotonicity P. dependence D. dependence
Relaxation time × × × X

Mixing time × × × X

Spearman Correlation X X X ×
IGE × X X X

Gumbel parameter X X X ×

Normalization property:. The normalization property imposes a closed interval bound
on the mobility measure. This is, by definition, not satisfied by our measures of mix-
ing as they are measured in years. Relaxation and mixing times could take 5 years,
100 years, or even an infinite amount of time. However, we state that normalization
is just a standard procedure that can be implemented on any measure, and the relax-
ation and mixing times can be easily adjusted to satisfy this property. For example,
both measures can be transformed to an index w valued between 0 and 1, where
0 indicates the highest mobility, by defining w = e−1/T . A similar normalization
was introduced by Shorrocks [1] for measures derived from transition matrices. We
purposely refrain from the transformation procedure because we want to emphasize
whether some value of relaxation time is high or low in terms of the years required
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for an individual to move across the whole distribution.

Monotonicity property:. The monotonicity property indicates that whenever a new
structure is imposed on the wealth dynamics of some individuals affecting the wealth
observations in any time point except the initial observation t0, then this is reflected
in the value of the mobility measure. We can formalize this property by defining the
new structure as Y ′(t) and imposing a strict ordering

{Y ′(t)}t∈[t0,tf ] ≻ {Y (t)}t∈[t0,tf ]

whenever
||f(y′(t))− f(y(t0))||2 > ||f(y(t))− f(y(t0))||2,

with || · ||2 being the L2 norm, for at least one time point t that is used for estimation
of the mobility measure. Monotonicity implies that if

{Y ′(t)}t∈[t0,tf ] ≻ {Y (t)}t∈[t0,tf ] ,

then
M

(

{f (Y ′(t))}t∈[t0,tf ]
)

< M
(

{f (Y (t))}t∈[t0,tf ]
)

.

Every measure of mixing will not satisfy this property. The inability to satisfy the
monotonicity property arises because monotonicity implies that, if there is mobility
between certain quantiles of the wealth distribution, it will be translated as exis-
tence of mobility in the standard measures. The three described measures represent
aggregated values of the changes in the wealth of the individuals which constitute
the population between two time periods. Measures for mixing, on the other hand,
are not monotonic unless there is already mobility between every quantile. In every
other case they will imply zero mobility.

To show this, assume a non-mixing system in which the population distribution
converges to a distribution Pκ(y) that is parametrized by a single parameter κ. Fur-
thermore, let β∗

κ = ||Pκ(y)−P ∗(y)|| be a monotonically decreasing function of κ and
let ||Pκ(y)−P ∗(y)|| > 1/4 . Then, Y (t) ∼ Pκ(y) for large enough t, and by construc-
tion the relaxation and mixing times will be infinite. Now, consider the case where we
slightly perturb the population distribution to Pκ+ǫ(y), where ǫ > 0, but we still let
β∗

κ+ǫ > 1/4. Then, Y ′(t) ∼ Pκ+ǫ(y) and ||f(y′(t))− f(y(t0))||2 > ||f(y(t))− f(y(t0))||2
for large enough t. Nevertheless, we will still have that β∗

κ+ǫ > 1/4, implying
that the mixing and relaxation times are also still infinite (M

(

{f (Y ′(t))}t∈[t0,tf ]
)

=
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M
(

{f (Y (t))}t∈[t0,tf ]
)

).

Period dependence property:. The period dependence property implies that the ratio
of the same mobility measure estimated at two different end points tf and t′f = tf+∆,
is a function of the temporal difference ∆. This can be formalized as

M
(

{f (Y (t))}t∈[t0,tf ]
)

M
(

{f (Y (t))}t∈[t0,tf+∆]
) = C(∆),

where C(·) is a monotonically increasing function.

This property tells us that if the economic conditions are not changing, then for larger
observation periods we should also observe higher mobility. Period dependence,
however, is not satisfied by our measures of mixing by definition. The relaxation
and mixing times will suggest to identical degree of mobility independent of whether
our observation period is 10, 20, or 60 years. This is because measures of mixing
look at the limiting case of β(t). Hence, they are either based on large time-series
observations (tf → ∞) or large t observations are approximated via a regression
fit (see Section 5). Conversely, the Spearman rank correlation, the IGE, and the
Gumbel copula quantify the mobility in “per ∆ years” and therefore their magnitude
will always be dependent on ∆.

Distribution dependence property:. Finally, distribution dependence implies that the
mobility predicted by the measure is a function of the wealth distributions P (y(t), t, t)
that are used for its estimation, i.e.,

M
(

{f (Y (t))}t∈[t0,tf ] ∼ Φ
(

P (y(t), t)
)

,

where Φ
(

·
)

is a continuous function.

Obviously, this property is captured by measures of mixing as they are defined
through the evolutionary characteristics of the wealth distribution: In measures of
mixing Φ

(

P (y(t), t)
)

= β(t). This dependence indicates that measures of mixing
will not be interpreted similarly when the underlying wealth distribution remains
unchanged, and when it becomes more and more unequal. Interestingly, from the
three standard measures, only the IGE is dependent on the shape of the wealth
distributions that are used for its estimation, whereas the other two measures are
not.
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4. Mixing in a simple model of an economy

4.1. Reallocating geometric Brownian motion

To illustrate the application of mixing in economic systems, we use reallocating
geometric Brownian motion (RGBM), a simple model for wealth dynamics [7]. Under
RGBM, wealth is assumed to grow multiplicatively and randomly, in addition to a
simple reallocation mechanism. The dynamics of the wealth of person i are specified
as

dxi = xi (µdt+ σdWi)− τ (xi − 〈x〉N) dt , (5)

with µ > 0 being the drift term, σ > 0 the fluctuations amplitude, and dWi is an
independent Wiener increment, Wi(t) =

∫ t

0
dWi. The parameter τ quantifies the rate

of reallocation of wealth. It implies that, in every time period dt, everyone in the
economy contributes a fraction τdt of their wealth to a central pool. The pool is then
shared equally across the population. This parameter encapsulates multiple effects,
e.g. collective investment in infrastructure, education, social programs, taxation,
rents paid, or private profits.

Under RGBM, the average wealth in a large population grows like eµt. Rescaling by
eµt, the dynamic behavior of RGBM is strictly dependent on the relation between τ
and σ, and the rescaled wealth can be both mixing and non-mixing. When τ > 0,
rescaled wealth in RGBM is mixing, ergodic and stationary. The model exhibits
mean-reversion as each xi reverts to the population average 〈x〉N . The dynamics of
the rescaled wealth yi = xi/〈x〉N can be described as

dy = yσdW − τ(y − 1)dt. (6)

The stationary (target) distribution of the model is

P ∗(y) =
(ζ − 1)β

Γ(ζ)
exp

(

− ζ − 1

y

)

y−(1+ζ) , (7)

where ζ = 1+ 2τ
σ2 and Γ(·) is the Gamma function (see Ref. [7]). The distribution has a

power-law tail. The exponent of the power law, ζ , is called the Pareto tail parameter,
and can be used as a measure of economic equality [38]. More importantly, important
stylized facts are recovered: the larger σ (more randomness in the dynamics) and
the smaller τ (less reallocation), the smaller the tail index and the fatter the tail of
the distribution, leading to higher inequality. When τ ≤ 0, there is no stationary
distribution to which rescaled wealth converges.
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4.2. Relaxation time in RGBM

The estimation of relaxation time in a stochastic process is usually done by investi-
gating the Fokker-Planck equation which describes the evolution of the probability
density function. The Fokker Planck equation for the probability density function
P (y, t) for the differential equation described in Eq. (6) is

∂

∂t
P (y, t) = τ

∂

∂y
[(1− y)P (y, t)] +

σ2

2

∂2

∂y2
[

y2P (y, t)
]

. (8)

More details about the properties of RGBM’s Fokker-Planck equation can be found
in [5, 6, 7, 39].1

The equation is an appropriate generalization of a transition matrix for a discrete
space process to processes with continuum of states. Hence, the analysis follows
exactly in the same manner: the critical statistic of the Fokker-Planck equation that
governs the convergence of P (y(t), t) to P ∗(y) is the largest nontrivial eigenvalue of
the corresponding Fokker-Planck operator, that is, the second largest eigenvalue.2 In
a mixing system the largest eigenvalue will be zero, whereas the second eigenvalue,
λ2, will be negative, and β(t) ∝ eλ2t. We refer to Gabaix et al. [28] for a detailed
mathematical background on estimating the relaxation time in systems where the
governing dynamical equation for the stochastic process is known.

An extensive study for the eigenvalues of RGBMwas done by [6]. The authors showed
that the second largest eigenvalue is simply −τ and, therefore, that the relaxation
time will exist only when τ > 0 and it will be equal to 1/τ .3 The interpretation behind
this result is fairly intuitive – in an economy in which reallocation from the rich to
the poor is stronger, mixing is faster. On the other hand, as the reallocation rate
approaches zero, relaxation times get longer, and mobility, as defined by the concept
of mixing lower. As the model becomes non-stationary for reallocation rates that are

1In some of the literature, a different notation is used for the parameters of RGBM and thus
the Fokker-Planck equation is slightly different. For example, for the models studied in [5, 6] one
needs to substitute the parameters J → τ and σ → σ/

√
2 in order to obtain our model.

2It is important to note that the Fokker-Planck equation is synonymous with the Kolmogorov
Forward equation in the context of describing the time evolution of a probability distribution for
stochastic processes. Additionally, we have employed a change of variables where y = x

〈x〉 , as stated

earlier in this section.
3As demonstrated in [6], the relaxation to the stationary distribution can indeed be influenced

by the initial conditions. However, in the long run, the relaxation time emerges as a fundamental
property of the system, being solely dependent on the second largest eigenvalue, and thus remains
invariant to the choice of initial conditions.
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equal or less then 0, the possibility for mixing in the economy disappears. Then, the
relaxation time is infinite. We point out that while τ < 0 implies no mixing, that
does not mean that the standard mobility measures will also indicate no mobility.
In fact, for any positive fluctuation amplitude σ, there will be randomness in the
system. This randomness may drive changes in the observed wealth, and as a result
the standard measures may display a certain degree of mobility.

4.3. Relaxation time and standard measures of mobility in RGBM

In RGBM, the standard measures of mobility depend on both τ and the fluctuation
amplitude σ, unlike the relaxation time. This is a consequence of the randomness
playing a significant role in the wealth dynamics when we consider timescales that are
shorter than the time required for the system to relax. In what follows, we describe
the relationship between relaxation time and the standard measures of mobility in
RGBM.

Spearman’s rank correlation:. Spearman’s rank correlation is directly related to the
relaxation time in RGBM: higher Spearman’s correlation implies lower relaxation
times. The rank correlation is also dependent on the fluctuation amplitude σ and
the temporal difference δ between the two periods that are being compared. Larger
values for both parameters lead to greater economic mobility. This can be seen
in Fig. 1A, where we plot the log of the rank correlation divided by δ as a function
of τ for various noise amplitudes.

Intragenerational earnings elasticity:. Similarly to the properties of the rank correla-
tion, and as depicted in Fig. 1B, the IGE depends on both the fluctuation amplitude
and the reallocation rate.

Transition matrices:. As evidenced in Fig. 2A, the transition matrices in RGBM
reproduce the asymmetric property of the real world transition matrices and are
well-approximated by the Gumbel copula (Fig. 2B). In Fig. 2C we visualize the
relationship between Gumbel parameter θ and the reallocation parameter τ for var-
ious fluctuation amplitudes. We find that there is an inverse relationship between θ
and τ , and the Gumbel parameter slope is further determined by the magnitude of
σ. As τ increases (relaxation time decreases), the value of the θ decreases, though
disproportionately.
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Figure 1: Relaxation time and standard measures of economic mobility. A) Log of
Spearman’s rank correlation divided by the temporal difference as a function of τ . B) Same as A),
only on the y axis is the log of the IGE divided by the temporal difference. A-B The dashed black
line has a slope 1. The simulations used δ = 20 years and N = 104 people.
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Figure 2: Relaxation time and wealth transition matrices. A) Transition matrix for the
stationary regime of RGBM estimated with τ = 0.02 per year, σ2 = 0.01 per year and N =
104 people. B) An example for a transition matrix from data simulated from a Gumbel copula
whose parameter θ is chosen to be in accordance with the RGBM parameters used in A). C) The
relationship between the Gumbel copula parameter θ and the reallocation parameter τ in the stable
state of RGBM. This relationship was estimated by simulating a transition matrix in which δ = 20
years and N = 104 people.

16



4.4. Mobility measures in non-mixing regimes

So far we discussed the relationship between mobility measures and mixing in the
stationary regime of RGBM. Studying this relationship in the non-stationary regime,
when τ < 0 is impossible as then the system is not mixing [39]. Nonetheless, Spear-
man’s rank correlation, the earnings elasticity and the transition will indicate that
there is still some mobility (they will have a value below 1). We visualize this phe-
nomenon numerically in Fig. 3. The results for Spearman’s correlation and the IGE
suggest that in the negative τ regime, the magnitude of the reallocation rate has
a minor effect the extent of mobility. Instead, mobility is mostly dependent on σ,
with larger noise amplitudes implying more mobility. Hence, it can be argued that
the existence of mobility in the negative regime is solely a result of the randomness
present in the system, but not of the reallocation mechanism. More importantly,
because of this, individuals are not able to move across each possible rank. The
thorough study of mobility in RGBM in this regime is outside of the scope of this
paper and left for future work.
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Figure 3: Mobility in the non-mixing regime of RGBM. A) Log of Spearman’s rank correla-
tion divided by the temporal difference as a function of τ . B) Same as A), only on the y axis is the
log of the IGE divided by the temporal difference. C) Transition matrix in RGBM estimated with
τ = −0.02 per year, σ2 = 0.01 per year and N = 104 people. A-C The simulations used δ = 20
years and N = 104 people. The results are averaged across 1000 model realizations.

5. Mixing in real economic systems

5.1. Empirical method for estimating mixing

There are different ways to estimate mixing in real economic systems. The simplest
approach is to assume that the wealth dynamics obeys some stochastic process (e.g.,

17



RGBM) and estimate the model parameters using time series data. The estimated
parameters can be used to quantify the spectral properties of the process and thus
approximate the relaxation time. For example, Berman et al. [7] use the RGBM
model and historical data on the share of wealth owned by the top 1% to estimate
the reallocation τ parameter in the USA economy in the period between 1913 and
2014. The authors find that the reallocation parameter is either negative or a value
below 0.02, implying that either mixing does not occur or that it takes more than
50 years for individuals to experience [7]. This approach, however, is limited in
its applicability as it requires strong assumptions about the model governing the
dynamics of wealth. For example, in RGBM wealth is redistributed with an equal
rate among the individuals, differently from how usually real economic mechanisms
work.

To circumvent the limitations that might arise because of model assumptions, we
present a non-parametric empirical method for evaluating the mixing properties of
wealth dynamics in an economy and showcase its application using data for the USA.
This empirical method is inherently flexible and not model dependent.

To quantify the degree of mixing empirically, we will use the mixing time Tmix as our
measure of wealth mixing. Additionally the method requires longitudinal data and
tracks the time until the distribution of a subsample of the population representing
the typical individuals resembles the wealth distribution of the whole economy.

The method for quantifying the Mixing time is constituted of the following steps.

Step 1. Define targets:. In the first step, we define a relevant target distribution
to which the rescaled transformation of wealth converges. This can be either a
theoretical distribution (such as the stationary distribution of RGBM) or an empirical
estimate for a distribution taken from the histogram of wealth in the country given
at a fixed future data.

Step 2. Select the typical individuals:. We then select a subsample consisting of the
“typical” individuals in the economy. These are the individuals that are closest to the
mean rescaled wealth. For simplicity, we formally define this group of individuals
as those that have rescaled wealth between 0.95 and 1.05. This is similar to the
condition of a Dirac delta initial wealth distribution distribution. We point out that
other intervals for the wealth of the typical individuals can be used, as long as the
subsample distribution resembles a Dirac delta function.

Step 3. Track the wealth dynamics:. Next, we track the subsample wealth over time
and quantify the difference between the subsample wealth distribution and the target
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distribution with the total variational distance. In general, the total variational
distance will exhibit two states. First, there will be a transitory time state during
which the subsample distribution will converge to a stationary distribution. In this
regime β(t) will decay. After this transitory phase, there will be a stable state. In
the stable state, the log of the distance reaches a plateau β∗ and fluctuates around
this plateau. If the economy is non-mixing, then the total variational distance will
converge to a value larger than 1/4. In contrast, if the economy is mixing (with
respect to the target distribution), then β(t) will converge to a value much lower
than 1/4. The first time point at which β(t) will be less than 1/4 will be, in general,
smaller than the relaxation time, and if this time point is multiplied by two we will
recover a value that is close to the relaxation time (see Appendix 1).

Figure 4 summarizes the method in a fictive example of a mixing economy. The blue
line is the log of the total variational distance as a function of time. The dashed black
line is the slope of the relationship between the statistic and time during the two
different states. The inset plots provide snapshots for the wealth distribution of the
subsample (i.e., estimates based on a histogram) at different time points (red dashed
lines). For comparison, the snapshots also include the form of the selected target
distribution (black line). Notice that initially, at t1, the subsample distribution
is very narrow and does not resemble the target distribution. The wealths in the
subsample evolve, and in t2 and t3 the subsample distribution becomes closer to
the target distribution. Eventually, the subsample distribution resembles the target
distribution.

19



Figure 4: Quantifying mixing in an empirical system. The blue line shows the log of the
total variational distance between the subsample and the target wealth distribution. The black
dashed line is the slope of the line which describes the relationship between the log of the distance
and time, estimated separately for the decay period and the stable state period. The inset plots
give snapshots for the empirical form of subsample distribution (red dashed line) and the target
distribution at different points in time t1 < t2 < t3 < t4.

5.2. Mixing in the United States

We demonstrate the application of our method using wealth data taken from the
Panel Study of Income Dynamics (PSID) dataset. The PSID is a comprehensive
longitudinal survey of over 18,000 individuals living in 6,000 families in the United
States. It measures economic, social, and health factors over the life course of the
families. Since 1984 it also collects data on the wealth of the families. Up until
1999 these data were collected quadrennially, and after this year the wealth data are
collected biannually.

Because the PSID is based on survey data it has some limitations that restrict its
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practical application. In particular, it has a small cross-sectional size: in each year
only around 6000 families were interviewed. This issue is slightly resolved by pro-
viding population weights to each observation [40]. These weights, nevertheless, can
lead to measurement errors that result in restricted coverage of the top of the distri-
bution [41]. Also there is a general difficulty in the evaluation of wealth in surveys,
which creates large measurement errors and thus tend to increase estimated mobility.
Indeed, all these limitations reduce the cross-sectional variation in the data and may
lead to an underestimation of the mixing time. Therefore, the analysis presented here
is only pedagogical. We believe that with the rapid development of data gathering
methods and the improved understanding of wealth dynamics within a population,
some of this shortcoming will be overcome, yielding a more in-depth interpretation
of mixing in real economies.

Keeping in mind the limitations, we use the data to estimate the mixing times in the
United States economy. To reduce the potential noise in the data, in our analysis
the unit of observation is a household. For each survey year up to 2009, we provide
estimates for the time needed by the wealth of the typical households to statistically
resemble the wealth distribution observed in 2019 (Step 1). This implies that we
estimate 9 mixing times where as initial points we use the wealth of the typical
households in a survey year. In each case, we set the wealth distribution observed
in 2019 as the target distribution to which the subsample wealth should converge.
There are two advantages of using this target distribution. First, it is the final year
for which we have data. As such, observations have the longest available time to
converge to it. Second, by setting this target distribution for different initial time
points, we are able to distinguish changes in the mixing time that arise due to the
dynamics of wealth from changes in inequality (shapes of the wealth distribution).

In order to create as realistic as possible estimates for the mixing time, we further
clean the data from noisy observations. In particular, to quantify the wealth distri-
bution in each year we use data only on households that have data in every survey
year [37]. This removes the non-surviving families from the analysis and makes the
observed distributions between years comparable. To make the the resulting sample
comparable to the population data, we follow Perez et al. [42] and use a re-weighting
procedure. Moreover, to create the potential subsample, we control for the age of the
households use data only on households in which the age of the head was between
30 and 35 years in 1984. This is because empirical observations have shown that
age affects the ability of individuals to move across the wealth ladder [43, 44]. We
choose households where the head is between 30 and 35 years of age because these
are households representing relatively young families at the beginning of observation
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and as such should be more representative of mixing [45, 46]. Then, we use these
data to create a subsample describing the typical households for each survey year
between 1984 and 2009 (households with rescaled wealth between 0.95 and 1.05 and
with age of head between 30 and 35 years in 1984) (Step 2). We track the evolution
of their wealth and in each time point with available data (survey year) we compare
it through the total variational distance with the target distribution (Step 3). The
data in the PSID sample More details about the cleaning and preprocessing of the
data can be found in Appendix 3.

We visualize our empirical findings in Figure 5. In Figure 5A-C we display the evolu-
tion of β(t) as a function of time for three different starting years: 1984 (Figure 5A),
1999 (Figure 5B), and 2009 (Figure 5C). In each case, we observe that the total
variational distance has not reached the 1/4 limit. This suggests that the mixing
time must be larger than the difference between the target year and the initial year.
To provide an estimate for the value of the mixing time, we assume that the decay
will continue until it reaches a target β∗, and fit a non-linear regression of the form
β(t) b0 exp [−b1t] + β∗. We consider three different choices for β∗. First, we assume
that β∗ is an additional parameter in the regression, and we learn it using the avail-
able data. In this case, we may infer that the mixing time does not exist (i.e., if we
get an estimate β∗ > 1/4 then the mixing time is infinite). Second, we suppose that
β∗ = 1/4. In this case we assume that β∗ converges to the largest value that allows
mixing to exist. This will lead to the lowest decay rate, and thus can be seen as
an upper bound for the mixing time under the assumption that wealth in the USA
economy is is mixing. Lastly, we assume that β∗ will converge to 0. In this case, the
decay rate will be the largest, and hence the result can serve as an estimate for the
lower bound for the mixing time under the assumption that the wealth dynamics are
mixing.

Figure 6 gives the estimated mixing times for each year that we study. We find
that if we let the model learn the stationary β∗, the mixing time is infinite in each
year (the black upward-pointing triangle in Figure 6). When we individually set the
stationary β∗ and assume that the economy is mixing, we get that the mixing time
are relatively large when compared to the usual working life of an individual member
of a household. The largest mixing times were observed in the 1980s, when the case
of β∗ = 1/4 stationary value suggests a mixing time of around 600 years when the
subsample is selected in 1984 and around 400 years when the subsample is selected
in 1989. When we set β∗ = 0, the mixing time decreases to around 400 years for 1984
and around 300 years for 1989. As we move towards more recent years, the mixing
time decreases and after 1999 it appears to be slightly less than 200 when β∗ = 1/4
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Figure 5: Total variational distance in the USA estimated using the Panel Study for
Income Dynamics. A) Total variational distance as a function of time in which the target
distribution is the USA wealth distribution in 2019, and the subsample data come from the 1984
PSID. B) Same as A), only the subsample data come from the 1999 PSID. C) B) Same as A),
only the subsample data come from the 2009 PSID. A-C The dashed lines correspond to estimated
regression lines for the decay of β(t) for different choices of stationary total variational distances
(see the legend).

and around 100 when β∗ = 0. These results suggest that mixing times have been
decreasing for the cohort households that had age of head between 30 and 35 years
in 1984. Nevertheless, it is still very difficult for these households to move across the
whole wealth ladder in the USA.

6. Discussion and Conclusion

In this paper, we introduced the physical concept of mixing as a relevant phenomenon
for quantifying the mobility of the typical individual. We showed that standard
mobility measures do not account for this property, whereas measures of mixing do.
This is because, every mobility measure that quantifies the degree of mixing will
not be monotonic. This particular characteristic of certain measures allows them to
quantify whether the system is in a mixing state or not. Whenever the system is not
mixing, measures of mixing will suggest no mobility. When the system is mixing,
then there is no discrimination between individuals on the basis of their history: it
is possible for everyone to move between any ranks in the distribution, and this will
happen with certainty in the long run.
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Figure 6: Mixing times in the USA estimated using the Panel Study for Income Dynam-
ics. Mixing time estimates for each PSID survey data between 1984 and 2009 for three different
stationary total variational distances β∗.

We also showed how mixing can be used empirically by designing a non-parametric
approach for estimating the mixing time. By using data stemming from PSID, we
were able to provide estimates for the mixing time for US households for the period
between 1984 and 2009.

These results can help policy makers in designing interventions that target the well-
being of the typical individuals in the economy and can be used in tandem with
standard measures of mixing for deriving holistic interpretation about the extent
of mobility in the economy. Nevertheless, the mixing approach presented here for
measuring the mobility of the typical individual is not without its limitations.

First, mixing is relative with respect to the existence of a transformation of wealth
which converges to a target distribution. Here we covered the case of “rescaled
wealth”. But even if we observe that rescaled wealth is non-mixing, another trans-
formation of wealth might exist which is mixing, and measures in terms of it might
suggest that there is mixing in the economy. Then mobility across the whole distri-
bution exists, but can be defined in terms of an another concept [18]. For example,
mobility can be defined in terms of growth of wealth or in terms of reduction of the
unpredictability of wealth dynamics. Different concepts also require different analyt-
ical approaches, as they illuminate the distinct extent to which mobility is socially
desirable. In other words, depending on the definition of economic mobility, an in-
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crease in economic mobility will not always translate into increased economic welfare.
Hence, discovering the relevant wealth transformation and investigating its mixing
properties is extremely important for policymakers to produce adequate measures
for optimizing the mobility within an economy.

Second, the empirical method for estimating the mixing properties of an economic
system introduced here can be an expensive method to perform in reality as it requires
a detailed track for the wealth of a particular set of individuals. Nevertheless, we
believe that with the rapid development of data gathering methods and the improved
understanding of wealth dynamics within a population, some of this shortcoming will
be overcome, yielding a more in-depth interpretation of mixing in real economies.

Lastly, in this paper we discussed mixing in terms of wealth mobility, but did not go
into detail about the properties of mixing in income dynamics [47, 48]. While the
estimation procedures for mixing will be the same, the empirical mixing properties
of income might be significantly different from those of wealth. Hence, the resulting
implications could have a non-trivial impact for economic policies. In this context,
studying the empirical relationship between mixing and measures of income mobility
may represent a fruitful avenue for future research.

Despite these limitations, mixing offers a unique view for the measurement of the
mobility across the whole wealth distribution. As such, the results presented here
advance our understanding on the dynamics of wealth, and should motivate new
research on coupling mixing with standard measures of mobility for drawing a more
comprehensive picture about economic mobility.
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Appendix 1. Comparison of mixing time and relaxation time in RGBM

A great body of literature has investigated the relationship between mixing time and
relaxation time for ergodic Markov Chains, but its properties in continuous time
processes and/or space processes remains less explored.

To provide a glimpse on this relationship in mathematical models of wealth dynamics,
we use RGBM and numerically compare the mixing time and relaxation times. We
use these results to motivate our definition for the mixing time measure.

We design our numerical study as follows. First, we simulate a population of RGBM
using various parameter setups and calculate the total variational distance. Then, we
calculate the relaxation time (analytically) and the mixing time (using the method
described in Section 5 and a threshold ε = 1/4 ) and compare their values.

Typical trajectory results for different reallocation rates, noise amplitudes, and sub-
sample sizes are shown in Figure A1.1A-B. It can be easily noticed that the realloca-
tion rate uniquely determines the relaxation time, whereas the noise amplitude has
no effect, as argued in Section 4. Interestingly, the subsample size also determines
the convergence to the stable state in the system as it is proportional to the value of
the stationary total variational distance β∗ (Figure A1.1C). Lower subsample sizes
lead larger β∗. This is because the estimation of the distance relies on the differences
between the empirical distribution function (i.e., histogram), and the distribution
function for the target stationary wealth distribution. Due to the subsample size
always being a finite number, in empirical calculations, there will be differences be-
tween the empirical distribution and the target distribution, which will be translated
in a positive total variational distance. As the subsample size increases, in the limit
as the subsample size goes towards infinity, the differences will disappear. Indeed,
we observe that this dependence decays exponentially and it is already insignificant
for a population size that is around 10% of the population. This subsample size is
comparable to our empirical subsample created in Section 5, and therefore we do
not correct for the subsample size in our definition for mixing time. Nevertheless,
in situations with smaller sample we might need adjustments. We leave the investi-
gation for the exact relationship between mixing time and the subsample size as an
interesting future exercise.

In Figure A1.2 we display the estimated relaxation and mixing times as a function of
the reallocation rate for various noise amplitudes. These numerical results indicate
that the mixing times estimated with ε = 1/4 and relaxation times lead to similar
conclusions about the extent of mobility across the whole disribution in RGBM.
There is only slight dependence of the mixing time on the noise amplitude for τ →
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Figure A1.1: Total variational distance in RGBM. A) Total variational distance as a function
of time for a realization of an RGBM process with a subsample size of 102 for different noise
amplitudes and reallocation parameters. B) Same as A), only with a subsample size of 103 people.
C) The stationary total variational distance as a function of the subsample size for various σ2 and
τ . In the simulations N = 105 people.

0, but this dependence becomes insignificant very quickly. Therefore, we use the
definition for mixing time as given by (4).

Appendix 2. Definitions of standard mobility measures

Spearman’s rank correlation:. The Spearman’s rank correlation, ρt0,tf , is defined on
a joint distribution of wealth ranks at two points in time, t0 and tf (t0 < tf ). It is
defined as

ρt0,tf = 1− 6
∑

i [rg (xi (t0))− rg (xi (tf ))]
2

N (N2 − 1)
, (A2.1)

where rg(x) is the rank transformation of x, xi(t) is the wealth of individual i in
period t and N is the population size. This measure is bounded between −1 and
1. ρt0,tf = 1 suggests perfect immobility, a state in which there is no change in
wealth ranks between the two points in time. Lower values suggest greater economic
mobility.

Intragenerational earnings elasticity:. The intragenerational earnings elasticity is de-
fined as the slope bt0,tf of the regression

log (xi (tf )) = b0 + bt0,tf log (xi (t0)) + ui , (A2.2)
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Figure A1.2: Mixing time and Relaxation time in RGBM. Mixing time in RGBM as a
function of τ for different noise amplitudes with subsample size equal to 20% of the population. In
the simulations N = 105 people.

where b0 is the intercept and ui is the error term. This is a simple linear regression
and therefore,

bt0,tf = corr (log (x (tf )) , log (x (t0)))
var (log (x (tf)))

var (log (x (t0)))
, (A2.3)

where corr(x, y) is the correlation between the variables x and y and var(x) is the
variance of x. As with the rank correlation, lower IGE also indicates greater mobility.
However, this measure is unbounded and may take on any real values.

Transition matrices & Gumbel copula:. The wealth transition matrix disaggregates
wealth rankings into quantiles and summarizes economic mobility in a transition
matrix A in which the elements Akl quantify the probability that an individual in
wealth quantile k in period t0 is found in wealth quantile l in period tf . In a perfectly
mobile economy, the entries of the transition matrix are all equal to each other. This
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would correspond to 0 rank correlation. In an immobile economy, on the other hand,
the largest values are concentrated in the diagonal entries. A perfectly immobile
case, of rank correlation 1, would correspond to the identity transition matrix.4

These matrices describe the bivariate joint wealth distribution at two points in time.
Such distributions are usually modeled via copulas. Mathematically, a copula can be
represented by a simple model in which the wealth transition matrix is parametrized.
A widely used model is the Gumbel copula. It is able to reproduce realistic wealth-
rank transition matrices, representing higher mobility at the bottom of the distri-
bution than at the top [18]. The Gumbel copula is uniquely defined by a single
parameter θ, and as a result, this parameter can be treated as a measure of mobility
where a larger value implies less mobility.

Appendix 3. PSID data cleaning procedure

The raw PSID dataset is available at psidonline.isr.umich.edu, but it needs to
be cleaned for the purposes of our estimations. We clean the data as follows.

• The dataset includes two different wealth variables: wealth and wealth without
equity. The wealth variable is constituted of several asset types, net of debt
value, and the value of home equity. The wealth without equity is constituted
of the same data minus the home equity. In our estimations, we use the wealth
variable as it includes all the possessions of a household.

• We estimate the target distribution using the data for 2019 and using the
population weights that correspond to the same year.

• This dataset has longitudinal data on the socio-economic characteristics of
6000 US households between 1970 and 2019. Unfortunately, the data on some
households in some of the surveys is missing. Therefore, we restrict our sample,
used to create the subsample distribution, to the households that have data in
every survey year between 1984 and 2019. These are in total 1143 households.

• To make the the resulting sample comparable to the population data, we re-
weight the data as suggested by Perez et al. [42].

4One might argue that mixing as a concept is equivalent to the notion of irreducibility in tran-
sition matrices. However, transition matrices already aggregate the wealth dynamics into quantiles
and thus may distort the picture of the extent of mobility.
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• To create the potential subsample, we use data only on households in which
the age of the head was between 30 and 35 years in 1984. This is because
empirical observations have shown that age affects the ability of individuals
to move across the wealth ladder [43, 44]. We choose households where the
head is between 30 and 35 years of age because these are households repre-
senting relatively young families and as such should be more representative of
mixing [45, 46].

• To estimate the subsample disribution we always use the weights corresponding
to the initial time point. For example, if we estimate the mixing time with a
starting point in 1984, we use the 1984 weights for creating the subsample
distribution in each survey year after 1984. This makes the composition of
the subsample the same and comparable across years. In our estimations, the
weighted subsample size is about 20% of the population.
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