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Abstract. Nowadays, the object’s volume is essential for monitoring any scene. Technological equipment is evolving, and mobile
devices and other devices embed high-resolution cameras. The high-resolution cameras open a window for different research
studies, where the volume measurement is vital for different areas. This study aims to identify image processing techniques
for measuring the object’s volume. Thus, a systematic review was performed with a Natural Language Processing (NLP)-based
framework for identifying studies between 2010 and 2023 related to the measurement of object volume. As a result of this
search, this paper reviewed and analyzed 25 studies, verifying that different computer vision methods accurately handle object
recognition. Additionally, an evaluation of the databases presented by the studies above is performed to consider further the
design of a new approach to infer the volume of objects from an image.

Keywords: Volume, measurement, image processing, objects, systematic review

1. Introduction

In recent years, technology has greatly evolved in several areas, including the image processing field [8,62,69].
This expansion has been present in several disciplines, such as medicine [17,18,35,44], transmission and encoding
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[23,56], pattern recognition [24,41,52], object recognition [55,64], and others. Image processing is a technique for
applying various procedures to an image to improve or extract some relevant information [1]. It may be considered
signal processing where the input is an image, and the output can be another image, features, or characteristics
related to that image [72].

Several options exist to gather, process, and make the data available in terms of hardware to perform image ac-
quisition [4,51,57]. For the scene capture, some conditions should be considered, such as the illumination setup
(providing uniform, diffuse distribution of light), the camera quality (whose lens, resolution, and acquisition speed
are adapted to the conditions required), the data processing location (that could be onboard or a server-based ap-
proach), and if a single camera or a multi-camera setup is more suitable [4,51,57].

Images captured from different devices can be used for various purposes, including measuring volume, height,
width, perimeter, area, and other parameters [30,70]. Different techniques can be applied to extract these various
features, including image segmentation, canny edge detection, AKAZE feature-point detection and matching, graph-
based discriminant analysis, and spatial-spectral multiple manifold discriminant analysis [60,61]. The quality of the
images allows the measurement of these parameters with high-quality [43]. Also, with the evolution of technology,
these methods can be used to improve different measures, including color identification [59], the volume of box-
type objects [34], volume and surface area of ellipsoidal agricultural products [58], and others. It can be helpful in
different areas, including Ambient Assisted Living (meals, body parts, etc.) [21,47,53], automotive [5,27], remote
monitoring (objects) [28,45], and others.

This study aims to perform a systematic review based on the search of scientific publications related to the mea-
surement of object volume, published between January 2010 and October 2023 in the following scientific databases:
IEEE Xplore, Elsevier, Springer, MDPI, and PubMed. It aims to review the existing approaches (methods) for as-
sessing novel computational techniques for precisely estimating the volume of different non-medical objects from
their images solely. Additionally, it seeks to investigate and assess the machine learning and advanced image pro-
cessing algorithms that are used to estimate the volume of objects from various image types, as well as to collect
information regarding frameworks that can be used to estimate the volume of a wide range of objects in a variety
of settings and conditions. Also aims to evaluate the reported accuracy and dependability of the volume estimation
methods and identifies potential applications as well as limitations of these techniques in real-world scenarios. The
analysis of the studies’ datasets is also performed to determine the datasets previously used (the objects considered,
their dimensions, etc.) and evaluate their use to develop a new method to extract volume from 2D images for further
application in the medical field to help doctors in remote monitoring, surgeries, and other purposes eventually.

The main contributions of this systematic review are clarifying which methods are applied to infer the objects’ vol-
ume. Automatic volume measurement using images is a non-contact method that accurately determines the volume
of objects in various industries. It offers non-contact measurement, speed, accuracy, cost-effectiveness, versatility,
data integration, and enhanced capabilities with Artificial Intelligence. It is particularly useful for measuring fragile,
soft, or hazardous materials. Image-based volume measurement systems can be adapted to measure a wide range
of objects, making them versatile tools in various applications. Determining the various technological approaches
is also critical to developing a new methodology for analyzing the results, of which this paper presents the most
popular approaches and features extracted. Finally, an overview of future perspectives is presented.

2. Methods

2.1. Research questions

The main research questions of this systematic review are: (RQ1) Which methods can be used to measure the
object’s volume from images? (RQ2) Which are the types of objects previously used to measure the volume? (RQ3)
What is the applicability of the size of the objects’ volume with images?

2.2. Inclusion criteria

Different criteria conditions were defined for analyzing the studies on measuring objects’ volume. These were:
(1) Studies that focus on object volume estimation from images; (2) Studies using a mobile application and image
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processing to object volume estimation; (3) Studies that present segmentation methods to identify objects in images;
(4) Studies that are original research studies; (5) Studies that are only focused on images; (6) Studies that are not
related to medical research studies; (7) Studies that are not related to robotic developments; (8) Studies that were
published between 2010 and 2023; (9) Studies written in English.

2.3. Exclusion criteria

Articles are also excluded based on the following criteria: (1) studies that didn’t report the object volume esti-
mation with images; (2) studies that refer to the image processing techniques used; (3) studies that are literature
reviews or surveys; (4) studies that are related to robotic developments; (5) studies that are related to the medical
subject.

2.4. Search strategy

To find the different studies included in this review, we used the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) methodology to identify and process the studies related to object volume estimation
from images published between 2010 and 2023. The Natural Language Processing (NLP) toolkit described in [79]
was used to perform automatic searches in several electronic databases, including IEEE Xplore, Elsevier, Springer,
MDPI, and PubMed. The keywords used for the search were: “object volume estimation from images” and “object
volume estimation with mobile devices”.

After the search, each study was analyzed by the authors for the evaluation of suitability with the defined criteria
in Section 2.2, previously specified by the consent of all authors. The research was performed on 29 March 2023.

2.5. Extraction of study characteristics

After the criteriums analysis of the different studies, the extracted data were mapped in Table 1: year of publi-
cation, objects analyzed, purpose, features, methods, and outcomes. When the studies did not present some data,
we contacted the corresponding authors to ask for the needed information. All the studies were analyzed to identify
the methods for object volume estimation from images using mobile devices. The outcomes are composed of the
following metrics available and the different studies.

2.5.1. Accuracy
The accuracy formula (equation (1)) is used to calculate the percentage of a model’s total predictions that are

accurate. It’s especially important in classification issues when we want to know how often the model properly
predicts discrete categories as the results.

Accuracy = Number of Correct Predictions

Total Number of Predictions
(1)

2.5.2. Precision
The precision formula (equation (2)) measures how well the model predicts the positive outcomes. It indicates

the percentage of affirmative identifications that were true. This measure is especially crucial when a false positive
comes at a high cost.

Precision = True Positives

True Positives + False Positives
(2)

2.5.3. R2

The R2 formula (equation (3)) is a statistical metric that shows how much of the variation of a dependent variable
in a regression model can be accounted for by one or more independent variables. In essence, it offers a measure of
the model’s fit quality. A higher R2 value shows an improved match between the model and the data.

R2 = 1 − Total Sum of Squares

Sum of Squares of Residuals
(3)
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Table 1

Study analysis

Paper Year of
publication

Population Purpose of the study Features Methods Outcomes

Dalai et al. [13] 2023 NYUv2 [63] Volume estimation of a rigid
object from a single-view
image

• Edge
• Key points
• Shape

• VGG-ResNet for depth
analysis
• Volume estimation through
Hybrid3DU-GNet

• Accuracy (98.59%)
• Precision (98.21%)
• R-squared (98.2%)
• Mean Absolute Percentage
Error (6.1%)
• Root Mean Squared Error
(0.93)

Wang et al. [73] 2023 KITTI [22] Monocular 3D object detection
using Depth from Motion
approach

• Depth maps after
object detection

• Depth from Motion
• Modified ResNet-34 with
spatial pyramid pooling and
feature upsampling

• KITTI average precision for
3D object detection evaluation
ranging from 17.46 up to 29.27

Jeon and Heo [29] 2022 Scene Flow [39]
KITTI-2015 [40]

Efficient resource-limited
mobile MSFFNet for stereo
matching, generation of
multi-scale cost volumes,
performing interlaced
concatenation method to
generate final cost volume

• Width
• Height
• Scale

• Multi-scale sequential
feature fusion network
(MDFFNet)
• Adaptative cost volume
filtering loss function

• End Point Error for Scene
Flow dataset (1.01)
• All KITTI benchmark (bg –
2.53%, fg – 4.99%, and All –
2.94%)

Yang et al. [77] 2021 Proprietary images To calculate the volume of
food on a plate using a single
2D image based on reference
images with known volume
and fine-tuning estimation

• Scale
• Width
• Height

• Two-step AI system
• 1st step: Select a reference
volume that best matches the
image
• 2nd step: Fine-tuned
volumetric estimation

• Mean Relative Volumetric
Error (mRVE) ranging from
11.6% to 20.1%

Kalpitha et al. [32] 2021 127,915 CAD models
[75]

Handling occlusion in 3D
object recognition

• Edges
• Corners

• Model-based matching
• Canny edge detector
• Image Reflection
• Region-based segmentation
• 3D matching
• 3D reconstruction

• Sigmoid activation function:
98.66% (accuracy)
• ReLU activation function:
99.50% (accuracy)
• Tanh activation function:
97.43% (accuracy)

Poply et al. [54] 2021 UNIMIB 2O16 [11] Predicting the calorie contents
of multiple-dish food items by
taking their top-view images.

• Mass
• Width
• Height

• Convolutional Neural
Networks
• Object Detection
• Semantic Segmentation

• 89.3% (mean average
precision)
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(Continued)

Paper Year of
publication

Population Purpose of the study Features Methods Outcomes

Wittstruck et al. [74] 2021 Proprietary images Methodology for
high-resolution RGB data from
Unmanned aerial vehicle

• RGB data • Binary random forest
• Gini Index

• 99% (correlation)

Brándi et al. [3] 2020 Proprietary dataset Estimating object volume • AKAZE features
[2]

• AKAZE feature-point
detection and matching
• Bundle adjustment
• Patch-based multi-view
stereo
• Poisson surface
reconstruction

• >90% (accuracy)

Hadi et al. [26] 2020 • Cityscapes Dataset
[12]
• Driving Dataset
[71]
• WildDash [80]

3D Traffic Scene
Reconstruction (3DTSR)

• RGB data • Instance semantic
segmentation method

• AP50: 43.9% (accuracy)

Suzuki et al. [66] 2020 Proprietary dataset Estimating food volume with a
point cloud processing method

• Semantic
information
• Shape
• Width
• Height

• LMedS method
• Graph cut method

• 10.78% (average error rate)

Tomescu [68] 2020 Proprietary images Food volume measurement • Angles
• Width
• Height
• Depth maps

• Convolutional neural
networks
• Model reconstruction
• Point cloud fusion (Iterative
Closest Point)
• Point cloud to voxel grid
• Volume calculation

• 70.3% (accuracy)

Gao et al. [20] 2019 UEC Food-256
dataset [33]

A novel method, named
MUSEFood, for food volume
estimation

• Width
• Height

• Segmentation method • 5.11% (relative error)

Lou et al. [38] 2019 • SUN RGB-D
dataset [65]
• NYUv2 RGB-D
dataset [63]

Amodal 3D object detection • Angles
• Width
• Height

• 3D-SSD • SUN RGB-D: 50.7%
(accuracy)
• NYUv2 RGB-D: 39.7%
(accuracy)
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(Continued)

Paper Year of
publication

Population Purpose of the study Features Methods Outcomes

Yogaswara et al. [78] 2019 Proprietary images Using a computer vision
approach, calculate the number
of food calories automatically

• RGB data • Mask Region-based
Convolutional Neural Network
(R-CNN)

• 89.41% (accuracy)

Dalai et al. [14] 2018 Proprietary images Physical characteristics
calculation

• Shape
• Width
• Height

• K-means clustering
• Image segmentation

• 10.33% (average error)

Gao et al. [19] 2018 Proprietary images Food volume measurement • Width
• Height

• Statistical Outlier Removal
Filter
• Point Cloud Completion
• Convex Hull with Boundary
Shrinking Property

• 15.21% (average error)

Lo et al. [36] 2018 Image set from
Yale–CMU–Berkeley
object set [6,7]

Food volume measurement • Angles
• Width
• Height
• Camera
coordinates

• Neural Network architecture • 6.875% (average error)

Parihar et al. [49] 2017 NHANES
1999–2000 dataset
[46,50]

Estimate the dimensions of an
object in a 2D image

• Haar features • Haar Cascades algorithm
• Volume estimation
• 3D shape models
• Regression analysis

• 93.69% (accuracy)

Yang et al. [76] 2017 • BR [67] dataset
• UWAOR [41]
dataset
• UWA3M [42]
dataset

Feature description for the 3D
local shape in the presence of
noise, varying mesh
resolutions, clutter, and
occlusion

• Triple orthogonal
local depth images
(TOLDI)
representation

• 3D matching • BR: 99.9% (accuracy)
• UWAOR: 19.7% (accuracy)
• UWA3M: 17.1% (accuracy)

Fang et al. [16] 2015 TADA project [15] Food portion estimation • Radius
• Height
• Width

• The Cylinder Model
• Prism Model
• Direct Linear Transform
(DLT) method

• <6% (average error)

Grum et al. [25] 2014 Proprietary images Identifying and correcting
errors in the reconstructed 3D
scene

• Shape
• Width
• Height
• RGB data

• Voxel carving
• Initial RBF
• Updated RBF

• >75% (accuracy)
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Table 1

(Continued)

Paper Year of
publication

Population Purpose of the study Features Methods Outcomes

Chen et al. [10] 2012 Proprietary images Estimating food volume from a
single-view 2D image

• RGB data • Otsu’s thresholding
• 3D/2D model-to-image
registration
• Find contours

• Cuboid: 1.27% (average
error)
• Sphere: 3.38% (average
error)
• Half-sphere: 4.02% (average
error)
• Cylinder: 0.52% (average
error)

Jia et al. [31] 2012 Proprietary images Estimate the 3D location of a
circular feature from a 2D
image

• Shape
• Camera
coordinates
• Distance
• Length
• Width
• Height
• Diameter

• “Point-clicking” method
• “Wireframe-fitting” method

• 5.16% (average error)

Patz et al. [48] 2012 Proprietary images Quantify the influence of the
gray-value uncertainty

• RGB data • Extension of the random
walker segmentation

• <5% (average error)

Campbell et al. [9] 2010 Proprietary images Segmentation of a rigid object
in a sequence of images

• Shape
• Width
• Height
• RGB data

• Volumetric graph-cut
• Gaussian Mixture Model
(GMM)
• Volume estimation
• Boundary estimation

• <5% (average error)
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2.5.4. Mean absolute percentage error
Mean Absolute Percentage Error (equation (4)) is a metric used to evaluate the precision of a forecast or pre-

diction. It divides the absolute value of the difference for each observation between the actual and projected values
by the actual value. Next, the total number of observations (n) is divided by the sum of this result across all the
observations. To turn the final amount into a percentage, multiply it by 100%. It represents the average percentage
of forecast inaccuracy.

Mean Absolute Percentage Error = 100%

n
×

n∑
i=1

∣∣∣∣
Ai − Fi

Ai

∣∣∣∣ (4)

2.5.5. Root mean squared error
The Root Mean Squared Error (equation (5)) is a commonly used metric to quantify the discrepancies between

values predicted by a model and observed values. For each observation, the square of the difference between the
expected and actual values is calculated first. After that, the total of these squared differences for every observation
should be done. The mean of these squared differences is then calculated by dividing this amount by the total
number of observations (n). Lastly, to get the RMSE, take the square root of this mean. With the advantage that
greater mistakes are given proportionally more weight because of the squaring of the errors, the RMSE provides a
measure of the error’s size.

Root Mean Squared Error =
√√√√1

n
×

n∑
i=1

(Pi − Oi)2 (5)

2.5.6. End point error
The End Point Error (equation (6)) is used in domains such as computer vision, especially in optical flow esti-

mates. It gauges the accuracy of the motion vector estimates compared to the ground reality. The difference between
the estimated and actual values for the motion vector’s horizontal and vertical components is first calculated. These
discrepancies are then squared and added together, and the square root of this total is then calculated. The Euclidean
distance between the estimated and genuine motion vectors is represented by a single scalar number that the EPE
offers, which is an effective motion estimation accuracy measure.

End Point Error =
√

(u − û)2 + (v − v̂)2 (6)

2.5.7. Mean relative volumetric error
Mean Relative Volumetric Error (equation (7)) is used in 3D modeling or medical imaging applications to evaluate

the precision of volume measurements. It compares an object’s measured volume using an imaging method or model
to its actual or known volume. The absolute difference between the measured and real volumes is divided by the
true volumes to get the relative error in volume measurement for each observation. These relative errors are then
averaged across all data. The average departure of the measured volumes from their real values is reflected in this
statistic, which gives a mean % error in volume measurements.

Mean Relative Volumetric Error = 1

N
×

n∑
i=1

∣∣∣∣
Vmeasured,i − Vtrue,i

Vtrue,i

∣∣∣∣ (7)

2.5.8. Average precision
Average Precision (equation (8)) is used in object identification and information retrieval to assess the precision

of an object detection model or the caliber of results that a search algorithm returns. When working with unbalanced
datasets, it is especially important to keep in mind that the positive class is much less common than the negative class.
Essentially, it adds up the accuracy values at every rank where a pertinent document is found, and then it divides
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this amount by the overall count of relevant documents. A greater Average Precision denotes better performance,
and it measures the quality of the retrieval or detection across all ranks.

Average Precision =
∑n

i=1(Precision(k) × rel(k))

Number of relevant documents
(8)

2.5.9. Mean average precision
In several domains, including computer vision, object identification, and information retrieval, the Average Pre-

cision measure is extended to provide Mean Average Precision (equation (9)). The accuracy across many queries or
classes is summarized in a single chart. Mean Average Precision is the average of the Average Precision determined
for every object class in the context of object detection.

Mean Average Precision =
∑Q

q=1

( ∑n
i=1(Precision(k)×rel(k))

Number of relevant documents

)
q

Q
(9)

2.5.10. Average error rate
The Average Error Rate (equation (10)) is used to evaluate a model or system’s performance in classification tasks.

The computation involves averaging the error rates among several classes or instances. The percentage of incorrectly
categorized cases inside each class is known as the error rate, which is determined for each class separately and
averaged across all classes. Since it guarantees that the error rates of smaller classes are given equal weight to
those of bigger classes in the overall evaluation, this metric is especially helpful in situations where the classes have
unequal distributions.

Average Error Rate =
∑N

i=1
Number of errors in class i

Total Number of instances in class i

N
(10)

2.5.11. Relative error
A measurement or estimate’s accuracy about the real or true value is determined by calculating the Relative

Error (equation (11)). The relative error indicates the extent of the inaccuracy concerning the real value and may
be given as a fraction or a percentage. One divides the absolute value of the difference between the estimated and
actual values by the true value. After performing this computation, a dimensionless number is produced that may
be multiplied by 100% to get a percentage. This metric is very helpful for expressing measurement and prediction
accuracy in disciplines like statistics, engineering, and physics.

Relative Error = |True Value − Estimated Value|
True Value

(11)

3. Results

As represented in Fig. 1, this study identified 12548 papers, including 800 duplicated in different searched
databases, which were removed. An automation tool was used for the search, and 3803 studies were marked as
ineligible by the device during the first filtering, which cannot be correctly accessed. Next, the tool performed the
filtering by keywords in the main text, abstract, and title, resulting in the exclusion of 5602 papers. The remaining
2343 studies were filtered by the study type, where 81 review studies were not considered. The studies not directly
related to the volume measurement were also removed, excluding 343 papers. A significant part of the studies was
associated with the medical subject, which was not considered for this review, and 1775 studies were discarded.
The next stage of the exclusion was associated with using video and other sensors to measure the volume that is
out of the scope of this review, resulting in the exclusion of 119 studies. The full-text analysis was performed in the
remaining 25 papers, included in the qualitative and quantitative syntheses.
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Fig. 1. Flow diagram of identification and inclusion of papers.

This review only summarizes the findings related to the volume measurement of objects in the different studies.
The reader must follow the original research to get more relevant information. Based on Table 1, the analyzed
studies were published between 2010 and 2023, distributed by two studies in 2023 (8%), one study in 2022 (4%),
four studies in 2021 (16%), four studies in 2020 (16%), three studies in 2019 (12%), three studies in 2018 (12%), two
studies in 2017 (8%), one study in 2015 (4%), one study in 2014 (4%), three studies in 2012 (12%), and one study
in 2010 (4%). Regarding the datasets used, fourteen studies (56%) used publicly available datasets. Following the
features extracted from the images, where fourteen studies extracted width (56%), fourteen studies extracted height
(56%), seven studies extracted RGB data (28%), six studies extracted shapes (24%), three studies extracted angles
(12%), two studies extracted camera coordinates (8%), two studies extracted edges (8%), two studies extracted scale
(8%), two studies extracted depth maps (8%), one study extracted corners (4%), one study extracted mass (4%), one
study extracted AKAZE features (4%), one study extracted semantic information (4%), one study extracted Haar
features (4%), one study extracted Triple orthogonal local depth images (TOLDI) representation (4%), one study
extracted radius (4%), one study extracted distance (4%), one study extracted length (4%), one study extracted key
points (4%), and one study extracted diameter (4%). The methods used differ from the studies, and the results are
reported below.

Table 2 depicts which databases are used for the evaluated works and some of their characteristics, such as their
constitution and area of intervention/topic.

Based on the categories of the subjects, the following sections present the description of the studies

3.1. Detection of objects

Kalpitha et al. [32] developed a method for handling occlusion in a monochromatic image for 3D object detec-
tion. Left and right images of an image scene were captured using a binocular stereo vision system to infer 3D
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Table 2

Evaluation of the databases

Database Subject category Subjects Number of images

KITTI [22] Objects Car, vans, trucks, trams, pedestrian, cyclists 12,000 images with 40’000
objects

KITTI-2015 [40] Objects Objects found on the street while driving 400 highly dynamic scenes

Scene Flow [39] Objects Everyday objects, objects from the animation movie
Monkaa, dynamic street scene from the viewpoint of a
driving car

35,454 training and 4,370
test image pairs

Unnamed (private) [77] Food Food 14,892 (VFDL) and 13,694
(VFDS) images, and 1,500
images (GRFD) and 416
(IRFD) images

ModelNet [75] Objects Airplane; bathtub; bed; bench; bookshelf; bottle; bowl; car;
chair; cone; cup; curtain; desk; door; dresser; flowerpot;
glass box; guitar; keyboard; lamp; laptop; mantel; monitor;
nightstand; person; piano; plant; radio; range hood; sink;
sofa; stairs; stool; tent; table; toilet; tent; TV stand; vase;
wardrobe; Xbox

127,915 images

UNIMIB 2O16 [11] Food Food 1,027 images

Unnamed (private) [74] Food Food 106 images

Unnamed (private) [3] Objects Celery root; box; angel statue n/d

Cityscapes dataset [12] Objects Road; sidewalk; parking; rail track; person; rider; car;
truck; bus; on rails; motorcycle; bicycle; caravan; trailer;
building; wall; fence; guard rail; bridge; tunnel; pole; pole
group; traffic sign; traffic light; vegetation; terrain; sky

25,000 images

Driving dataset [71] Objects Road; sidewalk; parking; rail track; person; rider; car;
truck; bus; on rails; motorcycle; bicycle; caravan; trailer;
building; wall; fence; guard rail; bridge; tunnel; pole; pole
group; traffic sign; traffic light; vegetation; terrain; sky

10,004 images

WildDash [80] Objects Road; sidewalk; parking; rail track; person; rider; car;
truck; bus; on rails; motorcycle; bicycle; caravan; trailer;
building; wall; fence; guard rail; bridge; tunnel; pole; pole
group; traffic sign; traffic light; vegetation; terrain; sky

n/d

Unnamed (private) [66] Food Food n/d

Unnamed (private) [68] Food Food 80,000 images

UEC FOOD 256 [33] Food Food 31,395 images

SUN RGB-D dataset
[65]

Objects Bathroom; classroom; office; furniture store; bedroom;
computer room; lecture theatre; library; study space; home
office; discussion area; dining area; conference room; lab;
corridor; kitchen; living room; bedroom

10,335 images

NYUv2 dataset [63] Objects Bedrooms; home offices; bathrooms; kitchens; offices;
bookstore; libraries; playrooms; café; living rooms;
reception rooms; dining rooms; study rooms; furniture
stores

1,449 aligned depth and
RGB images, with 464 new
images from 3 different
cities

Unnamed (private) [78] Food Food 2,500 images

Unnamed (private) [14] Objects Brick; PVC; alloy block n/d

Unnamed (private) [19] Food Food n/d
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Table 2

(Continued)

Database Subject category Subjects Number of images

Yale–CMU–Berkeley
object set [6,7]

Objects Chips can; master chef can; cracker box; sugar box; tomato
soup can; mustard bottle; tuna fish can; pudding; box
gelatin box; potted meat can; banana; strawberry; apple;
lemon; peach; pear; orange; plum; pitcher base; bleach
cleanser; windex bottle; wine glass; bowl; mug; sponge;
skillet; skillet lid; plate; fork; spoon; knife; spatula; power
drill; wood block; scissors; padlock; key; marker;
adjustable wrench; Phillips screwdriver; flat screwdriver;
plastic bolt; plastic nut; hammer; clamp; mini soccer ball;
softball; baseball; tennis ball; racquetball; golf ball; chain;
foam brick; dice; marbles; cups; colored wood blocks; nine
hole peg test; toy airplane; lego duplo; timer; rubik’s cube

99,400 images

NHANES 1999–2000
[46,50]

Food Food n/d

BR [67] Objects/shapes Models n/d

UWAOR [41] Objects/shapes Models n/d

UWA3M [42] Objects/shapes Models 75 images

TADA project [15] Food Food 998 images

Unnamed (private) [25] Objects/shapes Models n/d

Unnamed (private) [10] Food Food n/d

Unnamed (private) [31] Food Food 240 images

Unnamed (private) [48] Objects/shapes Models 75 images

Unnamed (private) [9] Objects Models n/d

information. The comparator models for the computed 3D poses have been built using a virtual camera, and a fea-
ture detector has been suggested to find the local features of the object model. The projected picture unknown points
were filled using the bilinear interpolation method throughout the image correction process. During the recognition
phase, the regions of the rectified images are compared to the comparator models to identify the items.

Brándi et al. [3] demonstrate using an image-based volume estimation method. The camera positions are first
estimated via bundle adjustment based on the feature points found in the images. The camera positions generate
a dense point cloud, into which a convex hull and Poisson surface are fitted. Next, a better surface intersection is
created. Finally, the finished surface’s volume is calculated and converted to metric measurements using a reference
item. The software system’s implementation consists of a server and an Android client. The server oversees image
processing, while the Android client application provides the user interface for taking photographs and creating a
three-dimensional reconstruction of the scanned object.

The reconstruction of a 3D traffic scene was the subject of video footage captured by a dash camera in a moving
vehicle [26], where 3DTSR attempts to generate a 3D traffic scene. The 3D traffic scene provides a new platform
for applications, including self-driving cars, driving pattern analysis, and traffic accident analysis. The authors’
approach used passive sensing, which identifies objects and their positions by using visual data. The COCO dataset
and the Mask R-CNN model were utilized to conduct the studies. The investigations showed that it is possible to
extract the shape and appearance of objects in the road scene using the suggested segmentation method.

The authors of [38] offered a faster and more accurate remedy to the amodal 3D object detection issue for indoor
environments. The solution is obtained via a novel neural network structure that receives two RGB-D images as
input and generates orientated 3D bounding boxes. A group of 3D anchor boxes is linked to each place on the
prediction layers to address the shape variance of various objects explicitly. The sizes of these boxes vary. The
category scores for 3D anchor boxes are generated during testing with multiple placements, sizes, and orientations,
leading to final detections using non-maximum suppression. SUN RGB-D and NYUV2 datasets have both been
utilized. The results showed that the suggested algorithm is the first 3D detector that works on challenging datasets
in almost real-time with comparable performance to other methods.
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In [14], the authors employed a k-means clustering technique. The weight was approximated by multiplying the
volume calculated by the density after the volume was determined using the model-based area-volume mapping.
The segmentation approach, which is based on GDIS, is very accurate and precise. Using a segmentation method
based on a grid structure, the ROI (Region of Interest) has been located, and the object’s volume has been calculated
using this region. The object’s volume has been calculated using the approximate height, width, and length that were
measured using 3D-based modeling. The study has precision for various things thanks to its design performance.

In [36] work make it possible to estimate the volume of food by obtaining a single-depth photograph from any
practical viewing angle. The scientists developed a view synthesis technique based on deep learning to reconstruct
3D point clouds of food items and estimate the volume from a single depth shot. A separate neural network is
built to predict a depth image from the opposite viewing angle using a depth image from one viewing angle as
a predictor. The whole 3D point cloud map is recreated using the suggested point cloud completion and Iterative
Closest Point (ICP) methods by combining the initial data points with the synthesized points of the object items.
A database of depth photographs of food object items captured from different viewing angles was created using an
image rendering technique, and it was utilized to assess the proposed neural network. The authors estimated the
volume of the synthesized 3D point cloud to be equal to the actual volume of the individual object components,
allowing them to evaluate the procedure.

In [9] the authors suggested a method for automatically identifying a rigid object’s segmentation from a collection
of photographs calibrated for camera posture and intrinsic characteristics. Instead of requiring human interaction,
the strategy depends on the camera being fixed on interest throughout the process. A graph-cut optimization pro-
duces the segmentation of the 3D space that is globally optimal. This segmentation yields a more accurate color
model, extracted and repeated until convergence. It suffices to indicate what needs to be segmented and to start an
autonomous segmentation process by applying the fixation constraint, which requires that the object of interest be
centered in the image. Then, it was found that compared to independent 2D segmentations, a single 3D segmentation
significantly improves silhouette quality.

3.2. Detection of objects and shapes

The work presented in [29] focuses on deploying an approach in resource-limited mobile environments through
a multi-scale stereo-matching network. The authors present the MSFFNet, a multi-scale stereo matching network
that generates a cost volume by connecting multi-scale SFF modules. Then, an adaptative cost-volume-filtering
(ACVF) loss function that directly supervises the cost volume is applied. This second step performs two kinds
of filtering using the probability distribution generated by the ground truth disparity map and the one estimated
from the teacher network. Several results are given with the datasets Scene Flow and KITTI (both 2012 and 2015
versions), comparing with several approaches such as PSMNet, GANet-15, and DispNetC, among others. The End
Point Error (EPE) evaluation metric was used for Scene Flow, achieving 1.01. In contrast, the KITTI benchmark
achieved 22.53%, 4.99%, and 2.94% for all benchmarks in the background, foreground, and object sections.

Effective volume estimation on single-view objects through hybrid U-Net methodology is the focus of [13]. Using
a mean-median filtering approach, the single-view object images are pre-processed. The feature extraction phase
focuses on depth and shape analysis. 3D image reconstruction is performed using a hybrid 3DU-GNet framework,
leading to volume estimation that can be applied to regular and irregular objects. The authors explain the operation of
the hybrid network and mathematical formulations. Performance is analyzed against different existing approaches
showing promising results, such as an accuracy of 98.59%, a precision of 98.21%, a Mean Absolute Percentage
Error of 6.1%, and a Root Mean Squared Error of 0.93.

Authors of [73] present an integrated framework capable of estimating depth and detection of 3D objects from
consecutive-frame images. The work uses the KITTI test set and metrics to evaluate, together with detailed analysis
with ablation studies. Using a geometry-aware cost volume to establish the stereo correspondence, the Depth from
Motion framework lifts 2D image features to the 3D space, enabling the detection of objects. To achieve the desired
3D detection, the input e closed-loop regularization images are fed to a stereo matching and view transformation.
This step performs 2D detection with a ResNet-34 neural network, employs a 2.5D backbone, and performs depth
estimation. The result is fed to a final step – 3D backbone and 3D head – that enables the final 3D detection of
objects through a voxel-based approach. The paper clearly presents the results as superior to others using the same
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KITTI benchmark and test set, with a KITTI average precision for 3D object detection evaluation ranging from
17.46 to 29.27.

For local shape description, the authors of [76] employed a triple orthogonal local depth image technique. It
combines a triple orthogonal local depth image (TOLDI) format with a local reference frame (LRF). The proposed
LRF differs from many earlier ones in that the z-axis is derived using the key normal points, and the x-axis is
calculated by averaging the weighted projection vectors of the radius neighbors. Then, to provide TOLDI feature
descriptors, three local depth images (LDI) obtained from three orthogonal view planes in the LRF are concatenated
into feature vectors. Using publicly accessible datasets that cover three critical surface matching scenarios – shape
retrieval, object recognition, and 3D registration – the performance of the TOLDI approach is carefully evaluated.
The studies revealed the efficacy of the suggested approach.

Grum et al. [25] developed a technique for modeling a scene with several 3D objects. The suggested method’s
initialization is a rough 3D model of the scene created from the provided set of multi-view images. The first ap-
proach adjusts the positioning of the 3D patches in a location after determining the discrepancy between two scene
projections in photos. Next, the technique “shape-from-contours” identifies differences between 3D object projec-
tions and their corresponding contours segmented from photographs. Object outlines are determined by using both
supervised and unsupervised segmentation.

The study presented by [48] aimed to determine how random walker segmentation gray-value uncertainty af-
fected the result. The edge weights in a weighted network created by random walker segmentation are based on
the gradient of the image between the pixels. The developed technique identifies regions where uncertain pixel val-
ues substantially impact the segmentation result. As a result, it evaluates the segmentation accuracy and allows the
estimation of the probability density function for the volume of the segmented object.

3.3. Detection of food

The work presented in [77] presents a human-mimetic estimation of the volume of food on a plate using a single
RGB image. The authors present an AI system to mimic dietitians’ reasoning that typically uses common-use
objects, such as spoons and cups, among others, to quantify food. As a result, the authors defined several volumes of
known value and created a virtual dataset with computer simulation – VFDL and VFDS. They define several classes
based on the pre-defined volume and wrap the food part with food. The dataset is used for training and testing, with
a second dataset of real images for validation – GRFD and IRFD. While GRFD is created through image capture
on a controlled scenario with a fixed camera, IRFD comprises images taken with a mobile phone. The AI system
comprises two steps – the first one outputs a vector of probabilities of the food volume concerning the predefined
volumes. In contrast, the second implements an inner product of the probability vector and the reference volume
vector. Results seem promising, considering that volume is calculated from a single 2D RGB image, with a Mean
Relative Volumetric Error (mRVE) ranging from 11.6% to 20.1%.

In [54], the authors suggested utilizing computer vision and deep learning to determine the calorie count of
each dish using top-view images of several dishes. The system performs an advanced image segmentation process
that replicates instance segmentation, in which each pixel is identified from the instance of objects for each object
detected in an image. This is done using convolutional neural networks (CNNs). A calorie table lookup is used to get
the estimated calories for food goods using the estimated volume, mass, and other previously known characteristics.
At the time of evaluation, the system had a mean average precision (mAP) of 89.30% for object detection and a
percentage accuracy of 93.06% for calorie prediction.

The authors of [74] created an uncrewed aerial vehicle (UAV) data analysis system, which was applied to a field of
Hokkaido pumpkins in northwest Germany. The methodology, implemented in Python, involved a few steps, such as
image pre-processing, pixel-based image classification, classification post-processing for single fruit detection, and
fruit size and weight quantification. According to the results, the field sample had a 95% detection rate, a 5% error
rate, and a reliable prediction of volume and weight with Pearson’s correlation values of 0.83 and 0.84, respectively.

In [66], a method of processing a point cloud has been put forth for more precise estimation. Point clouds,
collections of coordinate points on objects, can be used to analyze three-dimensional things. The authors have
developed a point cloud method to build the dish space and identify dishes on the dining table. There is yet another
way to figure out how much food is in the dish space. The results found low error rates, ranging from 4% to 16%.
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Tomescu et al. [68] suggested a method for identifying different food items and their mass on mobile devices
using only the phone camera, called FoRConvD (Food Recognition using Convolutional Neural Networks and
Depth Maps). Volume estimation and food type identification are the two main components of the approach. The
type of food is determined using EfficientNet, a convolutional neural network model suitable for mobile devices.
A method for measuring the volume called “depth map fusion” involves creating a 3D model of the object using
various images collected from multiple angles. The experimental results empirically show that the method proposed
for estimating the amount of food is reliable and accurate, with a volume overestimation of 0% to 10% depending
on the object’s shape.

In [20], the authors recommended using the MUSEFood method to determine food volume. MUSEFood uses
the camera to take pictures of the food; it does not require training images to understand how much of it there is,
nor does it require a background reference item for the photos to be shot. Using the microphone and speaker in a
noisy environment, MUSEFood accurately estimates the vertical distance from the camera to the meal and scales
the food in the image to reflect its actual size. MUSEFood outperforms other methods and dramatically speeds up
the assessment of food volume, according to trials on real foods.

Yogaswara et al. [78] created a system that employs a computer vision method and the Deep Learning Mask
Region-based Convolutional Neural Network (R-CNN) technology to automatically calculate the number of calo-
ries in meals based on the size of the food volume. The segmentation technique uses the instance-aware semantic
segmentation approach to identify each pixel from an instance of an object for each object recognized in a food im-
age. This model will quickly identify each unique food object to calculate the precise quantity of calories for each
food object inside one class. The results of this study are likely to help people learn about the number of dietary
calories concerning their bodies’ calorie requirements, with a mean average precision (mAP) level of 89.4% and a
percentage accuracy in calories estimated at 97.48%.

The authors of [19] presented a way for measuring food volume to determine the consumers’ daily nutrient con-
sumption accurately. The method relies on a simultaneous localization and mapping technique, a modified convex
hull algorithm, and a 3D mesh object reconstruction method (SLAM). The feasibility of wearing monocular SLAM
algorithms for continuous meal volume monitoring was examined in this study. A sparse map is produced using
SLAM after the camera has taken photographs of the food, and a 3D mesh object has been created using the multi-
ple convex hull approach. The mesh object can then be used to determine the volume of the target item. It has been
evaluated in studies to assess the viability and accuracy of the suggested algorithm for calculating meal volume.

Parihar et al. [49] demonstrated a technique for calculating an object’s dimensions from a user-provided 2D
image. It performs three tasks: object recognition using the Haar Cascades technique, dimension computation using
a reference object and a conversion factor, volume estimation using conventional 3D shape models for ordinary
things, and a human body prediction model based on regression analysis. An accuracy of 93.69% was attained in
the final value comparison.

To determine how much energy was consumed during a meal, the authors of [16] provided a method for estimating
the amount of a serving of food based on a single-view food image. This work has established a system for estimating
meal quantities without requiring manual parameter modification. Even though single-view 3D scene reconstruction
is typically an ill-posed problem, the introduction of geometric models, such as the shape of the container, can aid
in partially recovering the 3D properties of the food items in the image. The estimated 3D properties of each food
item and a scene reference object can be used to determine the volume of each food item in the picture. The weight
of each food can then be estimated using the food’s density. Assuming precise segmentation and food classification,
the studies could calculate the energy in an image of a meal with an error of less than 6%.

In [10], the authors devised a 3D/2D model-to-image registration technique for estimating meal volume from
a single-view 2D image containing a reference object. Otsu’s thresholding and morphological techniques are used
first to distinguish the food from the backdrop image. The user-selected 3D shape model is then used to calculate the
meal volume. The model’s placement, orientation, and scale are all optimized using a model-to-image registration
process. The circular plate of the image is fitted, and its spatial information provides a set of restrictions for resolving
the registration problem. Experimental results using uniform test objects and accurately designed food models with
known volumes showed how effective the strategies were.

The authors of [31] revealed a technique for determining a circular feature’s 3D location from a 2D image. In the
past, a meal container, such as a circular plate, was used as a necessary reference rather than a general reference, like
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a checkerboard card. In this study, a mathematical model for the system – which consists of a camera and a circular
item in three dimensions – is constructed, and the food volume is calculated using this model. The tests showed that
in 224 out of 240 photographs of various real objects and food replicas, the relative inaccuracy of the image-based
volume prediction was less than 10%.

3.4. An overview of evaluation metrics

All research work presented in this document provides validation through evaluation metrics. Moreover, it is also
possible to find a comparison with different previous approaches to highlight the contribution. Some works also
present ablation analysis, focusing on the performance of a given aspect or feature of the network. Nevertheless,
matching results between the different research works presented is typically very difficult since they tend to utilize
different evaluation metrics. One of the efforts to homogenize comes in the form of a dataset. The KITTI dataset
is just not a dataset. It has a collection of benchmarks that some works [29,73] take advantage to perform the
evaluation.

KITTI [22] benchmarks in the 2012 version evaluate percentages of erroneous pixels and average end point errors
for both non-occluded (Nocc) and all (All) pixels reported. For the KITTI-2015 [40] version, the disparity outliers
are evaluated for background (bg), foreground (fg), and all pixels on both non-occluded and all pixels.

Nevertheless, the focus is topically given to some loss or matching evaluation metric that analyzes the difference
between a given object’s calculated volume and the real volume. The EPE (End Point Error) is one of such metrics
that measures the average disparity error in pixels of the estimated disparity map.

Presenting the evaluation metrics mathematical expressions here is out of this paper’s scope, so the reader is
invited to find such information in the referred research works.

4. Discussion

4.1. Interpretation of the results

Measuring the objects’ volume may power the development of different systems in different life areas. The
identification of objects can handle the identification of the objects used by people and the size of their objects.
However, currently, there are different studies related to lifestyles, where identifying the number of aliments is
essential to promote different kinds of diets. Only one of the analyzed studies worked with images related to body
parts. A set of possibilities is opened with the correct measurement of the volume.

From the analysis of the twenty-five studies, it is observed that a total of thirty-two different databases are used,
of which thirteen (about 41%) are fully proprietary and private [3,9,10,14,19,25,31,48,66,68,74,77,78]. There are
also two works that, in their composition, apply their databases together with other publicly available [38,49],
corresponding to about 6% of the databases. The remaining are exclusively from public databases, used in thirteen
studies [13,16,20,26,29,32,36,38,49,54,66,68,73,76], and correspond to about 41% of the databases.

From another perspective and considering the similarity of themes in the databases, it is observed that about 44%
of these are applied to food-related studies. In general, these studies [10,16,19,20,31,49,54,66,68,74,77,78] aim
for health monitoring and management (e.g., calorie intake) through measurable information such as food volume.
In a significant number, with about 61% of the databases involving nineteen studies [3,9,13,14,25,26,29,32,36,38,
48,49,73,76], some seek to identify and reconstruct objects or different shapes. Finally, a database related to the
measurements of human parts [49] is applied together with another [46,50], also for measuring objects.

In terms of the description of the databases, twelve (about 39%) are not described, or it was impossible
to determine their dimensions and constitution [3,9,10,14,19,25,38,41,49,66,67,80]. Of the remaining nineteen
databases, about 47% of these have less than 2,500 images, about 16% are constituted by more or equal to
80,000 images [6,7,68,75], and the remaining 26% have numbers between the previously mentioned ranges
[12,12,22,33,39,65,71,77].
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4.2. Validity and reliability

Analyzing the studies that present quantitative metrics, the analysis that can be carried out is shown below, con-
sidering that this is somewhat abusive in the sense that possible performance comparisons between different studies
should be carried out on the same databases to obtain a univocal evaluation of the methods. Other reviews have
been performed, but they are mainly related to only one type of object. This paper intends to present a multivariate
review of different kinds of objects. In contrast, the authors of [37] only reviewed the measurement of the volume
of dietary objects.

Considering the previous issues, it was verified that the authors of [54] and [78] have the same objective to
perform calorie count from food volume. The comparison metrics are the same: mean average precision (mAP) and
accuracy for calorie prediction. In Poply et al. [54], the mAP value is 89.30%, and the calorie prediction percentage
is 93.06%, against the 89.40% and 97.48%, respectively, presented by Yogaswara et al. [78].

Considering other measurements, the study [74] presents a 5% error rate (with a 95% detection rate) for field
samples for UAV images. Suzuki et al. [66], for point cloud detection of dishes on the dining table, presented error
rates ranging from 4% to 16%. Finally, and also for determining the circular features of the plates, in [31], the
authors revealed that the image-based volume inaccuracy prediction was less than 10%.

As previously mentioned, although the formal comparison is not entirely scientifically sound, a brief analysis can
infer from the magnitude of the metrics presented the relative quality of the studies.

4.3. Comparison of the different studies analyzed

For the comparison of the studies, Table 3 presents the primary outcomes and limitations of the different studies
to further develop a new system for accurately measuring the object’s volume. Finally, a new method combining the
best results from previous studies is urged.

4.4. Final remarks

This systematic review presented an overview of the solutions for measuring the volume of objects based on
image processing techniques. It is intended to develop an application for automatically measuring the object volume
based on a set of pictures related to a scene. This research is a preliminary stage about the volume of objects.

The main findings from the 25 studies identified by this systematic review are as follows. Concerning RQ1,
“Which methods can be used to measure the object’s volume with images?”, we conclude that the approaches
are broad. Typically for object detection and localization on the scene, various techniques can be followed, and
methods based on classical computer-vision approaches, such as model matching, feature point extraction, image
segmentation, and others. In terms of 3D reconstruction and 3D matching, most studies are based on CNNs, and
Deep Learning approaches for data, such as RGB or RGB-D images and point clouds.

Regarding RQ2, “Which are the types of objects previously used for the measurement of the volume?”, most
studies focus on finding and measuring food-related shapes. From these shapes, the food’s volume in the scene is
inferred so that food or dietary assessment regarding calorie intake, etc., can be produced. From another perspective,
the studies that are not food-related present case studies for different types of objects and different proposes.

Finally, related to RQ3, “What is the applicability of the measurement of the objects’ volume with images?”, we
identified that these approaches are helpful for the identification of the quantity of ingested meals, monitoring of
objects (including their positioning), and the measurement of body parts. There are still many challenges in this
process, so that those methods will be improved with the performance of more research studies. The creation of new
datasets will promote the comparison of the different results.

5. Conclusions

This article has systematically reviewed measurements of different object volumes from 2D images. A total of 25
studies were considered relevant based on the inclusion criteria, meaning this area is appealing to research. Other
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Table 3

Study outcomes and limitations

Paper Main outcomes Limitations

Dalai et al. [13] The authors created a method for volume estimation of a rigid
object from a single view object using deep learning based on
hybrid U-Net

N/D

Wang et al. [73] The authors proposed a framework for monocular 3D
detection from videos

Stereo estimation of moving objects

Complex framework and lack of generalization

Jeon and Heo [29] The study presents the development of a network that can be
used in resource-limited mobile environments for
stereo-matching

Accuracy is relatively lower when compared to some
heavy 3D convolution-based networks

Yang et al. [77] The authors created several datasets for training, test and
validation. Also, the proposed method calculates the food
volume from a single RGB image, being able to normalize the
plate size.

The results are inferior to other approaches that use
more information, namely multiple-view approaches.

Kalpitha et al. [32] The authors present a method that considers occlusion when
recognizing 3D objects. Binocular stereo matching has been
used for 3D object recognition to differentiate between items
at various distances and to enhance depth perception. During
the object recognition process, comparator models in different
3D poses are employed to match the instances of the objects.
Bilinear interpolation was utilized to fix the image and
anticipate the concealed or occluded locations. A
region-splitting technique has been introduced for the region
segmentation procedure. Pyramid modeling has effectively
matched the repaired photos with the comparator models. A
3D reconstruction of the recognized output was used for
validation.

N/D

Poply et al. [54] The study provides a system that uses recent advances in deep
learning-based object identification and semantic
segmentation to implement our own “improved”
pseudo-semantic segmentation procedure. Since the
segmentations created during the procedure are used to carry
out the calorie predictions, semantic segmentation proves to
be helpful in this situation.

Calculating dietary calories is a difficult task. Even the
best computer vision system, in this case, would not be
able to capture what is inside a food item. However,
information can be partially captured by any computer
vision system. Depending on their specific ingredients,
complex cuisine products like wraps, burgers, burritos,
etc., can have a wide range of calories.

Wittstruck et al. [74] The outcomes demonstrated that most of the fruits could be
correctly recognized. The picture data might be used to
calculate the volumes and weights of the pumpkins with great
accuracy, enabling more focused pre-harvest
commercialization plans for farmers. Produce producers might
strengthen their sales discussions with greater understanding
of categorized sales volume as most food merchants need
homogenous lots within specified size or weight classes.

If pumpkins are growing vertically in the field, another
restriction on the prediction is given since the height of
the fruit cannot be determined from the top view
image. This could only be seen for a tiny portion of the
harvested pumpkins, though.

Brándi et al. [3] Based on modern reconstruction techniques, the model can
estimate the volume of certain items with at least 90%
accuracy if the pertinent criteria are met. Additionally, a
program helps the user capture the photographs, connects to
the centralized server, updates the user in real-time on the
image processing progress, and then displays the estimated
volume next to the rebuilt item.

Algorithms for object recognition can help with
segmentation enhancement. It is feasible to locate the
camera on a metric scale and exclude the reference
item using sensor fusion techniques (Extended Kalman
filter, Visual inertial odometry). However, these
methods could only be applied if their estimate is
accurate enough because the scaling problem is weakly
conditioned. The final figures would be significantly
impacted by the detection mistake. The reference item
may be bypassed in a closed system where numerous
calibrated cameras take photographs in predetermined
locations. The application may provide a more exciting
user experience by re-projecting the reconstructed
model using the Aruco-marker.
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Table 3

(Continued)

Paper Main outcomes Limitations

Hadi et al. [26] The authors demonstrated that the X101-FPN model is the
most practical to incorporate into the suggested 3D Traffic
Scene Reconstruction job to retrieve the shape and appearance
of typical road scene obstacles and execute instance semantic
segmentation on Mask R-CNN.

Due to hardware restrictions, the size of training must
be limited.

Suzuki et al. [66] By identifying the dish, the authors suggested a point cloud
processing technique for accurately measuring the amount of
food. The end of a meal can be determined using the proposed
approach.

There is still room for improvement in the estimation
error rate and stability. Additionally, the technique may
be enhanced to estimate the volume of food even when
the dining table is cluttered with other items.

Tomescu [68] The FoRConvD may be used to quickly and easily assess the
kind and mass of things connected to food by using the
phone’s camera. The two essential elements of FoRConvD
were food type detection and volume estimation. The foods
were categorized into the various categories using the
EfficientNet architecture. The depth data were converted
directly to point clouds before ICP was used to build the fused
model for volume estimate. The volume was then determined
by adding the finite surface elements, dividing the result by
the appropriate height, and multiplying the result. The
research’ findings revealed an error in the volume estimates
that varied from 0% to +10%.

The volume was calculated using motion structure,
combining depth maps and pictures from multiple
perspectives to create a 3D model. Methods for model
reconstruction and volume computation must consider
subsequent tracking optimization. Additionally, a
density database must be developed to determine the
mass. The technique might also be modified to account
for numerous objects at once.

Gao et al. [20] MUSEFood was created to make meal volume estimations
using data from several smartphone sensors. MUSEFood uses
multi-task learning architectures to exploit FCN and take
advantage of information about the geometry of food
containers, leading to more accurate and speedy food image
segmentation. The authors use the MLS range instead of
reference items, which improves user convenience and boosts
the precision of meal volume estimation. MUSEFood passes
muster in our testing for robustness and flexibility. The shape
of the various food containers has no significant impact on the
results of the food volume estimation. Because MUSEFood
can manage food without traditional shapes, our models are
relevant to a more extensive range of foods.

Even though some devices can estimate target distance
directly, smartphones with ToF cameras are not very
prevalent. If consumers are required to acquire
specialist equipment, costs will inevitably increase.
Furthermore, these ToF cameras’-built interfaces are
not accessible to developers. After gathering the meal
volume, the authors may easily estimate the calories
and nutrients ingested using a food nutrients database.

Lou et al. [38] For the purpose of detecting amodal 3D objects in indoor
settings, the authors introduced an end-to-end neural network.
The model is designed to utilize the complementary
information in depth and RGB images. As a result, a
hierarchical fusion structure conducts 3D bounding box
regression and object categorization by combining attributes
from diverse input data sources. The composition effectively
preserves the finer features and the background information of
the scene photographs. Experiments on publicly available
datasets show that the method significantly outperforms
state-of-the-art approaches in terms of accuracy and
processing efficiency. It can enrich the field and application of
3D object identification.

N/D
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Yogaswara et al. [78] The authors used the Mask Region-based Convolutional
Neural Network to create a computer vision system that can
determine food’s calorie content based on food volume and
mass (R-CNN). Because Mask R-CNN uses ResNet101 as its
backbone model, it can compute a pixel-wise mask for every
item in the picture. The authors concluded that it could be
used to calculate food calories. Furthermore, the algorithm
could differentiate between every instance of the same item.
Users may more easily determine the number of food calories
automatically thanks to the segmentation model, which can be
utilized on online apps and Android mobile applications.

Another experiment must be conducted to determine
which foods have a convex or concave structure.

Dalai et al. [14] The suggested approach for estimating an object’s weight
from 2D photos is based on image processing. Getting a more
exact estimation of each item’s weight enables more precise
grading. Fast speed grading and packaging cannot be done at
high-speed using conventional weighing techniques. The
authors illustrated a method for weight estimate using image
analysis that is accurate and quick. The volume of each item is
estimated using two perpendicular views, and the weight of
each item is then calculated using the object’s predetermined
density. The proposed weight calculating technique provides
results that are 90% accurate.

The recommended system might perform better if it
used a more precise shape recognition algorithm that
could recognize an object’s 3D shape. Therefore, by
applying the correct volume calculation technique, the
volume may be calculated from a single image,
yielding accurate results for both the volume and
weight. The recommended method will, however,
result in erroneous estimates when the thing is tiny,
expensive metal, etc. Because it is hard to identify
whether an object is hollow from a 2D representation,
such as in an empty soft drink can, it also has problems
with hollow things. Configurations involving dynamic
cameras and fixed objects, or vice versa, may provide
extra difficulties.

Gao et al. [19] The proposed approach demonstrates the viability and
accuracy of measuring food consumption continuously. The
proposed technique may achieve an overall accuracy of 83%
using the statistical outlier filter, point completion method,
and multiple convex hull algorithm.

The average percentage error is around 20%.

Lo et al. [36] The authors showed how the suggested network architecture
and point cloud completion algorithms could implicitly learn
the 3D structures of different shapes and restore the occluded
section of food items to enable better volume estimation. The
results demonstrate that the suggested approach outperforms
other strategies described in earlier research, achieving
accuracy in volume estimate of up to 93% using 3D food
models from the Yale–CMU–Berkeley object collection.
Overall, the authors discovered that combining several
methodologies might be one of the viable fixes for tricky
nutritional assessment problems. Dietary evaluation using
images will undoubtedly be necessary for tracking health.

More research is necessary to assess the effectiveness
of the algorithms using real-world scenarios. Even
though the suggested model can currently only handle
some food items from hidden viewing angles,
significant advancements have been made using the
current methodology (e.g., the model-based approach).
In addition, a more extensive 3D model database is
being developed to train the network and maximize the
generalization potential of deep learning. The models
should subsequently be capable of handling other
geometric forms or even unidentified foods that are not
included in the training dataset with enough training
data.

Parihar et al. [49] The suggested model uses a Haar cascade classifier to identify
objects in images to extract key patterns describing the object.
Two images of an object were used to determine its real size,
with a one-time calibration process for each view. Different
techniques for estimating regular and irregular objects’
volume and weight are explained.

The suggested system’s performance can be enhanced
by utilizing a better shape identification technique that
can identify an object’s actual 3D shape.
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Yang et al. [76] The keypoint’s normal and the radius neighbors’ weighted
projection vectors were calculated by the authors to create the
LRF. The eigenvectors’ sign ambiguity problem is eliminated
by the suggested approach. The crucial x-axis is calculated
using the suggested approach, which makes use of all
locations. To create balanced resilience to noise, different
mesh resolutions, clutter, and occlusion, it gives them weights.
As a result, a repeatable and reliable LRF is connected to the
TOLDI description. TOLDI collects detailed spatial and
geometric data from several viewpoints of the immediate
surface. Furthermore, there is no need for complicated
preprocessing because the TOLDI feature can be retrieved
from the originally scanned point clouds. The findings show
that our LRF is reliable and reproducible against a range of
annoyances.

The authors explicitly describe the local depth
information using all the pixel values in one LDI,
resulting in a reasonably high-dimensional descriptor.
We’re excited to come up with a smaller LDI feature
representation. The Microsoft Kinect device, stereo
sensors, and structure from motion systems are just a
few of the new low-cost tools that have been created
that can also capture the texture of 3D objects. When
the 3D models show low geometric features but
abundant photometric signals, integrating RGB
information into the TOLDI description might be
advantageous. The alternative is to include the
suggested LRF and TOLDI description in specific
application algorithms, including surface registration
and 3D object identification.

Fang et al. [16] The authors suggested a technique for estimating the size of a
meal portion from a single-view photograph. The method can
automatically calculate volume utilizing the geometric
contextual data from the scene instead of depending on
manual initialization estimation parameters. Because of the
manual setup of parameters, the authors no longer have
scaling problems with various cuisines.

For volume estimation, the authors want to employ
additional contextual information. The authors can
reduce the impact of segmentation and food
categorization mistakes (or food portion estimation
problems) by creating a more reliable energy
estimation system.

Grum et al. [25] The authors provide a way for creating multiple-object 3D
scenarios using multiple-view photos. They adopt a two-stage
technique to shift the RBF centers to increase the scene
coherence with the picture content in textured regions and
segmented object outlines. The writers first considered the
scene’s 3D patches and their projections in the provided
picture set. The authors also considered enhancing the
consistency between the segmented object outlines and the
provided RBF scene model. The texture disparity and the form
of the objects are rectified because of moving the RBF
centers. Like the suggested technique, other 3D scene
representations, such as those based on voxels, parametric
models, or meshes, can be used.

Segmenting the provided 3D scene is straightforward
since every object is isolated from its surroundings by
the RBF surface unless two items are in contact.
However, when attempting to represent scenarios with
numerous objects, the performance of both space
carving and RBF modeling is hindered.

Chen et al. [10] The authors proposed a framework for registering a 3D model
of the food item in a single-view 2D image to estimate meal
content. Our first testing has demonstrated that, despite the 2D
image’s absence of detailed volumetric data, our framework
can offer an acceptable degree of accuracy. More importantly,
this method may be used with any meal if it can be easily put
into a standard shape (e.g., an ellipsoid or a wedge).

To further enhance estimation findings, the authors
must integrate several models.

Jia et al. [31] Given the 3D food locations, the authors created two
model-based methods to estimate meal volume from a single
input picture. In our trials, a cuboid and seven meal replicas
on a spherical dish were employed to gauge performance. Our
findings showed that, when using the “wireframe-fitting”
approach with 224 input images, the average volume
estimation error was less than 10%.

Due to the bread’s modest height and erratic border
form, the volumetric inaccuracy is quite substantial.
Notably, when the angle between the camera’s optical
axis and the table is significant, it is challenging to
estimate height correctly.



562 B. Nabitchita et al. / Methods for volume inference of non-medical objects from images: A short review

Table 3

(Continued)

Paper Main outcomes Limitations

Patz et al. [48] The suggested approach combines the benefits of supervised
segmentation with the spread of gray-value uncertainty
knowledge. Applications might find this knowledge regarding
the impact of gray-value uncertainty applicable. In addition to
the medical uses, more information on error propagation
might be helpful for other engineering activities and
disciplines like quality control or the general extraction of
quantitative data.

Because we must store the representation in the tensor
product space, the provided model is constrained in
terms of the number of RVs and the polynomial order.
The approach requires many input samples, or we must
utilize the one sample provided to approximate the
predicted value to produce an accurate stochastic input
picture. Due to the correlation between the noise and
potential dependence on the gray value, the model
utilized in this work may not be enough for many
applications. The authors included stochastic pictures
in level-set-based segmentation techniques. We must
transmit level sets at an unpredictable speed to utilize
them on stochastic images.

Campbell et al. [9] The technique significantly improves autonomous object
segmentation. The volumetric method uses the silhouette
coherency constraint to segment the item in 3D while
concurrently segmenting it across all photos. It enables us to
integrate the previously learned color model with a 3D shape
to generate a more accurate result. The authors have also
demonstrated that it is feasible to use a fixation restriction to
initialize an iterative estimating technique to converge to the
visual hull of an object observed in several perspectives,
therefore eliminating the need for any user input, and
automating the entire process.

As seen from the statue sequence, the method is
mainly constrained by the color models employed to
segment the object. The authors will use more
sophisticated picture models to improve the object and
background likelihood terms, which should enhance
the algorithm’s performance.

computer vision techniques allowed the exploration of several approaches to obtain various parameters targeting
volume measurements for different objects or shapes.

The selected studies show significant advancements in 3D object recognition and volume estimation, particu-
larly in food analysis. These advancements, particularly in deep learning approaches, are crucial for industries like
healthcare, robotics, augmented reality, and smart environments. However, challenges in accuracy and complexity
persist, highlighting the need for more efficient algorithms in machine learning and computer vision.

Food-related applications, such as calorie prediction, food amount measurement, and meal volume estimation,
have significant implications for nutritional science, dietetics, and consumer technology. However, many papers
note limitations in their methods, such as hardware constraints, estimation errors, and model generalization. These
limitations highlight areas for future research and development, suggesting a need for more robust, generalizable,
and hardware-efficient solutions.

The studies use various datasets to evaluate the proposed measuring methods. However, there needs to be more
comparison between the modes, primarily due to the incompatibility of the datasets and the varying sensor types and
setups. Most of the studies aimed to compare proposed methods to a certain baseline. This could also be considered
a limitation of the studies and, consequently, of this survey as more data was needed to select a single best approach
for volume measurement based on imaging processes. However, this review identified the current research trends
regarding volume measurements based on imaging processes and which methods yield state-of-the-art predictive
and analytical performance.

The information provided in this review suggests several future directions for improving the accuracy and gener-
alization of volume estimation and object recognition methods. These include enhancing algorithms to work better
with varying object shapes, sizes, and textures, generalizing models to function effectively across different scenar-
ios and objects, and focusing on hardware optimization. Real-time processing capabilities are essential for robotics,
augmented reality, and consumer technology applications, and reducing computational time without sacrificing ac-
curacy is crucial. Complex object interactions are a challenge, and future research should focus on developing
algorithms that accurately recognize and estimate object volume in crowded or complex scenes. Integrating volume
estimation and object recognition technologies with other technologies like the Internet of Things (IoT), wearable
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technology, and machine-to-machine communication can open new avenues for application. Developing compre-
hensive and diverse datasets is crucial for training effective models, and interdisciplinary collaboration across dis-
ciplines like nutrition science, psychology, robotics, and computer vision can lead to more holistic and effective
solutions. By addressing these directions, future research can significantly advance the fields of 3D object recog-
nition and volume estimation, leading to more accurate, efficient, and widely applicable solutions across various
domains.
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