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Abstract. With the rapid growth of real-time next-generation mobile
services, it has become necessary to work towards holistic orchestration
of the benefits promised with edge computing based on bringing the
computing infrastructure closer to the end user. While the concept of
Multi-access Edge Computing (MEC) integrated with Network Function
Virtualisation (NFV) is being standardised, there is still a lot of work to
be done to orchestrate the relocation of edge applications integrated in
5G and beyond systems in a smooth and efficient manner. In this paper,
we document the current status of the transparent relocation of edge
services in an experimentally deployed MEC-NFV environment based
on OSM. Working towards gathering monitoring training datasets nec-
essary for the development of proactive MEC application orchestrators
that will implement seamless follow-me behaviour for MEC services, we
provide benchmark results for the service downtime of three potential
MEC services hosted in lightweight containers. Our analysis of results
shows that containers exhibit improved performance over that of virtual
machines, but there are still some issues that require improvement in
both the orchestration implementation as well at the relocation process
for containers.

Keywords: Edge Computing · Optimisation · Standardisation · Migra-
tion · Mobile nodes · Containers.

1 Introduction

Dynamic online services have an important role in people’s daily lives worldwide.
With the promised specifications of 5G [1], which include ultra-low latency (less
than 1 ms), high data rates (over 10 Gbps), and high reliability (99.999%), the
design and implementation of real-time services for mobile users that make use
of the increased bandwidth and reduced latency times has been accelerated,
promoting applications such as 4K video, autonomous cars, augmented reality,
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telemedicine, or IoT devices. This explosion of services with a wide variation in
flexible resource requirements in terms of networking and computing needs to
be addressed by taking advantage of several complementary technologies.

The self-organisation of networking systems emerges as an important chal-
lenge that requires to be taken into consideration so as to provide the network
with the necessary capabilities to readjust resource management and network
configurations in real-time based on the highly changing service demands. Tech-
nological advances such as Software Defined Networking (SDN) technologies,
which define and adapt network topologies programmatically and Network Func-
tion Virtualisation (NFV), which enables the virtualisation of network services
and functions such as firewalls, routers, etc; provide the ability to build agile
networks with on-the-fly configurations [2].

To fully support the next-generation users of highly demanding applications,
the computation facilities need to be brought closer to data sources thus re-
ducing the user-perceived latency. In other words, 5G and beyond services need
to be integrated with edge computing solutions such as the Multi-access Edge
Computing (MEC) initiative promoted by the European Telecommunications
Standards Institute (ETSI), which has spent years working on standardising the
edge architecture for mobile users (MEC) [3]. Moreover, the union of 5G and
MEC facilitates an optimal result when dealing with the requirements of real-
time applications (high bandwidth, ultra-low delay and intense computational
effort), requirements that the cloud cannot fully cover. Recognising that the
marriage of MEC and 5G will pave the way for a holistic approach to developing
a unified system based on mutual benefits, ETSI has released a new version of
the MEC architecture standardisation that focuses on implementing the MEC
system as a part of an NFV architecture, thus effectively incorporating MEC into
5G [4]. This view provides a way to manage the lifecycle of MEC applications
alongside other virtual network functions (VNFs), while recognising the need to
orchestrate the MEC services in a specific way that enables the implementation
of placement and migration policies based on the quality of service (QoS) and
user location. The overall VNF orchestrator in the system is managed by an
NFV Management and Orchestration (MANO) orchestrator [5].

Using servers co-located with 5G base stations at the edge, as close to the
end user as possible, MEC applications are released from the computational
load, delay is reduced and bandwidth is gained. To ensure a sustained high-
performing edge system, efficient implementation of the edge facilities and their
highly dynamic resource management is a must. The increased complexity in this
scenario is due to the fact that mobility is implicit in online mobile services. Thus,
continuous ultra-low latency requires that the MEC application ’follows’ the
user’s trajectory [6]. Therefore, taking into consideration a changing ecosystem,
MEC applications may be instantiated in the currently optimal computing node,
but as users move to a different geographical area, i.e. the user is being handed
off from one 5G base station to another, the allocated MEC service needs to
be moved to a ’closer’ computing node. It is strictly necessary for the MEC-
NFV system to be able to manage and orchestrate this ’follow me’ practice,
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that permits MEC applications to be migrated between geographically dispersed
computing nodes.

The brains for this operation in the MEC-NFV architecture fall on the shoul-
ders of the MEC application orchestrator [7]. This component is vital when it
comes to the decision-making on optimal placement of new MEC services as
well as maintaining high QoS during the MEC service use by smartly migrat-
ing the MEC service using the follow-me paradigm. The decisions made by the
MEC orchestrator can trigger adjustments in the MEC-NFV system via the
NFV orchestrator. A proactive decision-making implementation of the MEC
orchestrator can take advantage of the current and past knowledge about the
system to forecast future service migrations and thus improve the overall sys-
tem performance. This is the reason whythe attention in MEC orchestration
and decision-making has been focused on proactive approaches, mostly based on
Artificial Intelligence (AI) [8]. However, to be able to take full advantage of the
potential of AI forecasting the model needs to be fed with a lot of information
regarding the users and services status.

To address the challenge of online services live migrations in a MEC archi-
tecture, we have developed a testbed environment based on ETSI MEC-NFV [4]
using the Open Source MANO (OSM) orchestrator. Considering the functions
that each element of the architecture must perform [9], we have carried out tests
with different types of potential MEC applications according to their computa-
tional load. Traditionally in the ETSI MEC ecosystems, virtual machines (VMs)
are considered as the virtualisation technology used to host MEC services. Ob-
serving the increasing use of containers in virtual computing environments, we
have developed an experimental MEC implementation using containers to host
MEC services aiming to verify the behaviour of the MEC orchestrator when per-
forming on-demand service migrations. This has also enabled us to analyse the
current possibilities to implement seamless container relocation in a MEC-NFV
architecture implemented using OSM as the NFV orchestrator. While applica-
tion instantiation benchmark results exist using the old version of OSM, to the
best of the authors’ knowledge, there is no study that provides benchmark results
regarding the relocation of standalone containers in an OSM-based MEC-NFV
experimental environment.

We summarise the contributions of this paper as follows:

– investigate the ability to implement ’follow-me’ relocation functionality in
the current OSM release while using standalone containers to host MEC
services,

– comparative performance analysis of migrating Kubernetes containers and
Microstack virtual machines in an MEC-NFV environment,

– gather benchmark migration data that can be used for training proactive
MEC orchestrator resource management algorithms.

The rest of the document is structured as follows: In section 2, we address the
background and motivation of our tests. We analyse the current state of using
OSM to implement a MEC-NFV system based on standalone containers that
will support seamless follow-me behaviour in section 3. In section 4 we discuss
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the developed experimental environment. In section 5 we present the results
obtained and finally we conclude the article and comment on future work.

2 Background and Motivation

The problem of optimal placement of MEC services that needs to be solved by
the MEC orchestrator has been a very active field of research in recent years.
Different approaches have been proposed to correctly identify the ’correct’ node
where the MEC service should be instantiated so as to achieve maximum per-
formance. In [10] the authors propose a Markov approximation algorithm to
optimise the placement of shared VMs taking into account the price of imple-
menting MEC systems. In [11] they focus on minimising the average response
time using a latency-aware heuristic placement algorithm for VM placement,
while the topic of energy-aware resource placement using trees social relations
algorithm is the topic of interest in [12].

In contrast to the typical reactive approach, where the optimal placement
is decided upon receiving a service request, lately, there is a growing number
of proactive approaches that are attempting to forecast an optimal placement
before the actual request comes in. Most of these approaches are based on the
implementation of Machine Learning (ML) techniques such as [13] and [14],
including deep learning [15]. In addition, recent research has also focused on
the need to relocate the once-instantiated MEC services in order to preserve
optimal QoS. The study in [16] proposes a Deep Reinforcement Learning to
estimate optimal policy that jointly minimises migration cost, transaction cost,
and consumed energy. It also provides a very good overview of the different
approaches to MEC service migration both conventional and learning-based.

Typically, the performance of the proposed approaches is based on numerical
analysis or simulation frameworks that enable the analysis of what-if scenarios
as is the case with [16] for one example. To ensure that the perceived perfor-
mance will be attainable in real-life implementations, it is essential that the
work is also tried and tested in an experimental testbed that will provide the
opportunity to ascertain how all components of the 5G-MEC system are orches-
trated by the MEC orchestrator. For these purposes, a well-defined, validated
and benchmarked testbed needs to be established, which not only incurs cost
and resources but also requires experience in setting up and managing virtu-
alised infrastructures and MANO solutions. Another problem that arises is that
the current development of MEC orchestration functionalities mostly focuses
on using VMs to host MEC services, while real-life implementations are start-
ing to move away from VMs and turn towards containers as their lightweight
cloud-native counterparts due to optimised performances and pricing.

To help close this gap of MEC orchestration analysis in an experimental en-
vironment, researchers have proposed new edge orchestration architectures such
as [17] that serves as a MEC platform where MEC services can be hosted in
containers and is compliant with the main ETSI MEC architecture. The au-
thors in [18] propose their own orchestration architecture that is loosely based
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on ETSI NFV and MEC aiming to provide multi-layered orchestration. How-
ever, having in mind that the ETSI NFV architecture is closely followed in the
5G implementations, and the ETSI MEC-NFV [4] provides a multi-layer orches-
tration for this scenario, using open-source solutions that implement the NFV
MANO functionalities will enable building an experimental scenario that can be
very close to real-life implementations. Towards this goal, the authors in [19]
validate and benchmark a test-bed implementation of the ETSI-compliant Open
Source MANO (OSM) [20] in combination with Kubernetes containers as the
main virtualisation technology. The authors in this work focus on the placement
of container-based network functions as the newly available feature in OSM re-
lease 7. OSM is one of the most popular open source NFV MANO solutions [21]
and is therefore the solution of choice when building experimental testbeds as is
the case with [22] and [23]. In both works the focus is on relocation of containers
managed by OSM and hosted inside an OpenStack virtual infrastructure. While
[23] uses OpenNESS as the edge management platform for the containers inside
OpenStack, [22] builds an additional layer with the MEC orchestrator in accor-
dance with the ETSI MEC-NFV proposed architecture. The focus of both is the
implementation of application context switching for container migration and its
incurring delay in the system that has been found to be increasing linearly with
its size.

As the current research focus is put mostly on placement-only for MEC ser-
vices together combined with experimental environments that are implemented
with containers inside VMs, we aim our research on the topic of validating and
benchmarking relocation of containers deployed using a standalone Kubernetes
platform in an ETSI MEC-NFV environment using OSM. Thus we complement
and build upon the work discussed previously while using a newer release of OSM
compared to previous efforts. By analysing the latency incurred when relocating
several different MEC applications as both VMs and containers, we are able to
produce additional monitoring data that can be of further use to the deep learn-
ing MEC orchestration algorithms that currently mostly focus on data related
to the user and base station.

3 Container relocation in a MEC-NFV environment
using OSM

The ETSI’s MEC initiative is promoting a standardisation effort that periodi-
cally provides enhanced versions of its open environment framework and refer-
ence architecture for edge computing in mobile environments. The latest release
[3] includes a variant for MEC deployment in an NFV environment given in
Figure 1 wherein the role of the MEC Orchestrator which is the management
heart of the MEC ecosystem is split between the ’Mobile Edge Application Or-
chestrator’ (MEAO) and the ’Network Functions Virtualisation Orchestrator’
(NFVO).

This division of functionalities enables the integration of the ETSI NFV high-
level functional architectural framework and design philosophy of virtualised net-
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Fig. 1: NFV-based MEC generic architecture [3].

work functions in the edge reference model. When handling MEC applications,
the MEAO module is the high-level orchestrator that decides when and where
to put/move a virtualised instance based on user information, monitoring infor-
mation, available resources and topology. The actual actions of management of
the lifecycle of a MEC application are left to the NFVO which translates the
MEAO orchestration decisions to Virtual Network Functions (VNF) language
and executes them. The ETSI NFV special interest group has issued a standard
NFV Management and Orchestration (MANO) framework [5] that covers the
functionality of the NFVO module defined in the MEC-NFV architecture and
with OSM developed as an open source implementation of this framework [20].

Within the MEC-NFV architecture from the perspective of NFVO the MEC
application is considered as just another type of Virtual Network Function
(VNF). The typical implementation of VNFs supported by existing MANO
frameworks is in the form of a VM. In recent years, interest in containers as
an alternative virtualisation technology has grown significantly. ETSI is putting
more effort into integrating CNFs (Containerised Network Functions) in the
reference system [24] as the range of implemented services as containers is con-
stantly increasing. Applications running in containers can be deployed faster
by downloading from many public repositories and simply executing, which not
only saves time for the development teams but also enables a straightforward
expansion of the MEC service portfolio with a large number of third-party ap-
plications.
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Fig. 2: Configuration used in our experimental deployment from Kubernetes per-
spective

The key difference between VMs and containers is that VMs virtualise the
entire machine down to the hardware (hardware-level virtualisation), and con-
tainers only virtualise the software layers above the operating system (OS) level.
In hardware-level virtualisation, the hypervisor (also called virtual machine mon-
itor) emulates server hardware resources to the different deployed VMs. Each
VM runs its OS and applications in a way that several instances of virtualised
applications effectively share the same physical server. On the other hand, virtu-
alisation at the OS encapsulates dependencies such as libraries and OS processes
to create containers. Containers are deployed using a lightweight virtualisation
layer that leads to obtaining an improved performance at a lower cost. Both
virtualisation systems can be deployed in the 5G and MEC ecosystem.

In accordance with this move towards containers, in its release 7, the fea-
ture to manage CNFs has been added to OSM. However, even with the regular
new releases of OSM with the current latest being 14, it still doesn’t offer full
support for CNFs. Instead, OSM MEC applications are implemented as VNFs
considering the MEC-NFV architecture in Figure 1. The use of containers in the
OSM context is still not straightforward and mostly stays in the same status as
in release 7 [19]. From an MEAO point of view, this creates a complicated situa-
tion, as the MEC orchestrator expects to be able to fully control the location of
placement and relocation of containers and get real-time info about their status.
In this section, we aim to describe how container relocation can be implemented
in OSM and what are the lessons learnt while implementing our experimental
testbed.

In alignment with the ETSI NFV MANO specification, the management
of the underlying virtualised infrastructure is performed by the Virtualisation
Infrastructure Manager (VIM) that prepares the infrastructure to boot the soft-
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ware image and reports information about it. It also is the one that should
execute a relocation of any application when commanded by the NFVO.

In the OSM case, if the VIM is implemented based on VMs, using OpenStack
or MicroStack for managing VMs, for example, then the addition of the MEAO in
the overall system is quite straightforward. OSM supports the ability to control
the destination node for a network service placement, and it offers the ability
to migrate a service from the source node to the destination node, while at the
same time reporting on the current status and progress. This means that the
MEAO components only need to call the OSM Northbound API to be able to
effectuate the decision made using its smart follow-me algorithms.

When it comes to using containers, the situation is much more complicated.
As already mentioned, OSM supports network functions based on Kubernetes
in the form of Kubernetes-based VNFs (KNFs) since version 7. Ever since the
features regarding managing KNFs with OSM have not improved much. To be
able to run KNFs, required to create a Kubernetes cluster and link it to a VIM
network [25] so that it can be used for MEC services deployment via OSM. In
this way, the Kubernetes cluster should behave as expected even when the pod
management commands come from a higher entity such as OSM.

To build the test environment, we have followed the requirements described
in the OSM documentation that include installing a load balancer (used for
automated instantiation of containers based on current performance) and the
storage class that includes the non-SQL database system MongoDB [26]. It is
important to note that there are two different options to connect OSM with a
Kubernetes (K8s) cluster:

– the cluster can be deployed inside a VM that is running in the OSM’s reg-
istered VIM, where all VMs are connected to the VIM network; or

– a standalone K8s cluster (bare-metal or virtualised) can be physically con-
nected to the VIM network.

All previous research related to the relocation of containers that are known
to the authors is implemented using the first option: inside a VM. The reason
behind this is that currently, this is the only way to use the OSM Northbound
API to control the placement of the KNFs indirectly, by controlling the VMs on
which the worker nodes are placed, requiring a distributed work nodes approach
as in [22]. This scenario is however not desirable when it comes to performances
and, more importantly, direct use and management of containers.

In this paper, we opted to choose the second configuration of standalone
containers for our environment. As we chose to implement the K8s cluster outside
the OSM’s VIM, we have defined a controller node and two separate worker nodes
that implement Network Services (NS) using Kubernetes containers. In this way,
we can gain the maximum performance of the worker nodes unlike [19] wherein
the worker nodes are co-located with the controller which is not recommended
for production environments. The details of setting up standalone containers are
fully documented in [19]. In this text, we only highlight the most important steps
to emphasise that the need for clear distinction and improved handling of CNFs
still persists.
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The definition of an edge service in OSM is provided in a network service
descriptor (NSD) that is defined in YAML and includes a description of the
service format and requirements. Although similar to what is used to deploy
VMs, it needs to be adapted for use with Kubernetes containers and linked to
the external Kubernetes cluster. We provide the adapted NSD that can then be
deployed as a KNF in Listing 3(a). As the structure of the definition is exactly
the same as the one used to define network services for VMs, the container-based
NSD is relatively simple to develop. The adapted NSD defines a virtual link de-
scriptor (VLD) that is provided where it can be observed that the ’ClusterIP’
is the label used to identify the OSM’s internal IP address that connects to the
Kubernetes cluster. This label is also defined in the Kubernetes cluster as an
external IP address. The ClusterIP service, default in Kubernetes, offers specific
communication within the cluster, with access restricted to other applications
or internal services. To boost Internet access, the Kubernetes proxy is used. In
contrast, Ingress Controller is not classified as some kind of service in itself, but
rather as a vital substance that sits before numerous services, acting as the high-
est passing point for our cluster. This device is especially cost-effective when you
want to present different services over the same IP address, offering a perfect
solution for test and development situations. We chose to use Nginx, which is
one of the most common and versatile solutions for this purpose.

Finally, Listing 3(b) defines the adapted virtual network function descriptor
(VNFD) that is now used as a KNFD with a single Kubernetes deployment unit
(KDU) that links to the K8s repository in OSM using a ’helm-chart’ from where
the image of the application is downloaded to be immediately instantiated in
a Kubernetes pod. A K8s repository is defined in OSM where a large number
of edge applications can be directly downloaded and instantiated. Note that
typically for VMs the hardware resources that constitute the VNF are defined in
the VNFD wherein you can define the location of the VNF. On the other hand,
in KNFs this is not possible.

In essence, for the standalone K8s option in OSM this translates to the inabil-
ity to use the OSM Northbound API to control the placement and relocation of
the KNFs, leaving this to the Kubernetes controller that will place the contain-
ers, re-instantiate them in another pod or scale them based on the monitoring
feedback received. This makes the development of a MEAO that will control
standalone KNFs via OSM not possible at the moment.

Another important difference when considering containers instead of VMs,
is that the concept of container migration is quite different and significantly
more difficult to perform [27]. While for VMs the process of live migration is
fully implemented and documented in many available VIMs today, to migrate
a service for containers such as Kubernetes, it is required to first move a pod
from one edge node to another by creating an identical container on the destina-
tion node and then deleting the container on the source node (leaving it to the
SDN implementation to seamlessly move the network connection for the user).
Because of the complexities when it comes to container migration, there is no
single command to migrate a container available in OSM nor in the underly-
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vld :
− name : ex t e rna l

vim−network−name : ex t e rna l
addit ionalParamsForVnf :

− member−vnf−index : lang_detec_knf
additionalParamsForKdu :
− kdu_name : lang_detec_knf

addit ionalParams :
i n g r e s s :

enabled : t rue
className : nginx
u r l : lang−detec . t e s t . l o c a l

s e r v i c e :
type : C luster IP

name : knf_packets_received
performance−metr ic : packets_rece ived

a) Additional parameters for the NSD defined in OSM

vnfd :
d e s c r i p t i o n : KNF with s i n g l e KDU using helm−chart
df :
− id : de fau l t −df
ext−cpd :
− id : mgmt−ext

k8s−c l u s t e r −net : ex t e rna l
id : lang_detec_knf
k8s−c l u s t e r :

nets :
− id : e x t e rna l

kdu :
− name : lang_detec_knf
helm−chart : lang−detect−KNF/ f l a sk −lang−detec t
mgmt−cp : mgmt−ext
product−name : lang_detec_knf
prov ider : t e s t
v e r s i on : 1 .0

b) KNFD links with the K8s cluster and repository

Fig. 3: YAML definitions of container-based network services in OSM

ing Kubernetes infrastructure as is the case with VMs. As a showcase example
of these complexities, in [28] the challenges of performing a live migration of
containers made up of one or more pods (the minimum unit in Kubernetes) is
discussed. The authors focus their efforts on extending the capabilities of K8s
to perform a live migration using the CRIU tool that provides the ability to
transfer the container checkpoint states on the destination node. However, as
the source pod is deleted and another one is created on the destination during
the migration, it is not possible to maintain smooth IP/TCP connections as the
pod IP changes on the destination host. This is where SDN comes into play to
ensure transparent networking from the user perspective. In addition, note that
if the MEC services are stateful and require context switching during the con-
tainer migration procedure then this must be performed manually by following
the process described in [22].
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To circumvent the problem of no existing readily available Northbound API
in OSM for fine control of the KNF placement for standalone containers, we have
developed an additional software module that relocates an existing MEC service
from the source to the destination worker node. This module is used by our
MEAO to be able to implement the follow-me behaviour on-demand. In order to
be able to monitor the relocation process (as this action is not reflected in the
MEC service status in OSM) we have also implemented an HTTP benchmark
that can inform us of the down/up status of the container in question. In this
way, the MEAO can get its information regarding the process of relocation.

Overall the lessons learnt from our investigation and implementation can be
summarised as follows:

– support for CNFs has not advanced much since its first release in version 7,
including the use of VNFD

– fine grain control for the positioning and relocation of VMs via GUI and
Northbound API is available

– positioning control of containers in a standalone scenario is not available,
load balancing is used, service status is reported

– relocation control of containers in a standalone scenario is not available, must
be custom developed, the service status is not recognised and if needed must
also be custom implemented

– interaction between OSM and KNFs can present interoperability challenges.
Components must integrate properly which usually requires extra effort, es-
pecially when it comes to choosing compatible versions

– lack of detailed error messages can significantly complicate the identifica-
tion and resolution of problems related to the deployment of KNFs in the
container infrastructure

In the next section, we provide the technical details of our experimental setup
and the MEC applications used for benchmarking.

4 MEC-NFV testbed setup details

To aid in the development of the tests and facilitate their performance testing,
a set of 8 hosts was used, all connected to the same physical switch, providing
1Gbps connectivity. The nodes were placed on the same local network to elim-
inate any unforeseen impacts that could jeopardise the validity of the results,
such as jitter or packet drops. No other workloads or tasks were running on
them, other than those required for testing.

One host was dedicated to hosting OSM which assumes the NFVO role. The
MEAO has been implemented as a separate component that performs API calls
to start, migrate, and terminate edge services, and receives status and monitoring
information. Two independent VIMs have been implemented to compare VM
and container implementations: first VIM is set in a second node using a multi-
node Microstack that controls two separate compute nodes in two additional
nodes, and the second dummy VIM is connected to standalone a Kubernetes
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Name Role Software version GB
RAM

CPU
cores

Node 1 OSM OSM 12 16 8
Node 2 MicroStack control plane microstack (beta) ussuri 8 4
Node 3-4 2 x MicroStack compute

nodes
microstack (beta) ussuri 8 4

Node 5 Kubernetes master v1.22.17+k3s 8 4
Node 6-7 2 x Kubernetes workers v1.22.17+k3s 8 4
Node 8 HTTP server Ubuntu 20.04.3 LTS 8 4
Table 1: Host role and Hardware specifications for the experimental setup.

master with two Kubernetes nodes in three separate nodes as in Figure 2. The
external Kubernetes cluster was deployed using the K3s lightweight Kubernetes
distribution since existing research has shown that it is the preferred option for
resource-constrained environments, such as the edge [29].

For the VMs case, all actions including monitoring are performed using the
OSM Northbound AP. In the case of containers, an additional software layer
has been developed to perform the process of container relocation and receive
status information. The last node was dedicated to the configuration of an HTTP
server to where we direct the HTTP requests for the tests in order to obtain the
external performance measurements of the relocation operation.

Table 1 summarises the software versions and hardware specifications used
in the complete experimental setup. Note that the software versions of the Ku-
bernetes cluster and the OSM must be compatible for the system to work as
a whole. In other words, careful combing through the documentation must be
done to ensure that the version of your Kubernetes cluster is supported by the
OSM release in question.

In order to obtain a sufficiently wide range of results, we have considered
different application sizes to be relocated in a VM and container environment
that we identify as small (S), medium (M) and large (L). All chosen applications
are such that they do not require context transfer during the migration process
so as to be able to measure the performance in a clean, fast scenario. The price
of context switching can then be added according to the findings in [22] as the
particular Kubernetes setup does not have a significant impact on the context
switching functionality. Table 2 summarises the chosen applications for the VMs
and containers scenarios. Note that the applications can not be the same for both
cases as the size of the same application for VM and container differs greatly.
The goal of this performance analysis is on the other hand to test different
types of applications and check how their sizes impact the service downtime due
to relocation. Care has been taken that all chosen container-based MEC apps
expose a REST API that can be called via the HTTP server so as to implement
the external service monitoring system using the hey benchmark.

The procedure to install the chosen apps starts with adding the repository
to OSM. VNF, KNF and NS packages are developed and uploaded to OSM.
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Container MEC Applications VM MEC Applications
Designation App. Type Compressed Img. Size App. Type Image Size

S Owntracks location tracker 20.2MB Cirros 12.13 MB
M Flask language detection 178MB Xenial server 300.75 MB
L R studio plumber 996 MB bitnami ELK 1.17 GB

Table 2: Example MEC applications in three sizes S, M and L

Then, OSM is called to start the deployment of a VNF or KNF depending
on the scenario, allowing the VIM control plane to decide on which node the
service will be instantiated based on load balancing. If an error occurs during
the deployment of a KNF, it is essential to have precise and specific information
about the problem in order to take corrective measures. However, in some cases,
the error messages provided by OSM may be generic or lack sufficient detail to
understand the root cause of the problem.

5 Results

Using the prepared experimental testbed, we have carried out a number of tests
aimed at monitoring the performance of relocation for both VMs and containers.

In the VM migration scenarios, the process of live migration is triggered by
the MEAO with simple API calls to OSM. The measurements done in this case
are based on the monitoring and status information available in OSM, we also
refer to these as external measurements. These measurements have been aug-
mented with the corresponding information that can be found in the NOVA
module and instance logs of Microstack. We refer to the latter as internal mea-
surements As our investigations have shown that OSM uses a period pull mech-
anism to query the status of a started migration operation with a default period
of 10s, in order to obtain more granular and precise results we have changed this
behaviour by enabling pull requests every 1s.

To monitor the performance of the relocation operation in containers we have
carried out two types of tests

– external - we take measurements using an Apache HTTP server in order
to mimic the OSM pulling for monitoring and obtain the latencies as they
would be perceived by the NFVO. We measure how long a service is unavail-
able during its migration by continuously sending requests from an HTTP
benchmark to the container

– internal - we consider measurements taken from inside the Kubernetes cluster
itself. We measure the time it takes for the new container to start after it is
removed as it is reported in the Kubernetes logs

For each MEC application, we carry out a set of 10 tests, covering both in-
ternal and external evaluations. In each of these tests, more than 10,000 samples
were collected and analysed to ensure thorough evaluation and validation of our
approach.
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(a) MEC apps in containers (b) MEC apps in VMs

Fig. 4: External and internal relocation latencies for different MEC app sizes

In Figure 4 we can observe the delay boxplots of the relocation operation
as perceived with the internal and external measurements for both VMs and
containers hosting the chosen MEC applications. The results show that the relo-
cation latency is not necessarily dependent on the application image size, which
can be spotted for the S application in the case of Kubernetes, or the M applica-
tions in both the VM case. This leads to the conclusion that the image size has
a smaller significance when compared to the complexity of the application itself,
i.e. number of internal services that need to be configured and started. We have
also computed the 95% confidence intervals that increase with the size of the
edge service as the variance increases during the relocation process, which should
be taken into account as an important parameter by the proactive MEAO.

A very interesting result is presented when comparing the external and the
internal measurements in Figure 4. It seems that the time spent on relocation
is quite short, in the range of 5s to 9s for VMs, and expectedly lower 1s to
3s for containers. However, the time reported with the external measurements
is quite higher reaching 15s to 25s for VMs and 3s to 9s for containers. This
means that there is a significant delay from the moment the NFVI decided the
relocation has terminated to acknowledging this process by OSM and the HTTP
server correspondingly. This discrepancy is of vital importance when aiming to
build a proactive MEAO that is aware of the real-time status of relocations in
progress. In addition, when comparing these values with the results obtained
in [22] where the instantiation of MEC app in OpenNESS is reported to be in
the range of 50s to 55s it can be concluded that the results obtained are several
times lower leading to the conclusion that the implementation of a standalone
Kubernetes cluster can provide much-improved performances when compared to
the deployment inside a VIM solution.

Figure 5a represents the internal and external delay metrics of relocation are
presented one against the other. Internal measurements without outliers show a
range of 1s to 10s, while external measurements show 2s to 8s high variability.
This variability re-exposes the importance of considering more than just the size
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(a) Kubernetes containers relocation oper-
ations

(b) Microstack VMs live migration opera-
tions

Fig. 5: Internal vs external measures

regarding service performance for efficient service relocation management since
there may be cases in which the S application takes a considerably longer time.

Figure 5b shows the combination of the obtained internal and external mea-
surements and we can observe that internal values range from 3s up to 10s while
external values go up to a range between 14s and 28s. It is obvious that the
image sizes of these applications are considerably larger compared to the con-
tainers case and, hence, migration delays increase accordingly. We can observe
that there is no clear location differentiation of the measurements corresponding
to the three application sizes as in the case of the containers test. However, with
these results, we can state that the overhead of OSM is considerably higher when
considering applications deployed as VMs instead of as containers.

Performing these measurements is the first step to optimising the migration
process of service hosting containers in complex environments such as MEC-
NFV. It is essential that one primarily analyses the obtained data and un-
derstands the dependencies and relationships that are present in the collected
dataset. The next step is to use the gathered data as one of the inputs for train-
ing proactive algorithms that improve the orchestrator’s resource management
during migration, making better decisions, reducing latency and improving real-
time resource management. The main idea is to use the latency data, along with
other contextual features such as container size, application type, network con-
ditions, and resource availability, as input features for an AI-based model. When
training the model historical latency data can be used to capture patterns and
trends that help predict future migration needs. In addition, the data can be
labelled with optimal migration times or decisions based on past successful mi-
grations with minimal disruption. Labelling can also be performed for instances
where resource allocation is suboptimal, thus helping the algorithm learn to pre-
dict and avoid such situations. In this way, an algorithm can be developed so
that it learns to predict the best times to migrate containers based on the cur-
rent and predicted future state of the network and resources, minimising latency
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and optimising resource use. Finally, the model can be integrated with the real-
time monitoring environment to make proactive decisions. The model can also
be continuously updated with new latency measurements, which will allow it to
adapt and improve over time.

6 Discussion and Conclusions

The commitment to join 5G and MEC technologies based on NFV seems to
be a winner in solving the requirements of applications in real-time. With con-
tainers gaining prominence in application virtualisation with ultra-low latency
requirements, in this work, we analysed the performance of the procedure of
relocation of containers in an OSM-based MEC-NFV system with a standalone
cluster versus the traditional OSM setup that uses virtual machines.

While OSM has continued to be improved in its new releases, the implemen-
tation of standalone Kubernetes cluster for MEC applications based on KNFs
lags behind especially when it comes to seamless support for container relocation.
Our performance results and comparison however show that the performances
of standalone containers are significantly improved when compared to VMs, but
also inside a VM container implementations. With the research activities being
focused on the development of intelligent MEAOs with proactive capabilities for
optimal placement and relocation of cloud-native container-based MEC appli-
cations, the ability to perform these functionalities and supply the MEAO with
real-time status and monitoring updates becomes crucial.

Adapting to online services changing demands and improving the end-user
experience underscores this importance in modern network architectures. To
address the challenges while designing for maximum gain we will continue our
efforts towards the development of full support for CNFs in an ETSI MEC NFV-
compliant architecture with the aim to support the implementation of proactive
service relocation.
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