
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is accepted version. Published version DOI: 10.1109/TELFOR63250.2024.10819103

CUDA Calculation of Shannon Entropy for a
Sliding Window System
Gordon Velichkovski, Marjan Gusev, Dimitar Mileski

Ss. Cyril and Methodius University
Faculty of Computer Science and Engineering

1000, Skopje, North Macedonia
gordon.velichkovski@proton.me, marjan.gushev@finki.ukim.mk, dimitar.mileski@finki.ukim.mk

Abstract—Entropy algorithms are crucial in fields where
assessing randomness, uncertainty, or complexity is vital. As
datasets grow, efficient entropy calculations become important.
This work explores the parallelization of Shannon entropy
calculations, using GPU acceleration through CUDA for sliding
window systems. By leveraging GPUs’ parallel architecture,
the approach achieves up to 15x speedup for large datasets.
However, smaller datasets show limited improvements due to
overhead, underscoring the need for optimization to harness GPU
acceleration’s potential.

Index Terms—Shannon Entropy, CUDA, GPGPU, Parallel
Processing

I. INTRODUCTION

Entropy algorithms offer valuable insights into the structure
and predictability of data [1]. There is an increasing demand
for extensive processing of large-scale datasets for entropy al-
gorithms, including sample, differential, and Shannon entropy
calculation.

Since the algorithms proposed in the literature require exe-
cution time with complexity of O(n2) [2], a promising avenue
for achieving this improvement is through parallelization tech-
niques, mainly using Compute Unified Device Architecture
(CUDA), a parallel computing platform and application pro-
gramming interface model created by NVIDIA for Graphics
Processing Units (GPUs). CUDA enables programmers to
write code that can be executed on NVIDIA GPUs, leveraging
their massively parallel architecture to accelerate a wide range
of computational workloads [3].

This research aims to leverage GPU-based parallel comput-
ing to improve the efficiency of calculating Shannon entropy in
a sliding window system. While several works have explored
GPU-accelerated entropy calculations, our research on the
state-of-the-art does not show extensive evidence for using
CUDA for the real-time calculation of Shannon entropy over
a sliding window system. Previous work has explored methods
like matrix-based entropy calculations [4] and bucket-assisted
algorithms [5], achieving significant speedups. However, these
methods generally target different entropy algorithms or are
designed for static datasets, not for sliding window systems.
This work differs by implementing Shannon entropy calcula-
tion for continuous data streams, using CUDA to handle large
datasets more efficiently.

Related work to calculate Shannon entropy with CUDA
is in Section II, and the background of Shannon entropy is

in Section III. The methodology used to calculate Shannon
entropy in CUDA (Section IV) presents the solution archi-
tecture, experiments, and evaluation Methodology. Section V
presents the results, and Section VI discusses their perfor-
mance, comparison with other approaches, and analysis of the
implications in real-world CUDA applications, along with the
potential performance gains. Finally, Section VII concludes
with remarks on the efficiency and recommendations for
further optimizations in CUDA-based systems.

II. RELATED WORK

Biological and medical research data is often complex.
It’s usually non-linear and exhibits complex behavior. It also
includes some unavoidable noise [6]. Therefore, entropy es-
timates frequently quantify fluctuations’ regularity and un-
predictability over time-series data. Mullayanov et al. [4]
increase the productivity of approximate entropy calculation
by evaluating the algorithm’s complexity and proposing an
approach for approximate entropy calculation. Their approach
uses matrix calculations implemented on a GPU with parallel
computing, achieving a significant reduction in the calculation
time by up to one order of magnitude. This solution can
operate with a larger volume of information.

Sample entropy is another widely used method with high
computational complexity. To improve the computational per-
formance, [7] proposed an OpenCL solution to run a fast
parallel algorithm on GPU. They used 24-hour heartbeat data
and showed that the improved algorithm could reduce the
execution time to 1/75th of the base algorithm – on long signal
lengths (larger than 60,000). A bucket-assisted parallelized
algorithm [5] reveals experimental results for a 24-hour Holter
recording achieve a speedup of around 8, using a 12-thread
CPU instead of GPU.

Rough entropy is another essential tool to measure the
uncertainty of information. An efficient algorithm [8] to accel-
erate the calculation of rough entropy with CUDA on a Tesla
K40M with 2880 cores and 12GB global memory. They claim
a 14.1 to 17.9 speedup ratio compared to the serial algorithm.

Two order magnitude improvements were achieved with
algorithmic optimizations on the sample entropy algorithm [9].
Although this is not a parallelized optimization, it would be
interesting to see the Speedup of the algorithm implemented

https://doi.org/10.1109/TELFOR63250.2024.10819103

in CUDA. Similarly, a bucket-assisted speedup of the approx-
imate entropy algorithm [10] is suggested as the next step to
investigate parallelized approaches.

III. BACKGROUND

First, we present the original method approach to understand
a proposed approach of calculating Shannon entropy in paral-
lel. Shannon entropy calculates the probability distribution of
symbols in a data stream of size N by the following algorithm
steps:

1) Frequency Calculation Step counts the occurrences ni

of each unique symbol i in the data stream.
2) Probability Calculation Step calculates the probability

pi of each symbol i by dividing its frequency ni by the
total number of symbols N , presented by (1).

pi =
ni

N
(1)

3) Entropy Calculation uses (2) to calculate Shannon en-
tropy H(X), where k is the number of unique symbols
in the data stream.

H(X) = −
k∑

i=1

pilog2(pi) (2)

Algorithm 1 presents the pseudo-code to calculate Shannon
Entropy on the data stream data.

Algorithm 1 Shannon Entropy Pseudo Code
Input: Data

Output: Entropy
1: Counts← 0
2: while Symbol ̸∈ Data do
3: if Symbol ̸∈ Counts then
4: Counts[Symbol]← 1
5: else if symbol ∈ Counts then
6: Counts[Symbol]← Counts[Symbol] + 1
7: P ← 0
8: while Symbol ∈ Counts do
9: P [Symbol]← Counts[Symbol]/N

10: Entropy ← 0
11: while Symbol ∈ Probabilities do
12: Entropy ← Entropy−P [Symbol]∗ log2 P [Symbol]

The code consists of three parts (while loops). The first one
iterates the entire input data stream once and maintains a list of
frequency counts for each unique symbol with a complexity
of O(n) where n is the size of the input data stream. The
second loop calculates the probability of occurrence for each
unique symbol. Since the iteration is over k unique symbols,
the complexity is O(k). The third loop iterates over the
probabilities with k unique symbols to calculate the Shannon
entropy with a complexity of O(k) The algorithm has an
overall time complexity of O(n+k) or just O(n) since n >> k
is the dominant factor in executing the algorithm with traversal
over the n data items, and k is a predefined small constant.

Manages Data Transfer

Launches CUDA Kernels

Retrieves Entropy

Calculations

CPU

Host
CUDA Kernel Using

Histogram To

Calculate Element

Probability

Device

GPU

5. Execute Kernel to

Calculate Probability

 3. Send Input Data

4. Launch Kernel

 2. Allocate GPU Memory

7. Retrieve Entropy

6. Calculate Entropy Using Probabilities

 1. Recieve

Input Stream

Fig. 1. GPU Solution Architecture

In the real-time scenario, the calculation repeats in the
sliding window approach for the last n data elements from
the continuously incoming data stream with the size of N .
The sliding window algorithm executes the Shannon entropy
algorithm with a O(n+k) complexity for each incoming data
stream, and the overall total complexity is O(N ∗ (n + k)).
The complexity of simplifies to O(N ∗ n), as N >> k. For
small window sizes, N >> n, and the algorithm complexity
is O(N), while it is O(N ∗ n) for large window sizes.

IV. METHODS

A. Sliding Window Real-Time Architecture

The following variables define and parameterize the calcu-
lating entropy for a real-time sliding window system.

1) Input Stream Velocity (v) calculates the amount of the
input data items per second. In this solution, the input
data stream is a large static array traversed by a sliding
window.

2) Window Size (n) is the sliding window size representing
the data array Data to calculate the Shannon Entropy
SE.

3) Threads per Block (TpB) refers to the number of threads
per block launched and determines how the GPU will
schedule and execute the kernel.

4) Number of Bins (B) is a predefined number the strategy
specifies to allocate each data stream item into a specific
bin.

B. Parallel Solution

Fig. 1 presents the parallel solution. The algorithm transfers
input data from the host to the device and, after processing,
transfers calculated results to the host. Reusing data from one
kernel to the next saves an entire data transfer round trip or
half a round trip if we were to compute the rest of the result
on the host.

One kernel calculates the probabilities of elements from the
frequency map by calculating a histogram. Each thread in the
GPU is responsible for processing a portion of the input data
and updating the histogram accordingly.

After parallel computing the histogram, we perform a
reduction operation to combine the histograms from differ-
ent threads into a single global histogram probability result.
Instead of the number of occurrences, each bin stores the
computed probability for that unique element index. Another

RAM

GDDR5

2GB
Intel® Core™ i3-

3250 CPU @

3.50GHz × 4

C++NVidia CUDA 12.4

Ubuntu 20.04.6 LTS 64bit

NVidia

GTX 1050

Fig. 2. System Architecture

kernel calculates the entropy from the results obtained from
the previous kernel. One thread calculates the entropy value
for each unique data item, and the reduction method calculates
the sum.

C. Parallel Algorithm Complexity

Each thread within a block processes a portion of the input
stream to calculate the algorithm’s first part (local histograms).
The overall complexity of O(N ∗ TpB) largely depends on
the size of the incoming data stream N and TpB.

The reduction operation to combine local histograms into
a global histogram takes O(logB) time steps. The local
histogram construction complexity dominates if the input size
is significantly larger than the total number of threads. The
global histogram reduction complexity might become relevant
if the number of bins is enormous compared to the number of
threads per block. However, in practice, the number of bins
is predefined to be a relatively small value compared to the
input size.

The third kernel that calculates the Shannon entropy for
each bin activates thread for a single bin with a per-bin
complexity of O(1). The overall complexity of this step is
O(B/TpB). Summing up the complexities in the pipelined
parallel execution reveals the final complexity of O(N ∗TpB),
which can be simplified to O(N) since TpB can be safely
omitted from the asymptotic complexity since it is typically a
constant value determined by the hardware and optimization
parameters.

The other parameters will take values within a predefined
range in test cases to experiment and find the best Speedup
and the optimal parameters.

D. Experiments

We executed the serial implementation on a computer with
an Intel i3-3250 CPU, running Ubuntu 20.04 64-bit OS. The
parallel solution utilizes an NVIDIA GTX 1050 GPU, Intel
i3-3250 CPU, running Ubuntu 20.04 64-bit OS (Fig. 2), and
CUDA C++ to develop parallel code.

Two experiments include serial and parallel CUDA imple-
mentations. The test cases involve calculating Shannon entropy
for

• window sizes n ranging from 100 to 1 million data items,

TABLE I
EXECUTION TIMES FOR VARIABLE WINDOW SIZE N .

Serial Parallel (CUDA)
N TpB = 1 TpB = 10 TpB = 32 TpB = 256

100 0.00006s 0.00137s 0.00172s 0.00161s 0.00158s
500 0.00022s 0.00192s 0.00216s 0.00200s 0.00234s

1000 0.00030s 0.00229s 0.00244s 0.00235s 0.00213s
5000 0.00090s 0.00304s 0.00257s 0.00265s 0.00220s
10K 0.00130s 0.00378s 0.00281s 0.00270s 0.00225s
50K 0.00630s 0.00922s 0.00302s 0.00277s 0.00225s
100K 0.01040s 0.01661s 0.00381s 0.00294s 0.00223s
500K 0.05350s 0.07245s 0.00570s 0.00370s 0.00367s
1M 0.10120s 0.13617s 0.01416s 0.00674s 0.00660s

• thread-per-block configurations TpB ∈ {1, 10, 32, 256},
• each test case runs ten times to ensure result consistency

and report an average execution time.

E. Evaluation Methodology

The primary evaluation metric is execution time (measured
in seconds). We calculate Speedup by (3), where Ts is the
average execution for executing the serial implementation for
a particular test case, and Tp refers to the parallel CUDA
implementation.

Speedup =
Ts

Tp
(3)

We will also consider the overhead introduced by paral-
lelization, particularly for smaller datasets, where the time
spent managing GPU threads and transferring data may out-
weigh the benefits of parallel computation.

V. RESULTS

The C++ programming language implements both algo-
rithms. The NVCC compiler compiles the CUDA C++ code,
and the g++ compiler compiles the serial C++ algorithm. The
NVIDIA 1050 GPU has Pascal architecture, 640 CUDA cores,
and 2 GB of GDDR5 memory [11]. Table I presents the
achieved results for various window sizes.

For larger datasets, the CUDA implementation outperforms
the serial implementation, with processing times remaining the
same or increasing by a small factor as the number of pro-
cessed data items increases. However, for smaller datasets, the
overhead associated with data transfer outweighs the benefits
of the parallel implementation, resulting in lower performance
than the serial implementation.

Fig. 3 presents the achieved speedup reaching up to 15x for
large dataset windows, particularly for more than 50K data
items. In other cases, the speedup is lower than 1.

VI. DISCUSSION

While the performance improvement over the serial imple-
mentation is noticeable for large numbers of elements (e.g.,
window size larger or equal to 50K), the gains are the opposite
for smaller datasets. The parallelized CUDA implementation
exhibits faster processing times with larger window sizes,
with the Speedup at around 14 to 15 compared to the serial
algorithm.

Fig. 3. Speedup Chart

Throughput scales well with increasing input size, validating
the efficiency of parallelism. The Speedup saturates around
15x due to a combination of non-parallelizable operations
(Amdahl’s Law [12]), data transfer requirements, memory
bandwidth limitations, and kernel launch overhead, which
prevent further scaling despite the availability of more com-
putational resources on the GPU.

The data transfer overhead between the CPU and GPU
can significantly impact the performance of GPU-accelerated
algorithms, particularly when working with smaller datasets;
however, as dataset sizes increase, the advantages of the GPU’s
parallel processing capabilities generally compensate for the
transfer time, leading to overall improved performance.

Compared to previous works, such as the approximate
entropy algorithm achieving speedups between 8-10x on multi-
threaded CPUs [5] or rough entropy computation on GPUs
with 14.1-17.9x speedup [8], our implementation shows sim-
ilar results. The 15x Speedup achieved aligns with these
findings, especially given the similar dataset sizes and GPU
architectures. While the data transfer bottleneck is present in
our implementation, it is also noted in prior works, empha-
sizing that further optimizations in memory management or
hybrid CPU-GPU strategies may yield additional gains.

Comparing the complexity of the serial algorithm O(N ∗
(n + k) to the O(N ∗ TpB) complexity of the parallel
algorithm will compare TpB and k in addition to the window
size n. Considering that k and TpB are small constants,
it follows that N >> k and N >> TpB for the large-
sized incoming data stream. The parallel algorithm’s Shannon
Entropy calculation per window is O(1), and O(n) for serial
algorithm implementation.

Both algorithms are comparable for small arrays N >> n.
Since the execution time depends on the data transfer and
kernel activation times, the serial algorithm implementation is

advantageous. However, the parallel algorithm implementation
is advantageous for large arrays where n >> k. Although
both algorithms scale linearly with increasing input size, the
parallel implementation is optimized to leverage the GPU’s ar-
chitecture and can handle larger datasets more efficiently. The
overhead associated with data transfer and kernel execution
impacts performance for smaller data stream sizes.

While parallelization through CUDA demonstrates the po-
tential for optimizing performance with significant data vol-
umes, the minimal gains suggest that further optimizations or
alternative parallelization strategies may be necessary to fully
leverage the computational power of GPUs across a broader
range of problem sizes.

VII. CONCLUSION

This research explores the GPU-accelerated sliding window-
based streaming approach for entropy calculations, with a
primary emphasis on Shannon entropy. The results show
that while the parallelized algorithm offers performance im-
provements for large datasets, the algorithm execution for
smaller datasets limits the gains due to the overhead associated
with parallelization. The parallelized CUDA implementation
exhibits faster processing times, especially with larger window
sizes. Yet, the improvement diminishes as the complexity of
the original algorithm is already decently efficient.

REFERENCES

[1] A. Delgado-Bonal and A. Marshak, “Approximate entropy and sample
entropy: A comprehensive tutorial,” Entropy, vol. 21, no. 6, 2019.

[2] Y.-H. Pan, Y.-H. Wang, S.-F. Liang, and K.-T. Lee, “Fast computation
of sample entropy and approximate entropy in biomedicine,” Computer
Methods and Programs in Biomedicine, vol. 104, no. 3, pp. 382–396,
2011.

[3] J. Sanders and E. Kandrot, CUDA by example: an introduction to
general-purpose GPU programming. Addison-Wesley Professional,
2010.

[4] R. Mullayanov, A. Krushkov, and R. Nasyrov, “Approximate entropy
technique of calculation based on parallel computation with usage of
gpu,” in Proceedings of the 8th Scientific Conference on Information
Technologies for Intelligent Decision Making Support (ITIDS 2020),
pp. 103–108, Atlantis Press, 2020.

[5] G. Manis, D. Bakalis, and R. Sassi, “A multithreaded algorithm for the
computation of sample entropy,” Algorithms, vol. 16, no. 6, 2023.

[6] M. Borowska, “Entropy-based algorithms in the analysis of biomedical
signals,” Studies in Logic, Grammar and Rhetoric, vol. 43, no. 1, pp. 21–
32, 2015.

[7] X. Dong, C. Chen, Q. Geng, W. Zhang, and X. D. Zhang, “Fast algorithm
based on parallel computing for sample entropy calculation,” IEEE
Access, vol. 9, pp. 20223–20234, 2021.

[8] S. Jing, C. Liu, G. Li, G. Yan, and Y. Zhang, “An efficient algorithm
for parallel computation of rough entropy using cuda,” in 2017 13th
International Conference on Computational Intelligence and Security
(CIS), pp. 1–5, 2017.

[9] C. Chen, C. Liu, J. Li, and B. da Silva, “Acceleration of bucket-assisted
fast sample entropy for biomedical signal analysis,” IEEE Transactions
on Instrumentation and Measurement, vol. 72, pp. 1–11, 2023.

[10] G. Manis, “Fast computation of approximate entropy,” Computer Meth-
ods and Programs in Biomedicine, vol. 91, no. 1, pp. 48–54, 2008.

[11] https://www.nvidia.com/en-gb/geforce/graphics-cards/
geforce-gtx-1050/specifications/ [Accessed: 10/06/2024].

[12] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, pp. 33–38, 2008.

https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1050/specifications/
https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1050/specifications/

	Introduction
	Related Work
	Background
	Methods
	Sliding Window Real-Time Architecture
	Parallel Solution
	Parallel Algorithm Complexity
	Experiments
	Evaluation Methodology

	Results
	Discussion
	Conclusion
	References

