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Abstract. In the present paper, the authors introduce an arithmetic based on finite
groups with respect to arbitrary bijections. This algebraic background is used to con-
struct the function system Wg,, ,, of the Walsh functions over the set Gy, of groups
with respect to the set ¢y of bijections. The developed algebraic base is also used to
introduce a wide class of two-dimensional nets Gb,wa; " of type of Halton-Zaremba.
Four concrete nets of this class are constructed and graphically illustrated. The so-
called (Wa,,,; a)—diaphony is applied as a appropriate tool for studying the nets of
the introduced class. An exact formula for the (Wg, ,; &) —diaphony of the nets of class
Gyoon 2y is presented. This formula allows us to show the influence of the vector o on
the exact order of the (Wg, ,; a)—diaphony of these nets.
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1. Introduction

Let s > 1 be a fixed integer, which will denote the dimension of the objects
considered in the paper. We will remind the notion of uniformly distributed
sequence. So, following Kuipers and Niederreiter [16] let £ = (x,)n>0 be an
arbitrary sequence of points in [0,1)%. For an arbitrary integer N > 1 and a
subinterval J of [0,1)® with a Lebesgue measure As(J) let us denote An(&;J) =
#{n:0<n<N-1,x, € J}. The sequence ¢ is called uniformly distributed in

*. Corresponding author



2 VESNA DIMITRIEVSKA RISTOVSKA aND VASSIL GROZDANOV

[0,1)* if the limit equality limy o Av ](\?‘]) = A\s(J) holds for each subinterval J

of [0,1)%.

The functions of some orthonormal function systems are used to solve many
problems of the theory of the uniformly distributed sequences with very big
success. We will remind the definitions of the functions of some of these classes.

For an arbitrary integer k and a real x the function e; : R — C is defined as
ex(x) = €™k For an arbitrary vector k = (ki, ..., ks) € Z° the k—th multivari-
ate trigonometric function eg : [0,1)® — C is defined as ex(x) = szl ek, (75),
X = (21,...,25) € [0,1)%. The set T° = {ex(x) : k € Z°, x € [0,1)*} is called
trigonometric function system.

Following Chrestenson [4] we will recall the constructive principle of the
Walsh functions. Let b > 2 be a fixed integer. For an arbitrary integer k > 0
and a real z € [0,1) with the b—adic representation k = Y 7, k;b' and z =
S @b~ where ki, x; € {0,1,...,b— 1}, k, # 0 and for infinitely many
values of i we have x; # b — 1, the k—th Walsh function ywaly : [0,1) — C is
defined as

bwalk ({E) _ eZT'”i(kofl;o—f—...—f—k,,:Eu) )

Let us denote Ny = N U {0}. For an arbitrary vector k = (ki,...,ks) € N§
the k—th multivariate Walsh function ,waly : [0,1)° — C is defined as

pwalk(x) = H pwaly, (z5), x=(71,...,25) €[0,1)".
j=1

The set W(b) = {pwalk(x) : k € N§, x € [0,1)*} is called Walsh function system
in base b. In the case when b = 2 the system W (2) is the original system of Walsh
[22] functions.

The different kinds of the diaphony are numerical measures, which show
the quality of the distribution of the points of sequences and nets. So, let
En = {x0,X1,...,XNy_1} be an arbitrary net composed by N points in [0, 1)°.

Firstly Zinterhof [25] introduced the notion of the so-called classical di-
aphony. So, the classical diaphony of the net &y is defined as

| Nl 2\ 2
F(T*¢év)=| >, Rk N > exl(xn) :
keZs\{0} n=0

where for each vector k = (kq,...,ks) € Z° the coefficient R(k) = H‘;:l R(k;)
and for an arbitrary integer k

1 if k=0
Rky=1{~ . ’
|k|, if k#0.

Hellekalek and Leeb [15] introduced the notion of the dyadic diaphony, which
is based on using the original system W(2) of the Walsh function. Grozdanov
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and Stoilova [10] generalized the notion of the dyadic diaphony to the so-called
b—adic diaphony. So, the b—adic diaphony of the net &y is defined as

1 1 = ) #
FOW(b);En) = Br) =1 > pk) N > pwaly(x,) :
keNg\{0} n=0

where for each vector k = (k1,...,k;) € Nj the coefficient p(k) = [[7_; p(k;)
and for an arbitrary non-negative integer k

1, if k=0,
p(k) = {

b=29 if WW<EkE<WH, ¢g>0, g€Z.

In 1986 Proinov [18] established a general lower bound of the classical di-
aphony. So, for any net {5 composed of N points in [0, 1)® the lower bound

s—1
2

(log V)
N
holds, where a(s) is a positive constant depending only on the dimension s.

For a dimension s = 1 from the inequality (1) the result of Stegbuchner [20] is
obtained

(1) F(T%¢&n) > a(s)

s, w1
F(T%¢&n) > BN

To show the exactness of the lower bound (1) for a dimension s = 2 we need
to present the techniques of the construction of two classical two-dimensional
nets. For this purpose, let ¥ > 0 be a fixed integer. For 0 < i < b” —1 we denote
My (i) = bi;,. Following Van der Corput [21] and Halton [12] for an arbitrary
integer i, 0 < ¢ < b” — 1, with the b—adic representation ¢ = Z;;& z'jbj, where
for 0 < j<v—1i;€{0,1,...,b—1}, we put py, (i) = Y7_g i;67~1. Roth [19]
considered the two-dimensional net Ry, = {(7,(¢), pp (7)) : 0 < i < b — 1},
which now is called a net of Roth. The net Ry, is also known as two-dimensional
Hammersley [14] point set.

In 1969, Halton and Zaremba [13] used the original net of Van der Corput
{p2,,(i) = 0.dgiy ...5,—1 : 0 <3 < 2¥—14; € {0,1}} and change the digits i; that
stay in the even positions with the digit 1 — ;. Let us for 0 <14 < 2¥ — 1 signify
2:27,/(2') == 0.(1—i0)’i1(1—i2) .... The net ZQW == {(?72’,/(7;)’ 2,’27,/(1')) : 0 S ) S 2”—1},
which is called net of Halton-Zaremba is constructed.

In 1998 Xiao [24] proved that the classical diaphony of the net of Roth Ry,

and the net of Halton-Zaremba Z,, have an exact order O (@) , where
respectively N = b” and N = 2.

Cristea and Pillichshammer [5] proved a general lower bound of the b—adic
diaphony. So, for any net £y composed of N points in [0, 1] the lower bound

(log N)*7

@ FOV();€n) > Cb, ) =5
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holds, where C(b, s) is a positive constant depending on the base b and the
dimension s.

Grozdanov and Stoilova [11] proved the exactness of the lower bound (2)
for dimension s = 2. They proved that the b—adic diaphony of the net of Roth
Ry, and the net of Halton-Zaremba Z3 ,, have an exact order O (@) , Where
respectively N = b” and N = 2.

The b—adic diaphony is closely related with the worst-case error of the quasi-
Monte Carlo integration in appropriate Hilbert spaces. Aronszajn [1] introduced
the notion of a reproducing kernel for Hilbert space. So, following this approach
let Hy(K) be a Hilbert space with a reproducing kernel K : [0,1)° — C, an inner
product < -, >p (x) and a norm || - ||, (k). We are interested to approximate
the multivariate integral

L(f) = / f(x)dx, e Hy(K).
[0,1]¢

Let N > 1 be an arbitrary and fixed integer. We will approximate the in-
tegral I,(f) through quasi-Monte Carlo algorithm Q,(f; Py) = + 27]:[;01 (Xn),
where Py = {xo,...,Xny_1} is a deterministic sample point set in [0,1)%. The
worst-case error of the integration in the space Hg(K) by using the net Py is
defined as

e(Hs(K); Py) = sup 1L(f) = Qs(f: Pn)I.
JEH(K), |[fllmo(m0) <1

Dick and Pillichshammer [6] used the Walsh functions as a tool for investi-
gation of the worst-case error of the multivariate integration in Hilbert spaces.
This error is presented in the terms of the reproducing kernel, which generates
this space.

Likewise, Dick and Pillichshammer [7] introduced a special reproducing ker-
nel Hilbert space and the worst-case error of the integration in this space and
the b—adic diaphony of the net of the nodes of the integration are connected. In
this sense, we see that the so-called low diaphony nets with very big success can
be used in the practice of the quasi-Monte Carlo integration. This determines
the interest to this class of nets.

The rest of the paper is organized in the following manner: In Section 2
the concept of the function system Wg, o, is reminded. In Section 3 we intro-
duce a class of nets Gb.%Z('z M of type of Halton-Zaremba constructed over finite
groups. By graphical illustrations, we show the distribution of four nets from
this class. In Section 4 the concept of the (Wg,, ; &) —diaphony is presented. In
Section 5 an explicit formula for the (Wg,, o; a)—diaphony of the nets g, »,Z;
is presented. This formula allows us to show the influence of the vector « of
exponential parameters to the exact orders of the considered diaphony of these
nets. In Section 6 some preliminary results are presented. In Section 7 the main
results of the paper are proved.
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2. The function system Wg, .,

In 1996 Larcher, Niederreiter and W. Ch. Schmid [17] introduced the concept
of the so-called Walsh function system over finite groups. So, the details are as
follows: Let m > 1 be a given integer and let {b1,ba,..., by : by > 2,1 <1 <m}
be a set of fixed integers. For 1 <1 < m let Zy, = {0,1,...,b; — 1} and the
operation @3, be the addition modulus b; of the elements of the set Z,. Then,
(Z,, Dp,) is a discrete cyclic group of order b;.

Let G = Zy, X...XZy,, be the Cartesian product of the sets Zy,, ..., Z,,. For
each pair g = (g1,..-,9m), Y = (Y1,...,Ym) € G by using the group operations
Dby, - - -, D, let the operation ¢ be defined as g By = (91 b, Y1, - - -, Im Do,
Ym). Then, (G,dq) is a finite group of order b = by1by...by,,. For the given
elements g,y € G the character function on the group G is defined as

m
2Ll
xg(y) = He e

=1

Let us denote Zy = {0,1,...,b — 1} and let ¢ : Z;, — G be an arbitrary
bijection, which satisfies the condition ¢(0) = 0.

Definition 1. For an arbitrary integer k > 0 and a real x € [0,1) with the
b—adic representations k = Y 7o kib' and x = 322 x;b" "1, where for i > 0
ki,z; € {0,1,...,b—1} ky, # 0 and for infinitely many values of i x; # b—1, the
function g ,waly : [0,1) — C is defined as ¢ pwaly(x) = [TiZg Xk (P(2i)) -

The set Wa,, = {gewalg(x) : k € Ng, x € [0,1)} is called Walsh function
system over the group G with respect to the bijection (.

Now, we will introduce the concept of the multidimensional function system
of Walsh functions over finite groups. For this purpose, let b = (b1,...,bs) be a
vector of not necessarily distinct integers b; > 2. For 1 < j < s let (ij, @ij)
be an arbitrary group of order b; constructed as above. Let us denote Z;, =
10,1,...,b;—1} and let ¢y : Zy; — Gy, be an arbitrary bijection, which satisfies
the condition ¢y, (0) = 0. Let Wa,, on, = {Ghj o, waly(z) : k € No, x € [0,1)}
be the corresponding Walsh function system over the group Gp, with respect to
the bijection ¢y, .

By using the groups Gy,,...,Gy,, the sets Zy,,...,Zy, and the bijections
©bys - -+ @b, let us introduce the next significations Gy, = (G, ..., G, ), Zp =
(Zbl, Ce ,st) and 2] (gobl, Ceey gobs).

Let Way, on, = )/V(;bl,%1 ®@...0Wa,_ 4, be the tensor product of the function
systems V\/Gbl#,b1 s oo s Wa,, b, - This means that for an arbitrary vector k =
(k1,...,ks) € Nj the k—th Walsh function g, o, walk(x) is defined as

S
G o Walk(x) = Hij,sabjwalkj (), x=(x1,...,25) €[0,1)%
j=1
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We will call the set Way .o, = {Gu.pwalk(x) : k € Nj, x € [0,1)°} a
multidimensional system of the Walsh functions over the set Gy, of groups with
respect to the set o of bijections.

We will introduce some elements of the b—adic arithmetic. By using the
operation @¢ over the group G and the bijection ¢ we will define the operation
DZy Zg — Zy by the following manner: for arbitrary elements u,v € Zy, we
put u®z, , v = ¢ ' (p(u) &g ©(v)). For an arbitrary element u € Zp, let the
element w € Zj; be such that v @z, , u = 0. We will prove that for arbitrary
digits p, q,r € Zp the character function satisfies the equalities

(3) XLp(p)(QD(Q) Da @(T)) = Xga(p)(ﬁp(Q))ch(p)(SO(T))
and
(4) ti(p)@c%’(Q)((P(r)) = Xgo(p)(@(r»Xgp(q)((P(r))'
Let us signify o(p) = (p1),....p™), () = (¢V),...,q"™) and p(r) =
(r(l), ...,(™). Hence, we obtain that
m (0 1g(0) (D) m (l) (l) (]
omiZ [¢") 47\ (mod b)) VY (g\ " 4+r\t))
Xotn)(2(@) B o(r) = [ e g H
=1 =1
m W, m ORO!
2mil—4 2mil—=
=TIe™ ™ JIe™ ™ = xom (@)X (0(r)
=1 =1
and
mo o pOrgOmod b ® (p<z>+qa>)r<z>
Xep)@ae(o) (P(r) = He " H
=1 =1

D 0,0

= H 627T Cu He u = Xga(p)(@p(r))Xgo(q)((p(r))'
=1

=1

For arbitrary reals z, y € [0, 1) with the b—adic representations z = Y 5° ;b=
and y = > .o, yib~""1, where for i > 0 x;,y; € Zy and for infinitely many values
of i x;,y; # b — 1, let us define the next operation

z @%2 y= (Z(:Cz Dz, yi)b_i_1> (mod 1).

1=0

We will prove that for an arbitrary integer & € Ny and arbitrary reals z,y € [0, 1)
the equality holds

(5) apwaly(x @BZO;TL Y) = ¢ pwalk(r)c pwal(y).
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Let k have the b—adic representation k = Y., k;b', where for 0 < i < v
ki €{0,1,...,b— 1}, x and y be as above. Then, by using the equality (3) we
obtain that

G pwaly(x @2’2, y)

= [ ot (0(0™  (e(@s) @ o) = [ [ Xeots) (0(zi) B (i)
=0 =0

= [T Xt (@) T X (0 )) = cpwalp(x) pwali(y).
=0 =0

For arbitrary vectors x = (z1,...,2,) € [0,1)° and y = (y1,...,ys) € [0,1)*

. 0,1)° 0,1 0,1
to define the operation x ®[Zb730b y = (21 @[Zbl?%l Ylyeoos T @[st,%s ys). Then,
the following equality holds
0,1)* s
(6) G Walk (X @[Zb,zob Y) = Gu o Walk(X) a0 walk(y), V k € NG.

Let k = (k1,...,ks) € N§ be an arbitrary vector. Then, by using the equality
(5) the following holds

S
0,1)® 0,1
Gb7<waa’lk(X @[Zb,c)pb y) = H G on, walk’j (wj @[ij,)@bj Z/j)

j=1
S
= H G, b, walkj (xj)ij ¥Pb; wa’l’fj (yJ)
j=1

S S
= H G0, waly, () H G pp; waly, (U) = G op Wl (X) Gy op walk ().
j=1 j=1

3. Nets of type of Halton - Zaremba constructed over finite groups

To present the definition of the nets of type of Halton-Zaremba constructed over
finite groups, we will apply the same algebraic basis, which we used to present
the functions of the system Wg, o, . In this way, a process of a synchronization
between the construction of the nets and the tool for their investigation will be
realized.

For this purpose, let by > 2 and by > 2 be arbitrary and fixed bases and
denote b = (b1, ba). Let (Zp,, ®p, ) and (Zy,, ®p,) be the corresponding discrete
cyclic groups of orders by and by. Let b = b1by and as yet to define Gy, = Zy, X Zy,
and g, = (P, Bp,)- Let Zy ={0,1,...,b—1}, 1 : Zyy — Gy and g : Zy, — Gy,
be two arbitrary bijections, which satisfy the conditions ¢;(0) = 0, ¢2(0) = 0
and denote p, = (@1, p2). Let EB[ZO:;I and @[ZO;};Q be the operations over [0,1),
which correspond respectively to the bijections ¢ and @s.

Let v > 1 be an arbitrary and fixed integer. Let x = 0.xgK1...kKy—1 and
= 0.ugpe1 - .. pp—1 be arbitrary and fixed b—adic rational numbers. For 0 <
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i <b” —1 let us denote (i) = bil, and py (i) be the general term of the Van
der Corput sequence. Let us define the b—adic rational numbers

. . 0,1 . 0,1
Coin 5 (1) = (D) @5 5 and ¢, o, CL, (1) = P (i) D) i

Dimitrievska Ristovska and Grozdanov [8] introduced the next class of two-
dimensional nets:

Definition 2. For an arbitrary integer v > 1 and for arbitrary fized b—adic
rational numbers k and p we define the net

Gb,‘PbZlif = {(Gb#’l{b (i )va,<P2Cb (i )) 0<i <" = 1} )

which we will call a net of type of Halton-Zaremba constructed over the group
Gy with respect to the set p, which corresponds to the parameters k and p in
base b.

We will concrete the choice of the parameters x and p from Definition 2:
Let us choose kK = 0. We will construct the digits of the parameters p in the
following manner: Let p,q € Zy be arbitrary and fixed digits. For 0 < j <pv—1
we define the digits p; € Zj as the solutions of the linear recurrence equation
i = p-j—+q (mod b) and to put g = O.pop1 ... py—1. For 0 <4 < b —1

let us denote g, , ¢l (i) = poy(i) @[Z’ ) p. In this case, we obtain the net

Gop2Zhy = {(nbjy(i),gb’m(gf(i)) :0<i < — 1}, which was introduced by
Grozdanov [9].

In the case when G = Zj, and @2 = id is the identity of the set Z; in itself,
from the net g, o, Zg ¥ we obtain the net g, zde , which was introduced by
Grozdanov and Stoilova [11]. In the case when p = 1 and ¢ = 0 from the net
Zb’idZﬁf we obtain the net Zb,idZ;:,(,) , which was introduced by Warnock [23]. In
the case when b =2, p =1 and ¢ = 1 from the net Zb,idZif we obtain the net
Za, L-dZ21 ’i, which is the original net of Halton-Zaremba. In the case when b = 2,

=0 and ¢ = 0 from the net 7, de we obtain the net 7, deQ which is the
orlglnal net of Roth [19].
We will conbtruct and show the distributions of the points of four concrete
nets @, o, 2, of type of Halton-Zaremba.

Example 1. The algebraic background of the first example is as follows: Let
m = 2 and choose the bases by = 2 and by = 3. The discrete cyclic groups of or-
ders by and by are Zy, = {0,1} and Z;, = {0, 1,2}. We have that b = 6, the group
Gy is Gy = {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)} and Z, = {0,1,2,3,4,5}. Let
us select the bijections ¢ and @2 as ¢1(0) = (0,0),¢1(1) = (1,0),p1(2) =
(072)a (3) (172)’ ( ) (0’ 1)7 (5) (1’ ) and 902(0) = (0’0)7902(1) =
(1,2),2(2) = (1,0),¢2(3) = (1,1), ¢2(4) = (0,2),p2(5) = (0,1). In addition,
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we choose the parameters v = 2, k = 0.42 and p = 0.15. The points of the
obtained net are:

Ky
Gs,6 Z6,2

L [(26.11) (27 35\ (38 20) (20 5\ (2 28) (35 17
N 36736/ 7\36"36)\36"36/) \36°36/) \36"36) \36"36)"

32 8 33 32\ /34 26\ /35 2 30 20\ /31 14
(%%)(%%) (36 36) (36 36) <%%>(%%)
2 9 3 33 7 0 21 1 15
<%’%)’(%’ ) (36’36) (36’%) (%’Tj)’(%’?)’
8 7 9 3 10 25\ /11 1 6 19 7 13
<%%)(3_6 6) (36’36) (3_3_6> (%T&)(%%)
14 6 15 16 24\ (17 0 12 18\ [13 12
(5oo3) (5603) - (3650) (Go36) (30 (a0
20 10\ (21 34\ /22 28\ /23 4 18 22\ [19 16
Gw) Gow) Gow) Gom) Gos) Gow)

The distribution of the points of the net g ¢ Zg %' % is shown in Figure la).

Figure 1: Nets of Example 1 and 2 (v = 2,b1 = 2,b2 = 3, different bijections
©1,P2)

Example 2. To construct the second net, we will use the same group G; and
parameters v = 2, K = 0.42 and p = 0.15. Let us choose the bijections ¢;(0) =

(070)’901(1) = (171)7901(2) = (172)7901(3) = (072)7901(4) - (071)>901(5) = (170)
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and @2(0) = (070)7 @2(1) = (07 2)7 ()02(2) = (17 1)7S02(3) = (170)7(102(4) =
(1,2),¢2(5) = (0,1). The distribution of the points of the obtained net is shown
in Figure 1b).

Example 3. To construct the third net, we use the same group G; and bijections
1 and 9 as in Example 1. We choose the parameters v = 4, x = 0.2112 and
= 0.1302. The distribution of the points of the obtained net is shown in Figure
2.
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’o. . o. Oo. ° o ° o .. '. o.
= ..o PR .. ° o '.‘ ... . LY . ° o '. o .. o ° o.. .. ° o '.'
° ° ° o
081" ®e e e et ) c. e o te.
o o ° ° o ° . ° ° ° ° o L4
lo o . ..’ - :o.. '.. e % e .. o o . .. . : . ..° oo ..c .'
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1R B T cllele
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. .
0.4*.‘.'.:'-..‘:.:.'O..:.":: ° °o:. .':
. . o o . o * . . LI
® L] L ° o LY e o o .. LY
L ° o .... .... ..' . e o . W °
. . ® ° o . . ..'o.'. o ® .. :.
70. o ° ° e o * ; . :.o. '..'o ®
° LY .
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02“0.. .'o.' ° c' ° ° °
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:‘ ° o . ° o ° . .. ° ° .:. ® . ° o
;: .o..:..'...:.. ., o o A N ° o .-
-.' .0..'. ° '..0.... .o. :. .'.
. ° . . . ® R . .
-\. ‘\. e g p .\ °) ..\‘ I P .\ox.' | e, o \"\.\
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Figure 2: Net of Example 3: v =4,b1 = 2,02 = 3.

Example 4. The algebraic background of the fourth net is as follows: Let m = 2
and choose the bases by = 3 and by = 4. The discrete cyclic groups of orders by
and be are Zp, = {0, 1,2} and Z, = {0, 1,2,3}. We have that b = 12, the group
Gy is Gy = {(0,0), (0,1),0,2), (0,3), (1,0), (1, 1), (1,2), (1,3), (2,0), (2,1), (2,2),
(2,3)} and Z = {O 1,...,11}. Let us select the bijections ¢;(0) = (
piD) = (1,0), ¢1(2) = (0,3), ¢1(3) = (L,2), @1(4) = (0,1, $1(5) = (
©1(6) = (0,2), ¢1(7) = (2,2), ¥1(8) = (1,3), 1(9) = (7) w1(10) (
e1(11) = (2, 1)and 2(0) = (0,0), ¢2(1) = (1, 3) 2(2) = (1,0), 92(3) = (
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902(4) = (073)7 @2(5) = (273)7 902(6) = (270)7 902(7) = (172)7 902(8) = (17 1)7
©2(9) = (0,2), v2(10) = (0,1), w2(11) = (2,2). We choose the parameters
v =2, k=0.42 and pu = 0.15. The distribution of the points of the obtained net
is shown in Figure 3.

1.0 —

e i L L0 L
0.2 0.4 0.6 0.8 1.0|

Figure 3: Net of Example 4: m = 2,b1 = 3,02 = 4.

We will present the program code in the mathematical package Mathematica,
which can compute the coordinates and visualize the points of an arbitrary net
of type of Halton-Zaremba.

(*Program code for constructing nets *)
e = Inputlel;m = Inputlm]; (*vectors Eta and Mu*)
points = {};
bl = Input[bl];b2 = Input[b2];
ni = Input[nil;b = blx*b2;
phil = Input[phil];
phi2 = Input[phi2];
Do[i = IntegerDigits[il, bl; k = ni - 1;
Whilel[k > O,
If[i1 < bk, PrependTo[i, 0]]; k = k - 1];
apc = ord = O;
Do[ cifl = phil[[i[[j]1] + 111;
cif2 = phil[[el[[j1] + 111;
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cif = {Mod[cif1[[1]] + cif2[[1]], bil],
Mod[cif1[[2]] + cif2[[2]1], b2]};
cifra = Position[phil, cif] [[11]1C[[1]1] - 1;
apc = apc + cifra/b7j;
cifl = phi2[[i[[ni - j + 111 + 1]11;
cif2 = phi2[[m[[j]] + 11];
cif = {Mod[cif1[[1]] + cif2[[1]], bi],
Mod[cif1[[2]] + cif2[[2]], b2]};
cifra = Position[phi2, cif] [[11]1[[11] - 1;
ord = ord + cifra/b7j,
{j, 1, ni}1;
AppendTo [points, {apc, ord}],
{i1, 0, b™ni - 1}1;
ListPlot [points,AspectRatio->Automatic]

4. The (Wg,,; o)—diaphony

In the previous section, we presented one wide class of two-dimensional nets
constructed over finite groups with respect to arbitrary bijections. We need
of appropriate analytical tool for studying the quality of the distribution of
the points of these nets. In our case, it is important to realize a process of a
synchronisation between the technique for construction of the nets and the tool
for their investigation.

The different kinds of the diaphony are numerical measures for studying
the irregularity of the distribution of sequences and nets. The construction
of the diaphony is always connected with some complete orthonormal func-
tion system. Concrete for studying sequences and nets constructed over finite
groups with respect to arbitrary bijections, the suitable version of the diaphony
is the one, which is based on the system of Walsh functions constructed also
over the same finite groups. For us, this is the motivation to use the so-called
(Way, 3 @) —diaphony as a tool for studying of the nets of the class g, ¢, 2, -

To define the concept of the (Wg, ; o) —diaphony we need to present some
preliminary notations. Let the considered sets of bases and bijections be b =
(b,...,b) and ¢ = (¢,...,9). Let Way, » = {ay,owalk(x) : k € N§, x € [0,1)%}
be the defined in previous section system of Walsh functions over the group Gy
with respect to the bijection ¢.

For arbitrary integers b > 2, k > 0 and a real @ > 1 we introduce the
coefficient

1, if k=0,
b9, if b9 < k< bt g>0, geZ

plo; by k) = {
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Let a = (a1, ...,as), where for 1 < j < s a; > 1, be a given vector of real
numbers. For an arbitrary vector k = (ky, ..., ks) € N we define the coefficient
(7) R(a; b k) Hp a;; by k)

Let us signify C(a;b) = ZkeNg\{O} R(c; b; k). So, the equality holds

(8) Clasb) = -1+ ] {1+(b—1)bl’i].

aj _
Jj=1

The notion of (Wag, ; o) —diaphony is a partial case of more general kind
of the diaphony, called hybrid weighted diaphony, which was introduced by
Baycheva and Grozdanov [2]. So, following this concept we will present the
next definition:

Definition 3. Let £ = (xp)n>0 be an arbitrary sequence of points in [0,1)%.
For each integer N > 1 the (Wa,, »; a)—diaphony of the first N elements of the
sequence & is defined as

1
2\ 2

1
FnWay,p3 5 §) = Claib) Z (a;bsk) Z Gy pWalk (Xn) ,
kel (0} n=0

where the coefficients R(a; b; k) and the constant C(c; b) are defined respectively
by the equalities (7) and (8).

Following Baycheva and Grozdanov [2], see also [3], it is a well known fact
that the sequence ¢ is uniformly distributed in [0, 1)® if and only if the next limit
equality imy e FN(Way, 05 @; &) = 0 holds for each vector a, as above.

To the authors is unknown a lower bound of the (Wg,, »; &) —diaphony of an
arbitrary net as the one presented in the equality (2) and which is related with
the b—adic diaphony.

5. On the (Wg,, ,; @)—diaphony of the nets of type of Halton-Zaremba

In the next theorem we will give an explicit formula for the (Wg,, ,; @) —diaphony
of an arbitrary net ¢, o, Z, . of type of Halton-Zaremba.

Theorem 1. Let Gb,%Zl’ff be an arbitrary net of type of Halton-Zaremba. For
each integer v > 1 the (Way, »; o) —diaphony of the net Gb,va:’f satisfies the
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equality

2 .y Ryl
F (WGb7SD7 a’ GbﬁObe,V )

v—1

1 (b—1)b2 (6™ —1) 1 (az—a1)g
C(a;b) b2 — b bezv 20
g=0
bal ba2 1 bOéz 1
oDy [P0 Dﬁ] o PO Uy bW} ’

b—1)b> b—1)b> a1+a
where C(a;b) = (bal),bl + (bag),bQ + (- 1?%'

Corollary 1. Let the conditions of Theorem 1 be realized. Let us assume that
a1 = ag = a > 1. Then, the following statements follow:

(i) For each integer v > 0 the (Wa,,; a)—diaphony of the net ¢, 2,
satisfies the equality ’

b —1 v 1

2 . Koy _ _
Fr VG305 Gopn 2 ) = oy g e
bo—b

(i9) Let us signify N = b”. Then, the limit equality holds

lim N% 'F(WGb,np§ Q; GbySDbZl’:;f) . b — 1
add Viog N (b= 1) + 2] 1ogh

(iii) Let 1 < o < 2. Then, there exists a number ¢ such that 0 < e < 3, for
which the inclusion F(Way, 5 & Gy o0 Zp ) € O (—V]\lfolgf\]) holds;
(iv) Let o = 2. Then, the inclusion F(Way, ;@ Gy, 2y, ) € O (—W)

holds;
(v) Let o = 2. Then, the limit equality holds

i N - F(WGb#P; a; Gb#PbZlIz;;u) b2 —1
im =)
yoos Viog N (b+2)logb

(vi) Let o > 2. Then, there exists a positive number € such that the inclusion

holds
o Viog N
F(WGbW; a; vasObeﬁ) €0 ( Nl+e |-

Corollary 2. Let the conditions of Theorem 1 be realized. Let us assume that
a1 > ag > 1. Then, the following statements follow:
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(i) For each integer v > 0 the Way,,o; a)—diaphony of the net g, o, 2%
satisfies the equality

2 . . K?
b F (WGb,SD’ Q; Gba@be,VM)

1 2 Tho(be2 — 1)
~ Cla;b) {(b T [ bor — po2 “]

(b—1)p™He2 (b b1 o2 —piter —p) b 1
N T T B T STy

where the constant C(a;b) was defined in the condition of Theorem 1;
(79) Let us signify N = b¥. Then, the limit equality holds

3 22 . . K,
Jim N2 - FWa,, 0505 Gy,0, 2, )
N=b¥

B bo2 (b1 — B)[be1 — b2 + bot (b2 — 1))]
Ve = pe) e (b — b) + bo2 (b1 — b) + (b — )b Tes]’

(i47) Let 1 < ag < 2. Then, there exists a number € such that 0 < e < %, for
which the inclusion F(Way, 3 @; GyonZp ) € O (F1=2) holds;

(iv) Let an = 2. Then, the inclusion F(Wa,, ;o Gb,%ZZ;“) € O (%) holds;

(v) Let ag > 2. Then, there exists a number ¢ > 0 such that the inclusion

holds
1

F(WGb,npSO‘?Gb,%Zzif) €0 <N1+e) :

The results of Theorem 1 and Corollaries 1 and 2 were announced by authors
in [8]. Here we will develop the complete proofs of these statements.

6. Preliminary results

In this section, we will present some preliminary statements, which will be es-
sentially used to prove the main results of the paper. The following lemmas
hold:

Lemma 1. Let b > 2 be a fized integer, Gy be a finite group of order b and
@ : Zy — Gy be an arbitrary bijection. For arbitrary integers v > 0 and k > 1
we define the function

5y (k) = 1, if k=0 (mod b"),
N0, if k20 (mod bY).

Then, the equalities hold

bV —1 b —1

> Gppwali(meu (i) = D aypwali(pey (i) =" - 6 (k).

=0 i=0
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Proof. For the integer k£ and an arbitrary integer i, 0 < i < b” — 1, we will use
the b—adic representations k = 3772 kbl and i = >0 yi;b7. Then, we have

that m, (i) = 0.iy—10y—2 .. .90 and g, pwaly(m,, (7)) = H]:O Xeo(k J)(go(zy_l_J)).
Hence, we obtain that

b’ —1
(9) Z Gb,cpwalk nby Z Xo( ko lu 1 Z Xeo(ky— 1) ))
=0 1,—1=0 10=0

Let us assume that k& = 0(mod b”). Then, we have that kg = k1 = ... =
ky—1 = 0 and from the equality (9) we obtain that Eﬁ);gl Gowaly(m,, (7)) = b”.

Let us assume that k& # O0(mod b”). Then, there exists at least one in-
dex 6, 0 < 6 < v — 1 such that ks # 0. In this case, the corresponding
sum E?,,__ll_ézo Xe(ks) (P(i—1-5)) = 0 and from the equality (9) we obtain that
Yo Gpwaly(m, (i) = 0.

The second equality of the statement of the Lemma can be proved by similar
manner. (]

Lemma 2. Let the conditions (C1) and (C2) be fulfilled. Then, the following
holds:
(i) For arbitrary integers 0 < g < g1 < v — 1 we define the set

Ag1:9)

=kiiki=Y kW, g <j<g kY €{0,1,...,b— 1} and k(Y KD #£ 0

g1

For each integer k1 € A(g1; g) we define the integer kT = ;nzg Eg-l)b"*lfj. Then,
for all integers 0 < go < v — 1 and b92 < ky < b2 — 1 the equalities hold

b -1 -
. . b, if ko = kT,
wal w1 wal L(2)) =
;:0 GipWalky (M. (1)) Gy oW alky (P, (7)) {0, if o £ 7.

In the case when ko = k], we have that go =v —1 —g;
(i) Let the integers g1 and ga such that 0 < g1 < v —1 < go be arbitrary.
An arbitrary integer ki such that b9' < ky < b91+t1 — 1 we present in the form

k1 = Z;’ ék‘]( )bj. An arbitrary integer ko such that b92 < ky < b92T1 — 1 we

present in the form ko = Zgio k:J(-Q)bj. For each integer ki, as above, we define
the set

Alkr) = ko = Zk@bi [ S Ry S IR Y COp o)
7=0

and the digits k() kl(/2421v k2 are arbitrary} .

v 7792
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Then, the equalities hold

b —1 .
, , W, ifky € A(ky),

GorpWalky (1,0 (1)) Gy pwal iy (Po,u (1)) | = )
Z; b e 0, ifks & Aky);

(7i1) Let the integers ga and g1 such that 0 < go < v —1 < g1 be arbitrary.
An arbitrary integer ko such that b9 < ko < b9t — 1 we present in the form
ko = Z”fl k@)bj. An arbitrary integer ki such that b9t < k1 < b9t — 1 we

j=0"j
present in the form ki = ?1:0 klgl)bj. For each integer ko, as above, we define
the set
& ; 2 —(2 —(2
B(kQ) - kl = k§1)bj : k(()l) = kl(/—)hkgl) = kI(J—)27 7k1/1—1 = ké :
7=0
and the digits kl(,l), kl(,lle, . ,ké}) are arbitrary} .
Then, the equalities hold
i b, if ki € B(ky)
wal (i wal NONE ’ ’
; e Walky (1,0 () Gy owaly, (py, ())‘ {07 i k1 & Blko):

(iv) Let the integers g1 and go such that g1 > v and go > v be arbitrary.
Arbitrary integers k1 and ko such that b9t < k1 < bt — 1 and b92 < ky <
b2+l — 1 we present in the form ki = iy kj(-l)bj and ky = 3792, kj(-g)bj. For
each integer k1, as above, we define the set

g2
C’(k‘l) =< ko= ij@)bj : k(()2) = E(l) kEZ) = Ez(/l—)Q’ R k(2) = Eél)
j=0

v—1> v—1 —
and the digits k,(jz), k,gg_gl, R kg) are arbitrary} .

Then, the equalities hold

b” —1 .
) ) b, if ko € C(kl),
l v l S v ==
IZ:; GopWal ey (Mb,,(7)) Gy o wal ey (po, (l))‘ {0, i ks & Clhy).

Proof. For an arbitrary integer i, 0 < i < b” —1, with the b—adic representation
i =475 1507 we have that (i) = 0.4,_14y—3 . .. ig and py, (i) = 0.igi1 .. .dy_1.
(i) For each integer k1 € A(g1;g) we have that

g1 v—

(10) Gy pwal, (o (7)) = H Xsp(kgl))(w(iu—l—j)) = I

1—g
j=r—1—g1

X (@(5)-

v—1—j
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Let an arbitrary integer ko such that 592 < ko < p92+1 — 1 have the b—adic
representation ko = Z;’ 3 k(2)b9 with the assumption that for go+1 < j <v-—1

the equalities kj(?) = 0 hold. Hence, we have that

Gb (pwale pbl/ HX k:(Q)) II’J )
v—2—g1 v—1—g
1) = H XW(,CJ(@)(%O(%))-‘ I «x (k<2> H Xrl?) (i5))-
J=0 Jj=r—=1-g1 Jj=v—g

Then, from the equalities (4), (10) and (11) we obtain that

b’ —1
Z G, @wallﬂ (nb l/( ))Gb#ﬂwalkz (pb V( ))
=0
v—2—g1 b—1
(12) H > X k(2> ij))

7=0 ZJ—O

v—1-g b— v—1 b—
X H ZX k,(/])ly@GQDk(Z)) H ZX k(2>) p(ij)).

j=v—1-—g11;=0 Jj=v—g1i;=0

Let us assume that kp = k7. This means the following: For 0 < j <v—-2—g¢;

wehavethatk(z)—o Forv—1—-g1<j<v—-1-— gwehavethatk@):_() ;

1
and hence, for each 15, 0 < 1; < b—1, the equality x

—_

(k‘(17>17 )@ QD k(2> ( (Z])

holds. For v — g < j < v — 1 we have that k:]( —} Then, from the equality
(12) we obtain that

-1
Z GopWalky (M, (1)) Gy pwalky (o, (7)) = b”.

The condition kg # k] means that there exists at least one index §, 0 < <

e

v — 2 — g1, such that #0, or there exists at least one index k, v —1—¢g1 <

k < v—1-—g, such that kg ) #+ k‘l, 1—xs O there exists at least one index 7,

v—g <7 <wv—1, such that kg) # 0. In the first case, the corresponding sum
b—1 . . b—1

Zié -0 Xgp(k(”)(@( 5)) = 0, in the second case Z@;:o X (D

~Z1— H)@Gb@(kg))(w(ifi)) =
0 and in the third case Z —0 X (¢(i7)) = 0. According to the equality (12),

(k)P
we obtain that Zz‘:o Gb~,90walk1 (77b7u( ))Gb#ﬁwalkz (pbw(i)) =0.

The another statements of Lemma 2 can be proved by using similar tech-
niques. O
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7. Proofs of the main results

Proof of Theorem 1. According to Definition 3, and by using the equality (5)
for the (W, ; @) —diaphony of the net ¢, 4,2, we have that

1

F*Wooi oG Zoy) = Gromy 2 Rlosbi (ki ko))
(k1,k2)eNG\{0}

X ’Gba‘Pwalkl (H)|2|Gb7§0walk2 (M)|2

1 2

Z Gbﬁﬁwallﬁ (nb,u (i))Gb,sOwallw (pb,u (l))
1=0

1
X |—
bl/

b —1 2

b Z Gy, @walk(nb v(1))

=0

:C(l Zpal,bk

b —1
+ Zp ao; b; ]f by Z Gb,cpwalk(pb V( ))
k=1 1=0

v—1b91Htl—1 p—1 p92tl—1  p—1b01+tl_1 oo b92+1_1

I NDIED DD DD

g1=0 k1=b91 g2=0 ko=092 g1=0 k1=b91 go=v ko=0b92

2

oo b91tl_1 p—1 po2tl_g oo b91T1_1 oo b92+1_-1

DD IED DD IS

g1=V k1=b91 go=0 ko=092 g1=V k1=b91 go=V ko=b92

-1 2
X R(a;b; (klvk? Z Gh, Wwalkl (nb 1/( ))G’b,cpwalkg (pb 1/( ))
1=0
1
1 = — (2 b)) by PN by 36).
(13) C(a;b)( 1+ X2+ X3+ Xy + X5 + X¢)

We will calculate the sums in the equality (13). For the sum X;, we have
the following: In Lemma 1 for each integer k > 1 was shown the exact value of
the trigonometric sum Zgzgl Gyowaly(my,, (7). By using this result, we obtain
that

b’ —1 [e%e)
1
Y1 = Zp a1; by k) byZbewalk b, (% Zp aq; by k).ope (k)
k=1 i=0 k=1
0o [e%s) oo b1tl_g
= D plonbik) =) plobikd’) =) > plobikab”)

k=1 ki1=1 91=0 k1=b91
k=0(mod b")

co b9rtl_1 po91+1l_1

— Z Z b—Oél(gl-H/) 041I/Zb—a191 Z 1

g1=0 k1=b91 g1=0 k1=b91
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po 1

14 (b—1)b p(l—an)g 1) )

( ) gz:o )bal — b borv
1

By using the same technique, we can prove that

b —1 2
bo 1
(15) %y = Zp az;bik) |3 Z Gewalk(pry ()| = (b—1);o— 70
k=1 i=0

To calculate the sum Y3, we will use the introduced in Lemma 2 (i) sets
A(g1; 9) and obtain that

v—1 g1 v—1 p92+l_1
=Yy B S 3
g91=0 9=0 k1€A(g1;9) 92=0 ka=b92

2

b —1
1
b” Z GbySowalkl (776 l/( ))Gb @walkz (pb u( ))

By using Lemma 2 (i), we have that only in the case when go = v — 1 — g and
ko2 = k7 the trigonometric sum ZZ 0 (;Mpwalk1 (M, (1)) Gy pwaly, (py,, (7)) has a
value b” and in the another cases - a value 0. In this way, we obtain that

v—1 g
Y3 = Z p—C191 Zl Z p—2(v—1-9) bazu Z p—1g1 Zbazy Z 1.

g1=0 9=0k1€A(g1;9) 91=0 9=0 ki1€A(g1;9)

For arbitrary integers 0 < g < g1 < v — 1 the set A(g1;g) has a cardinality

(b - 1)2(){]1—9—1, if < g < g1 — 17

Algr; g)| =
|A(g159)| = {b_l’ o= 0.

According to the above two statements, for the sum X3, we will use the
following presentation

s v—1 v—1 g1—1
Y3 = bbaZ” Z plaz—a1)g Z 1+ Z p—191 Z p29 Z 1
g1=0 keA(g1591) g1=1 g=0 ki1€A(g1:9)
po2 v—1 2 v—1 g1—1
e = S e O S 5 s
g91=0 g1=1
v—1
b2 b — 1
=— (b—1) Z plaz—ar)gr 4 . Z pl—ai)g { plaa—1g ]
b g91=0 b 20 g1=1
pa2 v—1 (b 1) v—1 v—1

g91=0 g1=1 g1=1
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v—1

b2 b—1)2 —
= pazv (b - 1) z b(a2_0‘1)91 + (bOéQ _)b Z b(a2_al)91
g1=0 g1=0
(b— 1
Z b(l ai)g
S pe2 ) =
b2 S (az—a1)g1 —(b — 1)2 S (az—a1)g1
= T (b—1)) b +ba2_b2b
g1=0 g1=0

v—1
(b_l) b_12 (1—ar)
_basz be2 — p Zb v
g1=1

b2 ) (b—1)(b*2 —1) (az—a1)g1 (b—1)2 1—a1)g
- poav ha2 — p Zb o a2 —p Zb 11
91=0 g1=0

b )0 -1) 3 oy, (b=1)%™ (—ay)v
T boav bo2 —b 2.b +(ba1—b)(baz—b) [b _1}

g1=0

v—1
o (b — 1)ba2(ba2 - 1) 1 § : (a2—an)
= b()[2 — b . ba2]/ b 2 1)9

(b _ 1)2ba1+a2 1 B (b _ 1)2ba1+a2 1
(b(n _ b)(baz _ b) b(ocl-i-(lQ*l)V (boq _ b)(bag _ b) pozv”

(16) +

We will calculate the sum 4. For this purpose, let the integers 0 < gy < v—1,
b9t < ky < b9t 1, and g9 > v be fixed. We will use the introduced in Lemma
2 (ii) sets A(k;). Hence for each integer b92 < kg < b927! — 1 the modulus of
the trigonometric sum ’23;61 G0 Walk, (M1 (1)) Gy pwalk, (pb’y(i))‘ will accept a
value b¥ exactly (b — 1)b927" times. This is based on the fact that the digits

l(, ), kf_ﬁl, cee kg) can be arbitrary. In this way, we obtain that
v—1 b91tl 1 oo
Y, = Z p—1g1 Z Z p292 1)p927
g1=0 k1=b91 go=v
9 v—1 o0
Ul ;1) S e 3 pi-oale
91=0 g2=v

b2 1 1
—(b—1)> e E (1—a1)g1
(b 1) baQ —b b b(ag—l)l/ b

e 1 [ b b 1

—(h—_1)2 . — .
- (b 1) ho2 — b po2v | por — ber — p  plaa—1)v
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1)2 p +a ' 1
(bar — b)(bo2 — b) b2V
portaz 1
(b1 = B) (b2 =) plertaa=D

= (-

(17) —(b—1)?

To calculate the sum Y5, we can use the same techniques as above and obtain
that
portaz 1
(b —b) (b2 — b)  borv
a1+
1)? b - ! .
(bal _ b)(bag _ b) b(ocl-‘rocg—l)u

Y5 =(b—1)°

(18) —(b—

It is evident the symmetry between the results obtained in the equalities (17)
and (18).

We will calculate the sum }g. For this purpose, let the integers g1 > v,
b9t < ky < b9t —1, and g2 > v be fixed. We will use the introduced in Lemma
2 (iv) sets C(k1). Hence, for each integer 92 < ky < 0921 — 1 the modulus of
the trigonometric sum ’Z 0 Gb,(pwalk1 (M, (7)) Gy owalk, (pp,, (7)) | Will accept a
value b” exactly (b — 1)b927" times. This is based on the fact that the digits

kl(,2), kf_ﬁl, cee kg) can be arbitrary. In this way, we obtain that

91t 1 oo

EG—Zb a1g1 Z Zb Qzg2 1)b92~"

gi1=v k1=b91 go=v
b—l Zbl a1g1zb1 az)gs
g1=v g2=v
1 b 1 pe 1
_h1\2 . ) ' .
= (b 1) v b1 —p plaa—1v poz _p  plaz—1)v
pertaz 1
19 =(b—1)? : ,
( ) ( ) (ba] — b)(baz — b) plartaz—1)v

From the equalities (13), (14), (15), (16), (17), (18) and (19) we obtain that the
(Way,,; a)— diaphony of the net g, o, ZZ y“ satisfies the equality

v—1
1 | e—1peee—1 1 .

2 e Rolly _ . (2—a1)
F (WGbytP’O‘7Gb>%Zb,y ) - C(a; b) b2 — p hoav Zb s
bt b2 1 b2 1

OV MO Ve o T O Vpm bW}

with the introduced in the condition of the theorem constant C(«;b). Theorem
1 is finally proved.
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Proof of Corollary 1. (i) According to Theorem 1, in the case when a; =
a9 = o we obtain that

b* —1 v n 1
(b )ba b+2 bau boa/

2 C e ol
F (WGbﬁD’a’ GbﬁObe,V ) -

(ii) From the above expression we obtain that

0 - F2(WVGy 05 @ Gopn Zy sy ) _ -1 !

+
v (b—l)th p+2 v

and hence, the limit equality holds

b3 F(Way 03 @5 Gyon Z00) -l
lim — =
v—00 \/; (b 1) b‘)‘ b + 2

We put N = b” and find that v = lﬁ) gg JZ. From the above limit equality we obtain
that

. N% . F(WvaLp; Q; Gb,ngZl,:;/“) b —1
(200 Jim_ oz N N be |
e VIog [(b — 1)+ 2} log b

(iii) Let us assume that 1 < a < 2. Then, there exists a number 0 < ¢ < 3
such that § =1 — €. The equality (20) gives us that

Vlog N
N1l-—e :

F<WGb750;a; Gb:@bZ;f) €0 (

(iv) When o = 2 the equality (20) shows that

Vlog N
(WGb ©3 ;Gb,gob ) €0 ( ]5 ) .

(v) Let us in the equality (20) put o = 2 and obtain the limit equality

li N F(WGb 0 &5 Gy, <P1;Z ”LL) b2 —1
im S A —
o log N (b+2)logh

(vi) Let us assume that a > 2. Then, there exists a number £ > 0 that
5 = 1 +¢. The equality (20) shows that the inclusion

vlog N
F(We,, 03 O Gy 2 ) €0 ( Nite

holds.
Corollary 1 is finally proved.
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Proof of Corollary 2. (i) The condition a1 > ag allows us to calculate the
value of the sum Z;;é ble2=e1)9 Qo the equality holds

- ba1 _ bag ba1 _ bOéQ ’ b(alfocg)ll'

According to Theorem 1, in the case when a1 > ag the presentation holds
b2 F2Wey 0 GoenZoy )
1 b2 b1 (b2 — 1)
=——<(b—-1 1
C(a~b) {( " [ o e ]
—1)prtoz(p. por 4 po2 — portaz b1 1
+ ) +(b-1) .
(b2 — b) (b2 — b)(b*r — b22) ber — b | bl
(ii) From the above equality we obtain the limit equality

al—ag)v

1 ‘7 . . H:/J‘
Jim N2 FWa,, 0505 Gy 2 )
N=b"

(21) = \/( baz(bal — b)[(bal - bo‘2) + b1 (ba2 — 1)}

bot — bo2)[b21 (92 — b) + 602 (b1 — b) + (b — 1)bertaz]’

(iif) Let us assume that 1 < ap < 2. Then, there exists a number 0 < & < %
such that G = 1 — . The equality (21) gives us that

1
F(WGb,t,D;a;GbysDbZl’:f) €0 <W) :
(iv) Let o = 2. From the equality (21) we find that
1
FWayp o Gm%Zl’z#) €0 (N) .
(v) Let us assume that ap > 2. Then, there exists a number £ > 0 such that

F=1+c¢.
The equality (21) shows us that the inclusion

1
(WGb 0 O Gy bu) €0 (Nl—l—s)

holds.
Corollary 2 is finally proved.
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