
ar
X

iv
:2

40
7.

17
94

1v
1

 [
cs

.S
E

]
 2

5
Ju

l 2
02

4

RDFGRAPHGEN: A SYNTHETIC RDF GRAPH GENERATOR

BASED ON SHACL CONSTRAINTS

A PREPRINT

Marija Vecovska, Milos Jovanovik
Faculty of Computer Science and Engineering

Ss. Cyril and Methodius University in Skopje, N. Macedonia
marija.vecovska@students.finki.ukim.mk

milos.jovanovik@finki.ukim.mk

July 26, 2024

ABSTRACT

This paper introduces RDFGraphGen, a general-purpose, domain-independent generator of syn-
thetic RDF graphs based on SHACL constraints. The Shapes Constraint Language (SHACL) is a
W3C standard which specifies ways to validate data in RDF graphs, by defining constraining shapes.
However, even though the main purpose of SHACL is validation of existing RDF data, in order to
solve the problem with the lack of available RDF datasets in multiple RDF-based application devel-
opment processes, we envisioned and implemented a reverse role for SHACL: we use SHACL shape
definitions as a starting point to generate synthetic data for an RDF graph. The generation process
involves extracting the constraints from the SHACL shapes, converting the specified constraints into
rules, and then generating artificial data for a predefined number of RDF entities, based on these
rules. The purpose of RDFGraphGen is the generation of small, medium or large RDF knowledge
graphs for the purpose of benchmarking, testing, quality control, training and other similar pur-
poses for applications from the RDF, Linked Data and Semantic Web domain. RDFGraphGen is
open-source and is available as a ready-to-use Python package.

1 Introduction

The Semantic Web has been a topic of interest for academia and the industry for over two decates now [5]. Over this
period, we have witnessed the acceptance of RDF [1] as a standard for representing and publishing data on the Web
and internally in organizations, along with a plethora of other W3C standards, such as RDFS, OWL, SPARQL, etc.
[12]. These standards, most notably RDF, have been widely accepted on the Web, especially after the introduction of
Schema.org as a lightweight ontology / vocabulary [11]. Currently, around 50% of the webpages on the Web contain
RDF-based metadata [3].

This has also led to the development of many tools, libraries, applications, systems and databases which work with
or use RDF as a model for the data. During the development lifecycle of each of them, benchmarking and testing are
important steps, which validate the usage scenarios and provide metrics about their real-world usability [4]. These
benchmarks and test scenarios sometimes require application-specific or domain-specific RDF datasets, which are not
always readily available. This is where synthetic RDF datasets come in. They are datasets which contain entities
and data which are artificial, but follow the structure and vocabulary or ontology expected from the application or the
system. They fulfill the need for data in a specific format, from a specific domain, for an application or a system to be
tested or benchmarked [8][9]. Depending on the specific needs, these synthetic RDF datasets can contain from a few,
up to millions of different entities and RDF triples [7].

Synthetic RDF data can be created using data generators. These are usually task-specific, i.e. are created for the
specific purpose at hand, when benchmarking or testing a system or an application. What was currently missing, was
a generic synthetic RDF data generator, which would be able to generate artificial RDF data from any domain.

http://arxiv.org/abs/2407.17941v1

A PREPRINT - JULY 26, 2024

In order to fill this missing piece in the puzzle of the RDF world, we designed and implemented a general-purpose,
domain-independent synthetic RDF data generator, based on SHACL constrains. It reverses the role of the Shapes
Constraint Language (SHACL), which was designed for validation of existing RDF data; we now use SHACL shapes
as a starting point to generate new, artificial RDF data and construct an RDF knowledge graph of the desired size.

SHACL is a W3C standard for validating RDF graphs against a set of conditions [2]. These conditions are provided
as shapes defined in RDF (shape graph), which are used to validate that a given RDF graph (data graph) satisfies a
set of conditions. However, these shapes can also be viewed as a description of the RDF graphs that do satisfy their
conditions. We use this characteristic of SHACL shapes to generate synthetic RDF graphs which satisfy the constraints
defined in the shapes.

This paper sets to describe the design and implementation of RDFGraphGen - a domain-independent generator of
synthetic RDF graphs based on SHACL constraints. The SHACL constraints are used as a description of the structure
and data composing the RDF graph, and in accordance with these rules, the corresponding RDF triples are generated.
RDFGraphGen is domain-agnostic, meaning that the source SHACL shapes can be from any domain. The generator
can generate an RDF graph with a specified number of entities, providing flexibility for the end-users. These small,
medium or large RDF datasets (knowledge graphs), generated by RDFGraphGen, can then be used in benchmarking,
testing, quality control, training and other similar tasks in the application lifecycle in the domains of RDF, Linked
Data and the Semantic Web. Additionally, RDFGraphGen is open-source [20] and is available as a ready-to-use
Python package [21].

2 Related Work

Generating synthetic RDF data is not a new topic. It has been of interest to the research community for quite a long
time, and here we present a discussion on the existing solutions and how our approach relates to them. After that, we
present a short overview of SHACL shapes.

2.1 Synthetic RDF Data Generation

Tab2KG is a method that is used for interpretation of tables with previously unseen data and automatically infers their
semantics to transform them into semantic data graphs [10]. The Tab2KG algorithm transform tabular data into a
semantic data graph by automatically inferring the domain ontology and mapping the table columns to the ontology
classes and properties, before transforming the rows of the table into RDF triples. This method, despite generating
large volumes of RDF data, does not support generating data graphs from a particular user-defined ontology, nor does
it allow defining rules about the generated data. In other words, the tabular data is provided, and the ontolology
is adjusted to fit this data. In contrast, RDFGraphGen uses a reversed approach to generate data, i.e. it takes a
description of a target data graph as a SHACL shape, and generates entities according to this description, using random
or structured values for the objects in the RDF triples of the generated entities.

GAIA is a generic RDF data generator that allows users to generate RDF triples by conforming to any ontology [17]. It
is OWL-based, and generates RDF objects based on any properly defined OWL ontology. After testing it, it is apparent
that the generator correctly generates a user defined number of objects following the OWL ontology. However, GAIA
offers no way to constrain the objects’ values beyond datatype. RDFGraphGen uses a properly defined SHACL shape
as a description of the entities that should be generated, allowing the user to describe the object’s values in great
detail, and the generator uses this details to generate more logically correct entities. RDFGraphGen also allows using
properties from multiple ontologies in a generated entity, since it doesn’t generate data based on a specific ontology.
The ontology is implicitly defined in the SHACL shape via the properties. However, RDFGraphGen is SHACL-based,
leading to worse interconnectivity of the generated entities and worse control over the number of generated entities for
each class.

GRR is a system for generating random RDF data, using SPARQL-like syntax to describe the desired ontology [6].
GRR can generate entities using the desired ontology, and it allows the user to provide input for the object’s values.
However, GRR offeres no method for constraining the objects’ values beyond providing them beforehead, making the
process much more complicated for the user. GRR is much more suitable for generating networks of interconnected
entities, according to the user’s definition, which is beyond the capabilities of RDFGraphGen at this time.

Our research team has some experience in designing and using RDF data generators in several domains, as well. For
instance, in the domain of social network data, for the purpose of benchmarking RDF storage solutions, we have
developed a domain-specific RDF dataset generator [19]. It is written in the Java programming language, and builds
on a previous generator, in order to improve some of the metrics in the resulting graph and make its features closer to
a real-world RDF dataset. Aside from this, our team has also worked with other RDF graph generators, for instance in

2

A PREPRINT - JULY 26, 2024

the field of geo-spatial data [16][15][14] and in benchmarking RDF storage solution [13][18]. All of these examples
include purpose-built RDF data generators, which serve a specific need. In contrast, our approach with RDFGraphGen
is to provide a general-purpose, domain-independent generator which can work for any scenario.

2.2 A Brief Overview of SHACL Shapes

SHACL (Shapes Constraint Language) is a W3C standard used to validate RDF data against a set of conditions,
known as shapes, ensuring the data conforms to specific requirements [2]. It enables the definition of constraints on
RDF graphs, enabling validation and verification of data in a structured and standardized way.

A SHACL shape determines how to validate a focus node based on the values of properties and other characteristics
of the focus node. For example, shapes can declare a condition that a focus node has a particular value for a given
property, along with a minimum number of values for the property. The shapes are written in RDF, as well, forming
SHACL graphs.

SHACL defines two types of shapes:

• Node shapes: shapes about the focus node itself,

• Property shapes: shapes about the values of a particular property or path for the focus node.

A single SHACL graph can contain multiple node shapes. Each node shape usually contains multiple property shapes.

Below we show an example of a SHACL shape with a focus node that represents a person.

Example 1: A SHACL Shape for Person Entities

@prefix sh: <http://www.w3.org/ns/SHACL#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix ex: <http://example.com/ns#> .

ex:PersonShape
a sh:NodeShape ;
sh:targetClass ex:Person ;
sh:property [

sh:path ex:name ;
sh:datatype xsd:string ;
sh:maxCount 1;
sh:name "Person’s name" ;

] ;
sh:property [

sh:path ex:birthDate ;
sh:lessThan ex:deathDate ;
sh:maxCount 1 ;

] ;
sh:property [

sh:path ex:gender ;
sh:in ("female" "male") ;

] .

The SHACL shapes graph in this example contains one nodes shape, ex:PersonShape. This shape targets any
ex:Person entity in the RDF data graph. The node shape contains three property shapes which describe the properties
of the target node. The first property shape constraints the person’s name, the second constraints its birth date and the
third its gender. A property shape describes a property in an RDF data graph. The property is specified as the object
in the RDF triple where the property shape is the subject (usually a blank node), and sh:path is the predicate, i.e.
ex:name, ex:birthData and ex:gender in this case.

3 RDFGraphGen

RDFGraphGen is a generic RDF graph generator that generates RDF entities according to a provided SHACL shapes
graph. RDFGraphGen is domain-agnostic, and can be used in multiple scenarios where non-specific RDF data is
needed, such as application or algorithm testing, system and tool benchmarking, software quality control, training of

3

A PREPRINT - JULY 26, 2024

machine learning models, etc. In this section we will go into the details of how it was designed and implemented, and
we will present several examples which showcase how it works in practice.

3.1 Design

SHACL shape graphs were introduced as a standardized way to validate that a given dataset of RDF data satisfies a
given set of conditions. However, the same SHACL shape graphs can also be viewed as a description of the RDF data
graphs that do satisfy these conditions [2]. RDFGraphGen uses these conditions as rules to generate synthetic data
into RDF graphs, that conform to the description provided in the SHACL shape graphs.

First, let us look into the overall structure of the generator. The generator consists of an extracting component and a
generating component. A SHACL shape graphs can describe one or multiple different data graphs. Each data graph
is separately described by a SHACL node shape. These SHACL node shapes can contain multiple SHACL property
shapes which describe the triples in the RDF data graphs.

First, given a SHACL shapes graph, the extracting component analyzes it, locates all of the SHACL node shapes
described in it, and creates a shape map for each of them. A shape map contains the description of a specific SHACL
node shape. Then, the generating component generates a specified number of RDF entities into an RDF data graph,
using the shape maps as templates.

The Generation Steps. The RDFGraphGen is intended to be used in the following way: the user provides a Turtle
(.ttl) file which contains a SHACL shapes graph (e.g. input-shapes.ttl), an empty Turtle file in which the
generated RDF will be written into (e.g. output-graph.ttl), and the number of entities which should be generated
(entityCount). After the generation process has finished, the generated RDF data graph can be accessed via the
output file (e.g. output-graph.ttl).

The generation process consists of the following steps:

• Step 1: The generator gets, reads and parses the input file which contains the SHACL shapes graph.

• Step 2: Next, the generator identifies the SHACL node shapes.

• Step 3: The generator creates a shape map for each separate SHACL node shape. It stores all of these separate
shape maps in a single root shape map.

• Step 4: The generator generates RDF entities with their corresponding properties and values as separate
smaller RDF data graphs, based on the shape maps.

• Step 5: The generator writes out the generated RDF data graphs into a single RDF data graph, into the output
file.

In the next section, we will present a more in-depth explanation of how the RDFGraphGen generator achieves this.

3.2 Implementation

In this section we will describe the implementation of the RDFGraphGen generator. RDFGraphGen was coded using
the Python programming language, and it uses a few Python libraries: rdflib for RDF graph functionality and exrex
for generating strings using regular expressions.

3.2.1 Step 1 & 2: Finding the SHACL Node Shapes

Reading and parsing the input Turtle file in Python is trivial. The SHACL node shapes are usually the subject in an
RDF triple where the predicate is the rdf:type predicate and the object is sh:NodeShape. RDFGraphGen selects
there triples and extracts the node shapes and their definitions.

3.2.2 Step 3: Creating a Shape Map

The next step is to extract the constraints for each node shape from the SHACL graph, to create a sub-dictionary for
each separate shape, and to provide a simple way for accessing the options from the SHACL lists - used for logical
constraint components and sh:in.

RDFGraphGen extracts the description of the target data graph from the corresponding SHACL node shape and its
nested property shapes in a structure called a shape map. A shape map is a dictionary-like structure representation of a
SHACL shape. The property shapes which are nested in a node shape, are also represented by shape maps and stored
as properties in the shape map of their node shape.

4

A PREPRINT - JULY 26, 2024

To explain the procedure more precisely, we provide a list of definitions. The definitions relating to SHACL shapes
are reiterated from the SHACL standard [2] in our context, while the others, relating to shape maps, are our own.

Definition 1: A SHACL node shape NS is a subject of an RDF triple where the predicate is rdf:type and the object
is sh:NodeShape.

Definition 2: A SHACL property shape PS is the object of an RDF triple where the subject is an NS and the predicate
is sh:property.

Definition 3: A SHACL shape S is either a SHACL node shape (NS) or a property shape (PS).

Definition 4: A SHACL shapes graph ShapesG is an RDF graph that contains SHACL shapes (S). Each shapes graph
contains n shapes: S1,...,Sn

Definition 5: A property Pi is the object of an RDF triple where the subject is a SHACL property shape PSi and the
predicate is sh:path.

Definition 6: We define SMi as the shape map of the shape Si. SMi contains the constraints defined for Si in the
source SHACL shapes graph (ShapesG).

Definition 7: We define SM properties as the structure in a shape map (SM) that contains other shape maps (SM).

Definition 8: A shape Si contains a property shape PSi if Si is the subject of an RDF triple where the predicate is
sh:property and the object is PSi.

Definition 9: A shape Si points to a shape Sj if there exists a shape Sk, such that Si contains Sk directly or indirectly,
and there exists an RDF triple where Sk is the subject, sh:node is the predicate and Sj is the object.

Algorithm 1 describes how a shape S is transformed into a shape map SM, while handling all of its nested shapes. This
algorithm is recursive and is used for mapping all of the SHACL shapes from the source SHACL document, into their
corresponding shape maps.

Algorithm 1 Transform Shape into a Shape Map

Input A SHACL Shape (S), and the SHACL shapes graph (ShapesG) that contains it
MapShape(S, ShapesG)

Create a SM
For Each triple S - predicate - object in ShapesG

// means that “object” is a Property Shape (PS) contained inside the Shape (S)
If predicate == sh:property

Add MapShape(object, ShapesG) to SM properties.
Else

Add predicate : object pair to SM

In Algorithm 1, ShapesG is a shapes graph which contains one or more shapes. Each node shape NS1,...,NSn in the
ShapesG graph is transformed into a shape map SM1,...,SMn accordingly, and added to SM0, as NSi : SMi key -
value pairs. Here, SM0 represents the root shape map that represents the shapes graph.

Each node shape NSi can contain zero or more property shapes PS1,...,PSn.

If a NSi contains at least one PS, a structure SM_properties is added to SMi, to store the shape maps for each PS.

For each PSj contained in a NSi, a SMj is added to SM_properties, as a Pj : SMj key - value pair, where Pj is
the property described by PSj .

If PSj contains another property shape PSk, the same procedure is repeated. If not, the SHACL constraints from Pj

are added to SMj .

The last 2 steps are repeated until there are no more nested property shapes.

To illustrate the procedure, let’s use the SHACL shape from Example 1. Below is the root shape map for it, presented
as Example 2.

Example 2: A Shape Map for the SHACL Shape from Example 1

{ ‘ex:PersonShape’:
{ ‘rdf:type’: ‘sh:NodeShape’,

‘sh:targetClass’: ‘ex:Person’,
‘properties’:

5

A PREPRINT - JULY 26, 2024

{ ‘ex:birthDate’:
{ ‘sh:lessThan’: ‘ex:deathDate’,
‘sh:maxCount’: ‘1’,
‘sh:path’: ‘ex:birthDate’ },

‘ex:deathDate’:
{ ‘sh:path’: ‘ex:deathDate’ },

‘ex:gender’:
{ ‘sh:in’: [‘female’, ‘male’],
‘sh:path’: ‘ex:gender’ },

‘ex:name’:
{ ‘sh:datatype’: ‘xsd:string’,
‘sh:maxCount’: ‘1’,
‘sh:name’: ‘‘person’s name’’,
‘sh:path’: ‘ex:name’ }

}
}

}

3.2.3 Step 4 & 5: Generating the RDF Entities

The final two steps of the RDFGraphGen procedure is the actual generation of the synthetic RDF triples, which will
comprise the synthetic RDF knowledge graph, and its serialization into an output file.

The synthetic RDF graphs are generated based on the shape maps which are the result of Step 3, as described in
the previous section. The SHACL constraints [2] translated from the source SHACL document into the shape maps,
describe precisely and in great detail how the generated RDF triples should look like:

• the value type constraint components define an ontology type for the generated entity;

• the cardinality constraint components denote the number of entities / values which should be generated;

• the value range constraint components and string-based constraint components describe the format, pattern
and length of the values which should be generated;

• the property pair constraint components provide a way to constrain the value of one object based on the value
of an object in another triple;

• the logical constraint components offer a choice of constraints to choose from while generating the synthetic
data.

Below, we present Algorithm 2 which describes how a shape map created in Step 3 is used to generate synthetic RDF
triples and recursively add them to the resulting synthetic RDF knowledge graph.

Algorithm 2 Generate RDF Entities based on a Shape Map

Input A Shape Map (SM) and the data graph (G) which is being generated
MapToRDF(SM, G)

Check for SM properties
// Means that S contained nested property shapes
If SM properties exists:

Create Node
For each Pi : SMi in SM properties

Add Node - Pi - MapToRDF(SMi, G) triple to G
return Node

// Means that S was a property shape that contained no other shapes, and only explained the property
Else

return GenerateObject()

The process of generating synthetic RDF triples, presented in Algorithm 2, is a recursive algorithm comprised of the
following main steps:

• First, all of the shape maps (SM1 ... SMn) based on node shapes which are not pointed to by another shape,
are located.

6

A PREPRINT - JULY 26, 2024

• For each SMi from the previous step, an unnamed node Nodei is generated and added to the result graph G.

• If SMi contains properties, represented by the SM properties structure, a triple is added to the result graph G
for each property-map pair Pj : SMj in SM properties. In the triple, Nodei is the subject, Pj is the predicate
and MapToRDF(SMj , G) is the object, i.e. the triple is structured as Nodei → Pj → MapToRDF(SMj ,
G). MapToRDF(SMj , G) is the result node or literal generated recursively based on SMj . If SMi contains
no SM properties, a literal is generated and added as an object in the triple.

• If NSi points to another node shape NSk, a number of entities Ek(1),...,Ek(f) are generated based on SMk.
The number is determined by the SHACL constraints for NSk.

Generating Values. The generated synthetic object values in an RDF knowledge graph can be domain-specific or
random, depending on whether the generated entity adheres to a known type from a well-known ontology, on the
predicate used in the triple and on the SHACL constraints defined for the property in question.

In Algorithm 2, the process of generating an object value is replaced with the GenerateObject() function. Below, we
will describe the process of generating an object’s value in a synthetic RDF triple.

When generating an object, the first step is to try and infer what would be it’s logical value, given the predicate and the
RDF type of the entity as defined in the input SHACL shape. For example, if a triple is being generated for an entity of
type schema:Person from the widely used Schema.org vocabulary [11], where the predicate is schema:firstName,
it is natural that the generated value of the object should be a human first name. In this case, the generator can pick
a first name randomly from a set of pre-generated first names which it uses as a dictionary. The generator contains
sets of pre-generated values for the most common properties from Schema.org, and for these properties values are
randomly selected from these sets by the RDFGraphGen generator.

Even though the current version of the generator has an implementation of this functionality for a several entity types
from the Schema.org vocabulary, it can easily be expanded to include more types from different ontologies, either
general or domain-specific.

If the type of the entity for which a triple is being generated is unknown, the name of the predicate in the triple can
provide useful information concerning the value of the object. For example, if the name of the predicate is birthDate,
from a random or unknown ontology, the word date suggests that the object should be a date. Furthermore, if the
predicate name contains the word telephone or phone and no data concerning the pattern is found in the input
SHACL shape, a general pattern for a telephone number can be used by the generator to generate a random value
which will make the generated synthetic RDF triple more relevant. The generator can easily be expanded to include
more rules which are based on the names of previously unknown predicates it comes across.

When the value of the object cannot be picked from a pre-defined set of specific values, a function for generating a
random, synthetic value is called. This function uses all of the constraints defined in the input SHACL shape which
are related to the object, and which carry useful information about the object and its value. This function generates
an object or a literal value based on a number of SHACL constraints: datatype, minimum length, maximum length,
pattern, minimum and maximum value, etc.

This last part is what makes the RDFGraphGen generator general purpose and domain-independent: it can generate
synthetic RDF triples and graphs from any domain, regardless of if it is explicitly familiar with it or not. The pre-
generated sets of first names, last names, street names, professions, movie titles, book titles, etc., are solely good to
have features, which increase the quality of the generated RDF knowledge graphs. However, that does not diminish
the value of the synthetic graphs which the RDFGraphGen generator can generate when it works with a new and
unfamiliar domain. The generality of RDFGraphGen is its most prominent feature.

Outputting the Synthetic RDF Graph. As a final step, the generator outputs the generated synthetic RDF graph
into the output Turtle file. This file contains all synthetic RDF triples generated in the previous step.

As we mentioned before, the RDFGraphGen generator also uses the input parameter entityCount. This parameter
determines the size of the generated synthetic RDF graph, which can be anything from a single entity, to a graph
containing billions of RDF triples.

For the sake of simplicity, the number of entities to be generated relates to the first node graph contained in the input
SHACL graph, in cases when multiple node graphs are present in it. The number of entities from the other node
graphs will be determined by the relation between the first node graph and the other node graphs (e.g. similarly to the
example presented in Section 3.3, where each person can have one or no addresses), or the generator will generate the
same amount of entities from it as well, if it is not related to the first node graph.

7

A PREPRINT - JULY 26, 2024

3.3 Generated Example using “schema:Person”

In order to showcase how RDFGraphGen works for specific SHACL shapes as inputs, we present here one example
of using the schema:Person class from Schema.org. Other examples, from various domains, using ontologies and
types which are familiar or not to the generator, are presented in Appendix A. Even more examples are available on
the project’s GitHub page [20].

In this example, the input SHACL shape refers to entities of the type schema:Person. From the definition, each such
entity is constrained by SHACL to have: a given name and a last name, or a full name; exactly one date of birth,
which will be earlier then a possible death date; a gender with one of the two available values; an email; a job title;
a telephone number; an address, which has a specified complex type (it’s an object, not a literal). Additionally, the
address objects have a street address which is a string value; a postal code which can be a string or an integer with
values between 10.000 - 99.999.

The content of the input SHACL shape file is presented below:

input-shape-person.ttl

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix schema: <http://schema.org/> .
@prefix sh: <http://www.w3.org/ns/SHACL#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

schema:PersonShape
a sh:NodeShape ;
sh:targetClass schema:Person ;
sh:xone (

[
sh:property [

sh:path schema:givenName ;
sh:datatype xsd:string ;
sh:name "given name" ;

] ;
sh:property [

sh:path schema:familyName ;
sh:datatype xsd:string ;
sh:name "last name" ;

] ;
]
[

sh:path schema:name ;
sh:datatype xsd:string ;
sh:name "full name" ;

]
);
sh:property [

sh:path schema:birthDate ;
sh:lessThan schema:deathDate ;
sh:minCount 1 ;
sh:maxCount 1 ;

] ;
sh:property [

sh:path schema:gender ;
sh:in ("female" "male") ;

] ;
sh:property [

sh:path schema:email ;
] ;
sh:property [

sh:path schema:jobTitle ;
] ;
sh:property [

sh:path schema:telephone ;
] ;
sh:property [

8

A PREPRINT - JULY 26, 2024

sh:path schema:address ;
sh:node schema:AddressShape ;

] .

schema:AddressShape
a sh:NodeShape ;
sh:closed true ;
sh:property [

sh:path schema:streetAddress ;
sh:datatype xsd:string ;

] ;
sh:property [

sh:path schema:postalCode ;
sh:or (

[
sh:datatype xsd:string

]
[

sh:datatype xsd:integer
]

) ;
sh:minInclusive 10000 ;
sh:maxInclusive 99999 ;

] .

After running the RDFGraphGen generator on the input SHACL shapes file, and setting the parameter entityCount
to 2, this is an example of a generated synthetic RDF graph:

output-graph-person.ttl

@prefix schema: <http://schema.org/> .
@prefix sh: <http://www.w3.org/ns/SHACL#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.org/ns#Node100> a schema:Person ;
schema:address <http://example.org/ns#Node101> ;
schema:birthDate "1955-07-07"^^xsd:date ;
schema:deathDate "1981-07-07"^^xsd:date ;
schema:email "ulysses_pate@gmail.com" ;
schema:familyName "Pate" ;
schema:gender "male" ;
schema:givenName "Ulysses" ;
schema:jobTitle "bartender" ;
schema:telephone "647-466-552849" ;
sh:description schema:PersonShape .

<http://example.org/ns#Node102> a schema:Person ;
schema:address <http://example.org/ns#Node103> ;
schema:birthDate "1986-07-07"^^xsd:date ;
schema:email "sarajanebenjamin@gmail.com" ;
schema:gender "female" ;
schema:jobTitle "psychologist" ;
schema:name "Sarajane Benjamin" ;
schema:telephone "722-279-0247032" ;
sh:description schema:PersonShape .

<http://example.org/ns#Node101> schema:postalCode 17481 ;
schema:streetAddress "no. 3 Lily st" ;
sh:description schema:AddressShape .

<http://example.org/ns#Node103> schema:postalCode "Fh6UpXLm" ;

9

A PREPRINT - JULY 26, 2024

schema:streetAddress "no. 1 Gillette ave" ;
sh:description schema:AddressShape .

Let us have a look at some of the noteworthy aspects of what happens when RDFGraphGen generates the synthetic
RDF graph in this case. First, when it generates the name of each person entity, only one option from the xone
constraint can be selected. In the first entity, the person has separate properties for the first name and the surname. In
the second entity, the person has a single property for the full name, and the full name includes both the first name and
the surname, as a single value.

Further, properties related to dates have a date value for the object, despite not containing a datatype con-
straint in the description. The generator extracts information from the property names schema:birthDate and
schema:deathDate, and determines that the objects’ values in the generated RDF triples should be dates.

The email values are comprised of the first name and the surname of the person. This has been specifically predefined
in the generator, when working with schema:Person entities and their email addresses. Some level of randomness is
still included with the delimiter between the first name and surname in the email address.

The generated phone numbers follow a specific pattern, because the generator recognizes that the value of the object
should be a phone number. This is again based on the property name, ’schema:telephone’ in this case, so the generator
applies the predefined pattern constraint.

The address for each person is generated as a separate RDF entity, based on the SHACL shape in the input file, which
constrains the address.

3.4 Packaging as a Python library

In order to make the RDFGraphGen generator more easily available for the community, we packaged it as a Python
library and published it online. Now, any interested stakeholder can get it locally and use it as a command-line tool.

RDFGraphGen is available via the command: pip install rdf-graph-gen, which downloads and installs it lo-
cally on the user machine. Afterwards, RDFGraphGen can be used via the command-line, using the command:

rdfgen input-shape.ttl output-graph.ttl entity-count

The command rdfgen takes three arguments as input:

• The file containing the input SHACL graph (e.g. input-shape.ttl),

• The file where the generated synthetic RDF graph is to be written (e.g. output-graph.ttl), and

• The number of entities to be generated.

The full RDFGraphGen code, along with the CSV files containing pre-defined sets of values, examples of SHACL
shape files and generated graph examples, are publicly available as a GitHub repository1 [20].

Using a CI/CD pipeline based on GitHub actions, we release a new version of the RDFGraphGen generator on PyPi
every time there is a change in the GitHub repository. The project is publicly available on PyPi2 [21].

4 Discussion and Future Work

This is the first iteration and the first release of the RDFGraphGen generator. Even though it is general-purpose and can
be used in any domain, we added a few additional rules for the most commonly used ontologies and their classes, in
order to make a more user-friendly output of generated RDF triples, where the values are not completely random. This
approach has its drawbacks: a question arises as to why were these specific ontologies and classes chosen over others,
why was the list not expanded, etc. These are all valid questions, and the answer is that we had to stop somewhere,
and release this first version.

In the future, we plan to address several shortcomings of RDFGraphGen. Currently, the interconnections among
entities in the generated RDF graphs are limited, so our focus will be on producing more interconnected data graphs.
Additionally, we aim to introduce an interface which will allow users to have a better control of the number of entities

1RDFGraphGen on GitHub: https://github.com/mveco/RDFGraphGen
2RDFGraphGen on PyPi: https://pypi.org/project/rdf-graph-gen/

10

https://github.com/mveco/RDFGraphGen
https://pypi.org/project/rdf-graph-gen/

A PREPRINT - JULY 26, 2024

generated for each node shape defined in the SHACL shapes graph, as well as enhance control over the connections
between these generated entities.

The next step will involve thorough testing of the generator’s capabilities, followed by a comparison with other similar
generators. Furthermore, adding support for multiple ontologies, their types, and properties is an ongoing task that we
will continue to work on.

Additionally, in order to decentralize and democratize the work on RDFGraphGen, we have published it as open-
source, so any interested stakeholder can either join in its collaborative development via GitHub, or fork it and make
their own version of it.

5 Conclusion

In this paper, we introduce RDFGraphGen, a general-purpose, domain-agnostic synthetic RDF graphs generator,
which is based on SHACL constraints. Even though generators for synthetic RDF data have been developed in the
past, this is the first time a domain-independent generator is introduced, and it is the first time a generator is based on
SHACL constraints.

Even though the SHACL standard has been developed for the purpose of validating existing RDF data, we reverse
its role here and use it as a starting point to generate new, synthetic RDF data which are aligned with the constraints
defined by the SHACL shapes.

The synthetic RDF knowledge graphs, generated by RDFGraphGen, can be used in many different scenarios in the
software development cycle, in the domains of RDF data, Linked Data and the Semantic Web, such as: application
testing, algorithm testing, application benchmarking, software quality control, training of machine learning models,
etc.

The domain independence feature of RDFGraphGen is its main feature: the generated RDF graph will contain data
from the domain which is described in the source SHACL shapes file. It can be data about people, movies, events, web
pages, books, temperature measurements, scientific experiments, healthcare records, gene data, geographic locations,
social media interactions, financial transactions, e-commerce products, biodiversity records, transportation schedules,
educational courses, etc. Given the generality of SHACL and its approach, the same generality is available via the
RDFGraphGen generator, as well.

In order to make the generated RDF graphs and the values in it more user-friendly, and closer to real-world values,
the generator is able to recognize some of the most common classes and properties from the Schema.org ontology.
Additionally, the generator can use the name of a given predicate to detect some of the more common datatypes, such
as date, phone, email, etc. This reduces the amount of gibberish data, which is structurally valid from a SHACL point
of view, but can be unwanted in some scenarios.

RDFGraphGen is very user-friendly: it can produce a large RDF knowledge graph with synthetic data, based on one
or multiple SHACL shapes from a given domain, with just a single command-line instruction. The amount of RDF
entities in the generated data can be controlled directly by the user.

The code of the RDFGraphGen generator is publicly available via its GitHub repository. It is also available as a public
Python library, hosted on PyPi, making it available for use by any interested user via a command-line interface. This
approach also allows us to further develop the generator and make the new changes transparent via these two public
locations.

References

[1] RDF 1.1 Concepts and Abstract Syntax. https://www.w3.org/TR/rdf11-concepts/.

[2] Shapes Constraint Language (SHACL). https://www.w3.org/TR/shacl/.

[3] Web Data Commons - RDFa, Microdata, Embedded JSON-LD, and Microformats Data Sets - October 2023.
http://webdatacommons.org/structureddata/2023-12/stats/stats.html.

[4] Renzo Angles, Peter Boncz, Josep Larriba-Pey, Irini Fundulaki, Thomas Neumann, Orri Erling, Peter Neubauer,
Norbert Martinez-Bazan, Venelin Kotsev, and Ioan Toma. The Linked Data Benchmark Council: A Graph and
RDF Industry Benchmarking Effort. ACM SIGMOD Record, 43(1):27–31, 2014.

[5] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web: A New Form of Web Content that is
Meaningful to Computers will Unleash a Revolution of New Possibilities. In Linking the World’s Information:
Essays on Tim Berners-Lee’s Invention of the World Wide Web, pages 91–103. 2023.

11

https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/shacl/
http://webdatacommons.org/structureddata/2023-12/stats/stats.html

A PREPRINT - JULY 26, 2024

[6] Daniel Blum and Sara Cohen. Generating RDF for Application Testing. In 9th International Semantic Web
Conference ISWC 2010, page 105, 2010.

[7] Songyun Duan, Anastasios Kementsietsidis, Kavitha Srinivas, and Octavian Udrea. Apples and Oranges: A
Comparison of RDF Benchmarks and Real RDF Datasets. In Proceedings of the 2011 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 145–156, 2011.

[8] Kleanthi Georgala, Mirko Spasić, Milos Jovanovik, Henning Petzka, Michael Röder, and Axel-Cyrille Ngonga
Ngomo. MOCHA2017: The Mighty Storage Challenge at ESWC 2017. In Semantic Web Challenges, pages
3–15, 2017.

[9] Kleanthi Georgala, Mirko Spasić, Milos Jovanovik, Vassilis Papakonstantinou, Claus Stadler, Michael Röder,
and Axel-Cyrille Ngonga Ngomo. MOCHA2018: The Mighty Storage Challenge at ESWC 2018. In Semantic
Web Challenges, pages 3–16, 2018.

[10] Simon Gottschalk and Elena Demidova. Tab2KG: Semantic Table Interpretation With Lightweight Semantic
Profiles. Semantic Web, 13(3):571–597, 2022.

[11] Ramanathan V Guha, Dan Brickley, and Steve Macbeth. Schema.org: Evolution of Structured Data on the Web.
Communications of the ACM, 59(2):44–51, 2016.

[12] Aidan Hogan. The Semantic Web: Two Decades On. Semantic Web, 11(1):169–185, 2020.

[13] Milos Jovanovik and Mirko Spasić. Benchmarking Virtuoso 8 at the Mighty Storage Challenge 2018: Challenge
Results. In Semantic Web Challenges, pages 24–35, 2018.

[14] Milos Jovanovik and Mirko Spasić. Transforming Geospatial RDF Data into GeoSPARQL-Compliant Data:
A Case of Traffic Data. In Proceedings of the 16th International Conference on Informatics and Information
Technologies, pages 76–81, May 2019.

[15] Milos Jovanovik, Timo Homburg, and Mirko Spasić. Software for the GeoSPARQL Compliance Benchmark.
Software Impacts, 8:100071, 2021. doi: https://doi.org/10.1016/j.simpa.2021.100071.

[16] Milos Jovanovik, Timo Homburg, and Mirko Spasić. A GeoSPARQL Compliance Benchmark. ISPRS Interna-
tional Journal of Geo-Information, 10(7), 2021. doi: 10.3390/ijgi10070487.

[17] Tanguy Raynaud, Samir Amir, and Rafiqul Haque. A Generic and High-Performance RDF Instance Generator.
International Journal of Web Engineering and Technology, 11(2):133–152, 2016.

[18] Mirko Spasić and Milos Jovanovik. MOCHA 2017 as a Challenge for Virtuoso. In Semantic Web Challenges,
pages 21–32, 2017.

[19] Mirko Spasić, Milos Jovanovik, and Arnau Prat-Pérez. An RDF Dataset Generator for the Social Network
Benchmark with Real-World Coherence. In Workshop on Benchmarking Linked Data (BLINK 2016), at the 15th
International Semantic Web Conference (ISWC 2016), 2016.

[20] Marija Vecovska and Milos Jovanovik. RDFGraphGen on GitHub, 2024.
https://github.com/mveco/RDFGraphGen.

[21] Marija Vecovska and Milos Jovanovik. RDFGraphGen on PyPi, 2024.
https://pypi.org/project/rdf-graph-gen/.

12

https://github.com/mveco/RDFGraphGen
https://pypi.org/project/rdf-graph-gen/

A PREPRINT - JULY 26, 2024

Appendix A More Generated Examples

In order to add more context and practically showcase the way the RDFGraphGen works, we will present several
more examples of input SHACL shapes and generated synthetic RDF knowledge graphs based on them. Additional
examples are available on the RDFGraphGen GitHub page [20].

A.1 An Example of Using the “schema:Book” Class from Schema.org

This example uses the schema:Book class from the Schema.org vocabulary [11]. This class represents entities which
are books, and the input SHACL shape file, listed below, contains constraints for each book entity, such as: each
book can have an identifier which follows a specific pattern; each book can have a name which is a string; each book
can have exactly one ISBN identifier; each book can have between 1 and 3 authors; etc. Additionally, the SHACL
shape file contains a node shape for schema:Author entities as well, which represent the book authors. The SHACL
constraints for the author entities specify that they each must have: a given name; a possible birth date and a death
date; gender; an email address; etc.

input-shape-books.ttl

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix schema: <http://schema.org/> .
@prefix sh: <http://www.w3.org/ns/SHACL#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

schema:BookShape
a sh:NodeShape ;
sh:targetClass schema:Book ;
sh:property [

sh:path schema:identifier ;
sh:maxCount 1 ;
sh:pattern ’^[a-z]{4}[0-9]{4}$’ ;

] ;
sh:property [

sh:path schema:name ;
sh:datatype xsd:string ;

] ;
sh:property [

sh:path schema:bookEdition ;
sh:maxCount 1 ;

] ;
sh:property [

sh:path schema:isbn ;
sh:minCount 1 ;
sh:maxCount 1 ;

] ;
sh:property [

sh:path schema:numberOfPages ;
sh:minInclusive 100;

] ;
sh:property [

sh:path schema:author;
sh:node schema:AuthorShape ;
sh:minCount 1 ;
sh:maxCount 3 ;

] ;
sh:property [

sh:path schema:dateCreated ;
sh:datatype xsd:date;
sh:lessThan schema:datePublished ;

] ;
sh:property [

sh:path schema:datePublished ;
] ;
sh:property [

sh:path schema:genre ;

13

A PREPRINT - JULY 26, 2024

sh:minCount 2 ;
sh:maxCount 4 ;
sh:description "Each book has to have at least 2 genres,

and a maximum of 4 genres." ;
] ;
sh:property [

sh:path schema:award ;
];
sh:property [

sh:path schema:inLanguage ;
sh:in ("en-USA" "en-UK")

] .

schema:AuthorShape
sh:targetClass schema:Person ;
a sh:NodeShape ;
sh:property [

sh:path schema:givenName ;
sh:datatype xsd:string ;
sh:name "given name" ;

] ;
sh:property [

sh:path schema:birthDate ;
sh:lessThan schema:deathDate ;
sh:maxCount 1 ;

] ;
sh:property [

sh:path schema:gender ;
sh:in ("female" "male") ;

] ;
sh:property [

sh:path schema:email ;
] ;
sh:property [

sh:path schema:telephone ;
] .

After running RDFGraphGen on the input SHACL shapes file listed above, and setting the parameter entityCount
to 1, below is an example of one generated synthetic RDF graph:

output-graph-books.ttl

@prefix schema: <http://schema.org/> .
@prefix sh: <http://www.w3.org/ns/SHACL#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.org/ns#Node100> a schema:Book ;
schema:author <http://example.org/ns#Node101>,

<http://example.org/ns#Node102> ;
schema:award "The James Tait Black Memorial Prize" ;
schema:bookEdition schema:EBook ;
schema:dateCreated "1937-07-07"^^xsd:date ;
schema:datePublished "1984-07-07"^^xsd:date ;
schema:genre "Paranormal",

"Soft Science Fiction",
"Travel Writing" ;

schema:identifier "wrzx5410" ;
schema:inLanguage "en-UK" ;
schema:isbn "602-5-30-585" ;
schema:name "The Nature of Space and Time" ;
schema:numberOfPages 121 ;
sh:description schema:BookShape .

<http://example.org/ns#Node101> a schema:Person ;

14

A PREPRINT - JULY 26, 2024

schema:birthDate "1946-07-07"^^xsd:date ;
schema:deathDate "1982-07-07"^^xsd:date ;
schema:email "cecile_848@gmail.com" ;
schema:gender "female" ;
schema:givenName "Cecile" ;
schema:telephone "638539-768808" ;
sh:description schema:AuthorShape .

<http://example.org/ns#Node102> a schema:Person ;
schema:birthDate "1964-07-07"^^xsd:date ;
schema:deathDate "1987-07-07"^^xsd:date ;
schema:email "michel_807@gmail.com" ;
schema:gender "male" ;
schema:givenName "Michel" ;
schema:telephone "050-097-6" ;
sh:description schema:AuthorShape .

The SHACL constraints on the property schema:identifier define a pattern, and the generated value for the prop-
erty in the entity corresponds to that pattern. This is achieved by generating a textual string based on the template
using the exrex Python library.

The name of the book is randomly chosen from a predefined set of book titles, contained in the generator. The list can
be modified and upgraded by users, whenever necessary, just like all the other predefined sets of values.

The property schema:bookEdition has a value from the appropriate enumeration for that property, as defined in the
Schema.org vocabulary.

The property schema:genre has a minimum (2) and a maximum (4) count constraint, so the generator has generated
3 genres for the synthetic entity. The book genres are also selected randomly from a predefined list, which comes with
the generator.

The author property points to another SHACL shape and has a minimum (1) and a maximum (3) count constraint. So,
in this case, two author entities are generated and added as values for that property. The two author entities are then
also fully generated by RDFGraphGen, based on the SHACL constrains.

A.2 An Example of Using the “schema:TVSeries” Class from Schema.org

Here we have an example which uses the schema:TVSeries class from the Schema.org vocabulary [11]. This class
represents entities for TV series. The SHACL shape file which defines its constraints, contains definitions of the
following about each TV series entity: it can have a director; it can have a minimum of 3 actors; it can have numerous
seasons and episodes, but the number of seasons should be lower than the number of episodes; it can have a title EIDR
which follows a specific pattern; etc. Additionally, the SHACL shape file listed below contains definitions of SHACL
constraints for the directors and actors of the TV series. They are both entities from the schema:Person class from
Schema.org, and they have the usual property constraints which we already saw in the previous examples.

input-shape-tvseries.ttl

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix schema: <http://schema.org/> .
@prefix sh: <http://www.w3.org/ns/SHACL#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

schema:TVSeriesShape
a sh:NodeShape ;
sh:targetClass schema:TVSeries;
sh:property [

sh:path schema:director;
sh:node schema:DirectorShape ;

] ;
sh:property [

sh:path schema:actor;
sh:node schema:ActorShape ;
sh:minCount 3 ;

15

A PREPRINT - JULY 26, 2024

] ;
sh:property [

sh:path schema:season ;
sh:datatype xsd:integer ;
sh:equals schema:numberOfSeasons ;
sh:minInclusive 0 ;

] ;
sh:property [

sh:path schema:numberOfEpisodes ;
sh:minInclusive 0 ;

] ;
sh:property [

sh:path schema:numberOfSeasons ;
sh:lessThan schema:numberOfEpisodes ;
sh:minInclusive 0 ;

] ;
sh:property [

sh:path schema:titleEIDR ;
sh:datatype xsd:string ;
sh:pattern ’[A-Z1-9.-/]{10,20}’;

] ;
sh:property [

sh:path schema:name ;
sh:datatype xsd:string ;

] ;
sh:property [

sh:path schema:startDate ;
sh:datatype xsd:date;
sh:lessThan schema:datePublished ;

] ;
sh:property [

sh:path schema:endDate ;
sh:datatype xsd:date;

] ;
sh:property [

sh:path schema:datePublished ;
sh:lessThanOrEquals schema:endDate ;

] ;
sh:property [

sh:path schema:genre ;
] .

schema:DirectorShape
sh:targetClass schema:Person ;
a sh:NodeShape ;
sh:property [

sh:path schema:givenName ;
sh:datatype xsd:string ;

] ;
sh:property [

sh:path schema:familyName ;
sh:datatype xsd:string ;

] ;
sh:property [

sh:path schema:gender ;
sh:in ("female" "male") ;

] ;
sh:property [

sh:path schema:email ;
] ;

sh:property [
sh:path schema:telephone ;

] .

schema:ActorShape

16

A PREPRINT - JULY 26, 2024

sh:targetClass schema:Person ;
a sh:NodeShape ;
sh:property [

sh:path schema:name ;
sh:datatype xsd:string ;
sh:name "given name" ;

] ;
sh:property [

sh:path schema:gender ;
sh:in ("female" "male") ;

] .

Below is the content of one synthetic RDF graph, generated by RDFGraphGen with entityCount set to 1.

output-graph-tvseries.ttl

@prefix schema: <http://schema.org/> .
@prefix sh: <http://www.w3.org/ns/SHACL#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.org/ns#Node100> a schema:TVSeries ;
schema:actor <http://example.org/ns#Node102>,

<http://example.org/ns#Node103>,
<http://example.org/ns#Node104> ;

schema:datePublished "1967-07-07"^^xsd:date ;
schema:director <http://example.org/ns#Node101> ;
schema:endDate "1986-07-07"^^xsd:date ;
schema:genre "Supernatural Thriller" ;
schema:name "Life After Beth" ;
schema:numberOfEpisodes 31 ;
schema:numberOfSeasons 4 ;
schema:season 4 ;
schema:startDate "1917-07-07"^^xsd:date ;
schema:titleEIDR "7ZFCQWFG32." ;
sh:description schema:TVSeriesShape .

<http://example.org/ns#Node101> a schema:Person ;
schema:email "denna_sosa@gmail.com" ;
schema:familyName "Sosa" ;
schema:gender "female" ;
schema:givenName "Denna" ;
schema:telephone "921-682-3863852" ;
sh:description schema:DirectorShape .

<http://example.org/ns#Node102> a schema:Person ;
schema:gender "female" ;
schema:name "Debi Snow" ;
sh:description schema:ActorShape .

<http://example.org/ns#Node103> a schema:Person ;
schema:gender "male" ;
schema:name "Martainn Foster" ;
sh:description schema:ActorShape .

<http://example.org/ns#Node104> a schema:Person ;
schema:gender "male" ;
schema:name "Waine Mcclain" ;
sh:description schema:ActorShape .

In this example, the TV series SHACL shape contains two properties that point to other SHACL shapes: one to
a director entity, and one to actor entities. The director entity constraint does not have a minimum or maximum
cardinality constraint, so a single director entity is generated for each TV series. On the other hand, the actor entity

17

A PREPRINT - JULY 26, 2024

constraint has a minimum cardinality of 3, so at least 3 actor entities are generated and placed in the corresponding
semantic relation to the TV series entity.

The number of seasons is constrained to be less than the number of episodes, and the generator abides to this.

The schema:season property is constrained in the input SHACL file to have the same value as the
schema:numberOfSeasons property, and this is followed by the generator.

Additionally, the schema:startDate property is defined to have a date value which is less then the date value of
schema:datePublished property, while schema:datePublished should be less or equal to schema:endDate.
These constraints are again respected by RDFGraphGen, as can be seen from the generated RDF graph.

A.3 An Example of Using Classes and Properties from an Unknown Ontology

The examples so far involved well-known entity types from Schema.org. As we explained before, the generator has
several predefined sets of possible values for the more common Schema.org classes and properties, for usability sake.
However, the main feature of RDFGraphGen is its universality and domain independence. In order to show that it can
work with other ontologies, which are not well-known for the generator, we will use an example here which uses the
non-existent example ontology, with it’s classes and properties.

input-shape.ttl

@prefix schema: <http://schema.org/> .
@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix ex: <http://example.com/ns#> .

schema:ExampleShape
a sh:NodeShape ;
sh:targetClass ex:Product;
sh:property [

sh:path ex:name ;
sh:datatype xsd:string;
sh:minLength 10;
sh:maxLength 10;

] ;
sh:property [

sh:path ex:identifier ;
sh:minCount 3;
sh:maxCount 6;

];
sh:property [

sh:path ex:dateOfProduction ;
sh:lessThan ex:dateOfExpiration ;

] ;
sh:property [

sh:path ex:dateOfExpiration ;
sh:minInclusive "2007-02-10"^^xsd:date ;
sh:maxInclusive "2007-05-10"^^xsd:date ;

] .

When we use the RDFGraphGen generator on the input file, with the entityCount value set to 2, we get a synthetic
RDF graph which follows the SHACL constraints, and looks like the sample below.

output-graph.ttl

@prefix ex: <http://example.com/ns#> .
@prefix schema: <http://schema.org/> .
@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.org/ns#Node100> a ex:Product ;
ex:identifier "I6sTsyxw",

"nlctTaNsK5g",

18

A PREPRINT - JULY 26, 2024

"pbuXXfsY",
"rO3mdpRk" ;

ex:dateOfProduction "1957-04-10"^^xsd:date ;
ex:dateOfExpiration "2007-04-10"^^xsd:date ;
ex:name "1bCJ3ZXgGK" ;
sh:description schema:ExampleShape .

<http://example.org/ns#Node101> a ex:Product ;
ex:identifier "AArBAfHB",

"Q1J4qXYuag",
"YQJGquoIHx4" ;

ex:dateOfProduction "1984-03-10"^^xsd:date ;
ex:dateOfExpiration "2007-03-10"^^xsd:date ;
ex:name "H2mklOGQDl" ;
sh:description schema:ExampleShape .

The ex:name property, even though it is not known for the generator, has a specified datatype in the SHACL file
(xsd:string), and a maximum and minimum length. This helps the generator generate a random value for each
synthetic RDF triple which uses this property as a predicate.

The ex:identifier property has no defined datatype, so the generator assumes string values. Given the cardinality
constraints of 3 and 6, the RDFGraphGen generates random string values for the synthetic RDF triples it generates
with this property.

The ex:dateOfProduction property does not have a datatype, but has a SHACL constraint relating it to another
property, which has xsd:date as minimum and maximum values. This leads the generator to assume that both
properties have dates as values. The SHACL constraints define that ex:dateOfProductionhas to have a lesser value
than the ex:dateOfExpiration property, and additionally that the ex:dateOfExpiration property has a value in
the defined range. Following these SHACL constraints, the RDFGraphGen generates the output shown above.

19

	Introduction
	Related Work
	Synthetic RDF Data Generation
	A Brief Overview of SHACL Shapes

	RDFGraphGen
	Design
	Implementation
	Step 1 & 2: Finding the SHACL Node Shapes
	Step 3: Creating a Shape Map
	Step 4 & 5: Generating the RDF Entities

	Generated Example using ``schema:Person''
	Packaging as a Python library

	Discussion and Future Work
	Conclusion
	More Generated Examples
	An Example of Using the ``schema:Book'' Class from Schema.org
	An Example of Using the ``schema:TVSeries'' Class from Schema.org
	An Example of Using Classes and Properties from an Unknown Ontology

