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Temporo-spatial observation of the leg could provide important information about the general condition of an animal, especially
for those such as sheep and other free-ranging farm animals that can be difficult to access. Tri-axial accelerometers are capable of
collecting vast amounts of data for locomotion and posture observations; however, interpretation and optimization of these data
records remain a challenge. The aim of the present study was to introduce an optimized method for gait (walking, trotting and
galloping) and posture (standing and lying) discrimination, using the acceleration values recorded by a tri-axial accelerometer
mounted on the hind leg of sheep. The acceleration values recorded on the vertical and horizontal axes, as well as the total
acceleration values were categorized. The relative frequencies of the acceleration categories (RFACs) were calculated in 3-s epochs.
Reliable RFACs for gait and posture discrimination were identified with discriminant function and canonical analyses. Post hoc
predictions for the two axes and total acceleration were conducted, using classification functions and classification scores for each
epoch. Mahalanobis distances were used to determine the level of accuracy of the method. The highest discriminatory power for
gait discrimination yielded four RFACs on the vertical axis, and five RFACs each on the horizontal axis and total acceleration vector.
Classification functions showed the highest accuracy for walking and galloping. The highest total accuracy on the vertical and
horizontal axes were 90% and 91%, respectively. Regarding posture discrimination, the vertical axis exhibited the highest
discriminatory power, with values of RFAC (0, 1] = 99.95% for standing; and RFAC (−1, 0] = 99.50% for lying. The horizontal
axis showed strong discrimination for the lying side of the animal, as values were in the acceleration category of (0, 1] for lying on
the left side and (−1, 0] on the right side. The algorithm developed by the method employed in the present study facilitates
differentiation of the various types of gait and posture in animals from fewer data records, and produces the most reliable
acceleration values from only one axis within a short time frame. The present study introduces an optimized method by which the
tri-axial accelerometer can be used in gait and posture discrimination in sheep as an animal model.
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Implications

Sensor technologies, such as tri-axial accelerometers, could
provide valuable information on animal health, behaviour
and welfare, and consequently, on management practices.
The present study introduces an optimized method for
classifying different types of gait (walking, trotting and
galloping) and posture (standing and lying) in sheep, using a
tri-axial accelerometer. Data optimization with this method
is based on identification of the most relevant data on one
axis of the accelerometer, for classification of gait and
posture. The algorithm developed with this approach can be
integrated into sensor devices, which can create the basis for
simple, cost-effective monitoring of animals.

Introduction

Observation of the locomotion and posture of an animal is the
first step in inspecting its general condition, and can be used
as one indicator of overall health and behaviour (Moreau
et al., 2009; Weary et al., 2009). Moreover, the activity level
and energy expenditure of an animal (Lachica and Aguilera,
2005) is indicative of the management and housing conditions
to which it is subjected (Ito et al., 2009; Ledgerwood et al.,
2010) at both the individual and herd levels. The definition of
gait suggests that terrestrial locomotion is a continual cycle of
repeated movements, manifested as strictly defined patterns
of leg movement (Alexander, 1989).
When patterns of locomotion and body postures are con-

sidered, observations of only one or a few key points on the
leg can provide sufficient temporo-spatial information for the
entire body of the animal. Animals must be undisturbed in an† E-mail: miro@fvm.ukim.edu.mk
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environment or surroundings to which they are accustomed
for accurate assessment of locomotion and posture; there-
fore, these assessments can be quite challenging and difficult
in free-ranging animals, animals on pasture and wild
animals. Sheep are highly social animals, usually reared on
mountains or grassland areas that are difficult to access,
thereby making constant daily observation impractical
(Moreau et al., 2009; Bojkovski et al., 2014). Therefore, the
quest for the most reliable method to observe sheep and
other flock animals continues to be a challenge, even in the
context of modern farming.
Sensor technology with automated recordings, such as

accelerometer technology, is a tool used for the automatic
determination of locomotion and posture in animals
(Blomberg, 2011). The applicability of accelerometers to
assess locomotion and posture has been demonstrated in
herd/flock animals on pasture such as cattle (de Passille
et al., 2010; Chapinal et al., 2011; Nielsen, 2013) and
goats (Moreau et al., 2009), as well as sows (Conte et al.,
2014), horses (Wickler et al., 2005; Scheibe and
Gromann, 2006; DuBois et al., 2015) and domestic cats
(Watanabe et al., 2005).
Accelerometers record a vast amount of data that is

challenging to process and interpret; thus, data optimization
is a primary objective of researchers. The manner in which
the data collected by tri-axial accelerometers are processed
and interpreted varies among authors, from setting the
threshold and cut-off values (Ledgerwood et al., 2010;
DuBois et al., 2015; McLennan et al., 2015) to wavelet
analysis (Pastell et al., 2009) and fast Fourier transform
(Watanabe et al., 2005). The method of choice is highly
associated with the targeted parameters to be measured. The
aim of the present study was to introduce an optimized
method for gait and posture discrimination, using the
acceleration values recorded by a tri-axial accelerometer
mounted on the hind leg of sheep.

Material and methods

Animals, accelerometers and video recordings
The animals used in the present study consisted of 13 mature
sheep (10 ewes and three rams) of the local Pramenka breed,
weighing 45 to 60 kg. Previous clinical and orthopaedic
examinations determined that all sheep were clinically
healthy, with no history or current cases of locomotory dis-
orders. Three observational studies were conducted: stand-
ing, gait and lying. The studies for standing and gait analysis
were performed at the sheep facilities of the Faculty of
Veterinary Medicine in Skopje, whereas the third study was
performed on a commercial flock in a mountainous region of
Macedonia.
Acceleration values were recorded with a HOBO®

Pendant® G acceleration data logger (Onset Computer
Corporation, Pocasset, MA, USA). The device weighed 18 g
and measured 58× 33× 23mm3. The HOBO® Pendant®

accelerometer simultaneously recorded acceleration and

inclination readings on its three orthogonal axes (x, y and z),
and had a measurement acceleration range of ±3.2× g
(gravitational acceleration) on all three axes with a memory
capacity of 64 kB. In addition, the accelerometer calculated
total acceleration (TA) as a sum vector of the acceleration
values (a) of the three axes as follows:

TA=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2x +a2y +a2zÞ

q
(1)

One accelerometer was mounted on the lateral side of the
left hind leg, in the midsection of the metatarsal region of
each sheep (Supplementary Figure S1). The accelerometer
was positioned with the x-axis vertical and towards the
ground, and the y-axis parallel to the ground and towards
the rear of the animal. We used a cohesive bandage to attach
the data logger to the leg of the animal. No obvious
deviations in the natural position of the leg were noted
during the different types of gait and posture, after the
logger was mounted. Likewise, the initial position of
the loggers attached to each leg showed no change during
the observational studies.
The accelerometer was set to measure acceleration on

three axes. Subsequent analysis was performed on data
recorded on the vertical (x) and horizontal (y) axes and TA.
The values of the lateral (z) axis were not analysed inde-
pendently, but as part of the TA only, because of the minimal
lateral leg movements during locomotion and standing. The
acceleration data were read using a base station and a
coupler connected to a computer. The specialized software
HOBOware® Lite ©2003–2013 (Onset Computer Corpora-
tion, Bourne, MA, USA) was used for graphing and analysis.
Sheep movements and the position of the left hind leg

were continually video recorded at 30 frames/s using a DVD
Camcorder (Canon® DC420; Canon U.S.A., Inc., Melville, NY,
USA). The accelerometer was synchronized (to millisecond
accuracy) with leg movements in the video recordings, by
setting the video clock as time 0 at the onset of integration of
the logger with the coupler. Video processing and observa-
tions were performed using the Adobe® Premiere® Pro CS5.5
software (©1991–2011; Adobe Systems, Inc., San Jose,
CA, USA).

Standing study
Six sheep (three ewes and three rams) were selected. The
ewes (SS 1 to SS 3) and the rams (RS 1 to RS 3) were placed in
separate lots (5× 3m). Sampling was done while the sheep
were in a standing posture for 15min. The accelerometer
was set in the fast mode of 0.03 s (33 Hz), enabling 100
acceleration readings over a period of ~3 s. The standing
analysis was performed on overall video material of
1.31× 103 s and 3.73× 104 acceleration readings. In this
observational study, we used acceleration values of the
respective axes and TA, while the animal was standing still.
The mean duration per animal, the total duration of standing
and the total accelerometer readings used for the standing
analysis are presented in Table 1.
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Gait study
The second observational study was conducted for different
types of gait: walking – the four-beat gait, during which each
foot touches the ground at a different time and two or three
feet are on the ground at any given point in time; trotting –

the two-beat symmetric gait, synchronized diagonally
between the hind and contralateral fore limb; and galloping –
the four-beat asymmetric movement, during which all legs are
off the ground at some point. The same animals in the
standing study were used for the gait analysis (three ewes and
three rams). The sheep were divided into two groups by
gender and placed in an enclosed grass field (50× 30m), with
which they were familiar from a daily routine. Using the flight
zone of the sheep, one person made the animals walk, trot
and gallop for 15min. The sampling rate of the accelerometer
was the same as that for the standing study, that is, 33 Hz
with a sampling duration of 10min.
Gait analysis was conducted on overall video material of

1.37× 103 s and 5.41× 104 accelerometer readings.
Sequences of the video during which the sheep performed
different gaits (walking, trotting or galloping) were identified
for each animal. The corresponding acceleration values
recorded on the accelerometer were subjected to further data
processing. The duration, number of sequences and number
of accelerometer readings for each type of gait used in this
observational study are presented in Table 1.

Lying study
Seven ewes (SL 1 to SL 7) that had not been included in the
previous two observational studies were selected for
the lying analysis. The recordings were performed while the
sheep were in their lots after feeding time. The animals under
investigation were not separated from the flock. The undis-
turbed behaviour of the animals was observed for 2.5 h with
a total of 1.52× 105 accelerometer readings. The sampling
rate of the accelerometer was set in the fast mode of 0.20 s
(5 Hz), with a sampling duration of more than 1 h. The
sequences during which the animal was lying were selected
and the corresponding acceleration values were analysed
(Table 1).

Data processing and statistics
The acceleration values of the vertical and horizontal axes
and TA in the three observational studies were processed
using the Microsoft® Excel® 2010 software (©2010; Micro-
soft Corp., Redmond, WA, USA). The acceleration values
identified for walking, trotting and galloping were classified
into acceleration categories (ACs) in intervals of (n, n+ 1],
where n is an integer and −4< n⩽ 6, that is, with a range
from AC (−4, −3] to AC (5, 6]. Therefore, any acceleration
value of a∈ R in the interval of (n, n+ 1] is included in the AC
(n, n+ 1], for example, if a = −1.333× g, then a∈AC
(−2, −1]. Each video sequence for walking, trotting and
galloping was divided into epochs of 100 acceleration
readings, corresponding to ~3 s. For each epoch, the relative
frequencies of the acceleration categories (RFACs) were
calculated:

RFAC ð% Þ= number of acceleration readings in AC
number of total acceleration readings in the epoch

´ 100

(2)

The RFACs in the epochs of the vertical and horizontal axes
and TA were used for the analysis of gait, standing and lying
acceleration.
The forward stepwise discriminant function analysis

(Klecka, 1980; StatSoft, Inc., 2007) was applied to determine
which of the RFACs effectively discriminates between dif-
ferent gaits, that is, which of the ACs from the x and y axes
and TA are the best predictors of gait classification (walking,
trotting or galloping). The three gait types were used as
dependent variables (groups). Furthermore, the mean values
of the RFACs for each AC of the respective axes and TA from
the classified epochs for each gait type were used as
independent variables (predictors).
First, the significant differences between groups were

determined using the multivariate F test. We then calculated
Wilks’ λ to determine which of the predictors (RFAC means)
were significantly different across the various groups and
which AC best discriminated between gaits. Wilks’ λ was
used to represent the significance of the discriminatory
power of the model. Likewise, the partial Wilks’ λ (also

Table 1 Number of animals, video sequences, sampling duration and total accelerometer readings used for gait and posture discrimination in sheep

Types of gait/
posture

Number of
sheep

Median number of
sequences

per sheep (minimum to
maximum)

Total number of
sequences

Duration1

(mean ± SD) (s)
Total duration

(s)

Total number of
accelerometer

readings

Gait
Walking 6 2 (1 to 3) 13 7.93 ± 5.90 103.09 3.40× 103

Trotting 6 3 (2 to 5) 19 4.14 ± 1.39 78.63 2.60× 103

Galloping 6 3 (2 to 5) 18 4.69 ± 3.78 84.45 2.79× 103

Posture
Standing 6 2 (1 to 3) 12 44.81 ± 20.60 268.85 8.87× 103

Lying 7 1 (1 to 1) 7 638.63 ± 512.11 4.47× 103 22.35× 103

1Duration of video sequence for each type of gait (mean ± SD); and duration per sheep in each posture (mean ± SD).
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referred to as the partial correlation coefficient) was calcu-
lated, which determines the unique contribution of the
respective AC to gait discrimination. The value of Wilks’ λ, as
well as that of the partial Wilks’ λ, is between 0 and 1,
where the values closer to 0 indicate higher discriminatory
power and those closer to 1 indicate lower discriminatory
power.
The model (discriminant function analysis) was built as a

forward stepwise analysis, that is, step-by-step addition of
the variables that make the most significant contribution to
discrimination between the groups. The total number of
variables (predictors) included in the discriminant function
was limited by the F-value of the variable (F = 1) and
tolerance value (1− R2) of 0.1, thereby including a wide
spectrum of ACs. The model created two discriminant
functions, which were equivalent to the number of groups
(gaits) minus 1, using the ACs with the highest discriminatory
power. The first function indicated the gait with the greatest
overall discrimination, whereas the second function per-
formed further discrimination between the various gaits.
Both functions were orthogonal.
Determination of successive discriminant functions (roots)

and their eigenvalues (ratio between explained and
unexplained variation in the model) was performed using
canonical correlation analysis, to demonstrate the
discriminatory power of both functions. Standardized (β)
coefficients for each AC within the roots created by the
canonical analysis indicated the level of contribution of the
respective AC to discrimination between gaits; a higher
standardized coefficient indicated higher discriminatory
power. The means of canonical variables were used to
determine the discriminative nature of each root, that is,
which specific gait was identified by the corresponding root.
In order to test the model, post hoc predictions for the two

axes and TA were performed using classification functions
(StatSoft, Inc., 2007). More specifically, these functions
classified the specific gait for each epoch. Moreover, these
classification functions can serve as the basis for future
application of this method in gait discrimination. Separate
weights for each significant AC on the horizontal and vertical
axes and TA for the three gaits, and the constant values for
each corresponding gait were calculated. Subsequently, the
classification score was calculated for each gait in the
corresponding epoch, using the following equation:

Sg = cg +wgAC1rfAC1 +wgAC2rfAC2 + ¼ wgACmrfACm
(3)

where S is the classification score for each gait, g the type of
gait (walking, trotting or galloping), c the constant value for
the corresponding gait, AC (1, 2 … m) the significant
acceleration categories for gait discrimination, w the weight
of the corresponding AC with significant contribution to the
discrimination and rf the observed value of the relative fre-
quency for the respective AC in the epoch. The epoch was
then classified based on the specific gait that had the highest
classification score (Sg).

The classification probabilities used to classify epochs
without significant ACs were set to be proportional to the
respective group size. The classification matrix was created
using the classification functions and probabilities, repre-
senting both true and false identified cases (epochs) in the
model. The group (gait) centroids, defined by the means of all
significant variables in the model, were represented as points
in multivariate space. The distance between group centroids
and the testing case (epoch) was represented by the Maha-
lanobis distance. The classification of gait for each case was
based on the closest Mahalanobis distance from the group
centroid. In the analysis, we used these distances to determine
the level of error in false cases, that is, to determine how far
the misclassified case was from the true gait centroid.
Mean values and confidence intervals (95% CI) of the

acceleration values for the vertical and horizontal axes and
TA were calculated for standing and lying postures. The inter-
individual differences within groups were tested with Tukey’s
honest significant difference post hoc test on the mean
acceleration values of the horizontal and vertical axes and TA
for lying and standing; and with Kruskal–Wallis ANOVA
(two-tailed) on the RFAC for gait acceleration analysis. To
compare the mean acceleration values of the axes and TA for
standing and lying, we used the t test for independent
samples. All values in the present study were presented as
mean ± SD (x ± SD). Complete statistical analysis was
performed using the data analysis software STATISTICA 8.0
(StatSoft, Inc., Tulsa, OK, USA).

Results

Gait study
The acceleration features of the different gaits (Supplemen-
tary Figure S2) were determined based on 77 epochs from
the identified sequences, that is, 26, 24 and 27 epochs for
walking, trotting and galloping, respectively. The mean
values of the RFACs for the vertical and horizontal axes and
TA for each gait are presented in Table 2. Inter-individual
differences between the RFACs of the x and y axes and TA
were found only on the x-axis for ACs (−4, −3] and (1, 2]
(P< 0.01).
Considering the differences between RFACs of the various

gaits for the x and y axes and TA, the discriminant function
analysis revealed the significant ACs that discriminate
walking, trotting and galloping (Table 3). According to
Table 3 and Supplementary Table S1, the relative frequency
values with highest discriminatory power for gait determi-
nation in one epoch belong to the following ACs: (0, 1],
partial Wilks’ λ = 0.33, on the vertical axis; (3, 4], partial
Wilks’ λ = 0.33, on the horizontal axis; and (0, 1] and (1, 2],
partial Wilks’ λ of 0.86 and 0.87, on the TA.
The two discriminant functions for each axis and TA

showed high discriminant power for gait determination,
owing to their highly significant eigenvalues calculated by
canonical analysis (Table 3). The first function (root) showed
90%, 93% and 89% of the overall discriminatory power for
the vertical and horizontal axes and TA, respectively.

Radeski and Ilieski

1252



The results of the standardized coefficients for canonical
variables and the means of canonical variables (Table 3)
on the vertical axis in the first discriminatory function
showed that gait determination was most heavily weighted
by the AC (0, 1], which discriminated walking from trotting
and galloping, whereas the second function was mostly

influenced by ACs (1, 2] and (2, 3], which discriminated
trotting from galloping. Similarly, for the TA in the first
discriminant function, the AC (0, 1] was dominant for dis-
crimination of walking from trotting and galloping, whereas
the second function was influenced by ACs (2, 3] and (1, 2],
which discriminated trotting from galloping. The first

Table 2 Relative frequencies per acceleration category (AC), based on vertical and horizontal axes (VA and HA) of an accelerometer and total
acceleration (TA) for each gait of sheep

Walking (%) Trotting (%) Galloping (%)

AC VA HA TA VA HA TA VA HA TA

(−4, −3] 0.81 ± 1.05 1.77 ± 1.41 1.78 ± 2.35 5.74 ± 2.42 4.56 ± 3.24 7.08 ± 2.20
(−3, −2] 0.73 ± 0.88 1.34 ± 1.17 1.99 ± 2.43 2.65 ± 1.89 3.92 ± 1.80 3.45 ± 2.16
(−2, −1] 1.33 ± 1.32 3.50 ± 1.98 4.64 ± 2.71 7.76 ± 4.41 8.64 ± 3.52 7.15 ± 3.71
(−1, 0] 4.97 ± 2.49 29.15 ± 2.55 10.61 ± 2.97 20.19 ± 7.16 13.98 ± 3.54 12.91 ± 3.48
(0, 1] 61.52 ± 9.28 50.98 ± 3.23 33.18 ± 7.55 31.68 ± 9.84 34.74 ± 9.47 13.93 ± 6.50 22.81 ± 6.59 18.94 ± 5.61 5.16 ± 3.69
(1, 2] 21.98 ± 5.90 6.98 ± 3.04 46.17 ± 6.71 28.26 ± 9.09 13.65 ± 5.57 36.38 ± 8.63 17.07 ± 5.38 14.25 ± 3.74 18.03 ± 7.93
(2, 3] 5.10 ± 2.86 3.43 ± 1.59 10.80 ± 3.83 10.56 ± 3.39 6.23 ± 3.51 19.95 ± 4.88 9.60 ± 3.48 10.46 ± 3.78 17.55 ± 4.95
(3, 4] 3.56 ± 1.76 2.85 ± 1.73 5.57 ± 2.91 10.49 ± 4.09 9.04 ± 4.09 16.81 ± 5.35 19.42 ± 5.02 25.74 ± 9.22 30.50 ± 7.44
(4, 5] 3.01 ± 1.76 9.99 ± 6.47 21.83 ± 7.58
(5, 6] 1.27 ± 1.25 2.94 ± 1.81 6.93 ± 3.01

Values represent mean ± SD.

Table 3 Significant acceleration categories, identified by discriminant function analysis and canonical correlation
analysis, with levels of discriminatory power for gait type determination in sheep

Canonical correlation analysis

Discrimination function analysis Standardized coefficients1 Canonical variables2

Acceleration category Partial Wilks’ λ Root 1 Root 2 Gait Root 1 Root 2

Vertical axis (0, 1] 0.33 1.22 0.11
(1, 2] 0.60 0.62 0.92
(2, 3] 0.90 0.11 0.57

(−3, −2] 0.96 0.26 0.07
Eigenvalue 5.08 0.57 Walking 2.87 −0.38

Trotting −0.40 1.09
Galloping −2.41 −0.60

Horizontal axis (3, 4] 0.33 0.91 0.35
(2, 3] 0.75 0.51 0.60

(−4, −3] 0.82 0.36 −0.50
(−2, −1] 0.89 0.20 −0.49
(1, 2] 0.89 0.14 −0.59

Eigenvalue 6.56 0.52 Walking −2.92 0.56
Trotting −0.34 −1.05
Galloping 3.11 0.40

Total acceleration (0, 1] 0.86 0.52 −0.42
(2, 3] 0.87 −0.10 0.70
(5, 6] 0.93 −0.17 −0.44
(1, 2] 0.94 0.26 0.47
(3, 4] 0.96 −0.38 −0.04

Eigenvalue 5.64 0.68 Walking 2.92 −0.50
Trotting −0.14 1.20
Galloping −2.69 −0.58

1Weight of significant acceleration categories in each root with corresponding eigenvalues.
2Means of canonical variables for gait type by each root.
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function on the horizontal axis was heavily weighted by AC (3,
4], which discriminated galloping from walking and trotting;
and the second function was mostly influenced by AC (2, 3],
which discriminated trotting from walking. Based on these
results, higher values of the RFAC (0, 1] on the vertical axis
and on the TA in one epoch indicated a high probability of the
walking gait, whereas higher values of the RFAC (3, 4] on the
horizontal axis in one epoch indicated the galloping gait.
The classification functions data, weights calculated for

the significant ACs and constant values for each corre-
sponding gait are presented in Table 4. Furthermore, Table 4
presents the accuracy (%) of the classification functions in
the classification matrix. The accuracy of the classification
functions was highest for walking, whereas trotting
exhibited the lowest accuracy on the two axes and TA. The
horizontal and vertical axes showed the highest total
accuracy, 90.91% and 89.61%, respectively, for all gaits.
Regarding incorrect classifications of the respective gaits,
trotting was misclassified as walking and galloping, and vice
versa; however, there were no misclassifications between
walking and galloping. According to the Mahalanobis dis-
tances in the misclassified cases, the centroid of the true gait
type was close to the false gait classification. For such cases
(with two exceptions), the true gait was the second choice in
the classification process (Supplementary Table S2).

Standing and lying study
The acceleration values in different postures (standing and
lying) were distributed among only a few ACs (Supplementary

Figure S2). The acceleration values of the vertical axis in the
standing posture were in AC (0, 1], with a mean acceleration
of 0.93± 0.04×g, 95% CI 0.93×g and RFAC (0,
1] = 99.95%, whereas in the lying posture, the values were in
AC (−1, 0], RFAC = 99.50%, mean −0.09± 0.05×g and
95% CI −0.09×g. The horizontal axis for the standing pos-
ture detected acceleration values in ACs (0, 1] and (−1, 0],
with RFACs = 76.93% and 23.07%, respectively, mean
acceleration of 0.16± 0.22× g, 95% CI 0.16×g; and in the
lying posture the RFAC (0, 1] = 79.82% was dominant over
the RFAC (−1, 0] = 17.91%, with a mean acceleration of
0.61 ± 0.52×g, 95% CI 0.60×g. The acceleration values of
the TA for standing were categorized in AC (0, 1] with
RFAC = 79.49%, and AC (1, 2] with RFAC = 20.51%, with a
mean acceleration of 0.99± 0.02×g, 95% CI 0.99×g; and
the mean acceleration for lying was 1.02± 0.06×g, 95% CI
1.01×g, with more equally distributed RFAC values for ACs
(0, 1] and (1, 2] of 56.01% and 43.98%, respectively.
The mean accelerations of the vertical and horizontal axes

and TA showed differences between standing and lying
postures (P< 0.001). The largest observable difference in
mean acceleration values between the two postures was
evident on the vertical axis (Figure 1). In addition, significant
differences between individuals within respective groups
were observed in mean acceleration values of the standing
and lying postures on all vectors (P< 0.01). All animals were
lying on their left sides (the leg on which the logger was
mounted) during observation and all acceleration values
were in AC (0, 1], with the exception of sheep SL 7,

Table 4 Classification functions, weights of the significant acceleration categories (ACs) and constant values used to calculate the classification score
for each gait on the vertical and horizontal axes and total acceleration, and post hoc classification matrix and comparison of classification function
findings with the true gait of sheep

Vertical axis Horizontal axis Total acceleration

Walk Trot Gallop Walk Trot Gallop Walk Trot Gallop

Classification functions
AC
(−4, −3] 0.24 1.09 1.35
(−3, −2] 5.74 5.33 4.97
(−2, −1] 0.28 0.66 0.65
(0, 1] 2.04 1.60 1.29 3.83 3.45 3.35
(1, 2] 1.82 1.72 1.32 0.34 0.66 0.57 3.43 3.44 3.24
(2, 3] 2.43 2.58 2.22 0.21 0.32 1.16 3.51 3.84 3.62
(3, 4] 0.19 0.49 1.10 5.17 5.37 5.56
(5, 6] 5.40 5.29 5.85
Constant −92.20 −69.77 −47.46 −3.62 −14.51 −32.44 −180.61 −178.87 −175.70

Classification matrix1

Walking (P = 0.34) 26 0 0 26 0 0 25 1 0
Trotting (P = 0.31) 1 20 3 4 19 1 2 19 3
Galloping (P = 0.35) 0 4 23 0 2 25 0 4 23
Total 27 24 26 30 21 26 27 24 26
CC by gait (%) 100.00 83.33 85.19 100.00 79.17 92.59 96.15 79.17 85.19
CC by axis (%) 89.61 90.91 87.01

P = a priori group probability set up (proportional to the group size); CC = correct cases.
1Comparison of gait classification with classification functions and the true gait.
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which was lying on its right side. Consequently, the
horizontal axis showed a negative mean acceleration with
values in AC (−1, 0] (Figure 1).

Discussion

The method described for gait and posture discrimination
represents a unified, precise approach in data analysis that is
presently an imperative in motion sensor technology for
animals. This non-invasive technique facilitates detailed,
accurate data collection on animal locomotion. Discriminant
analysis revealed that the type of gait could be determined
by RFACs from several significant ACs per axis and vector.
More specifically, four ACs for the vertical axis and five ACs
for the horizontal axis or the TA vector are sufficient to
determine the gait.
Regarding the accuracy of the method in gait discrimina-

tion, the predictions made for walking showed the highest
accuracy, whereas those made for trotting showed the low-
est accuracy. These findings are consistent with those of
other studies that report that trotting is generally the most
difficult gait to determine (Alexander, 1989; de Passille et al.,
2010). The a priori probability setup can influence the
incorrect classification of gaits. For example, in one epoch of
the present study, trotting was misclassified as walking
on the horizontal axis, although the Mahalanobis distance
indicated trotting (Supplementary Table S2). Overall, the
gait can be determined with high accuracy, by calculating
the classification scores using only one axis or vector and
the RFACs of the appropriate ACs in a 3-s epoch
(equation (3)).

A strongly distinctive acceleration pattern was observed
on the vertical axis for standing and lying, where the accel-
eration values occurred in two different ACs. These findings,
including the mean acceleration values on the vertical axis,
are consistent with those of Robert et al. (2009). Our findings
are also consistent with the cut-off values for standing and
lying reported by Ledgerwood et al. (2010) in cattle and
DuBois et al. (2015) in domestic horses. Because of the
considerable change in the angle of the accelerometer (from
180° while standing to <90° while lying, in the present
study) and the influence of gravitational force, the vertical
axis exhibited strong distinction between these two postures
of the animal. Nevertheless, this axis probably cannot be
used to determine whether the animal is lying on the right or
left side. Therefore, Ledgerwood et al. (2010) relied on the
lateral axis (z-axis) to detect the side of lying. The horizontal
axis showed no strong discrimination between standing and
lying with considerable variation within groups, which is
consistent with the findings of previous studies (Robert et al.,
2009; Ledgerwood et al., 2010). Nevertheless, we found
considerable distinction on the horizontal axis with respect to
the lying side. If the accelerometer is mounted on the leg as
described in the present study, the horizontal axis will show
higher values of acceleration, because the angle of the leg
would be close to 180° on this axis, while the animal is lying
on the same side on which the accelerometer is mounted. In
contrast, if the angle of the leg is <90°, lower values of
acceleration and AC would be observed. Owing to the static
position of the leg while lying and standing, the TA showed
similar acceleration values for both postures; therefore, the
TA should not be considered as an indicator for posture
determination. The posture analysis suggests that the RFACs

Figure 1 Acceleration values for standing and lying measured by a tri-axial accelerometer mounted on the left hind leg of sheep. The figure shows the
acceleration values (mean ± SD) on the vertical (x) and horizontal (y) axes, and the total acceleration (TA) for each sheep (ewes SS 1 to SS 3 and rams RS 1
to RS 3 for standing; ewes SL 1 to SL 7 for lying).
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on the two axes and TA are associated with only a few ACs
((−1, 0], (0, 1] and (1, 2]), in contrast to the RFAC distribution
for the respective gaits that provide appropriate distinction
between moving and static postures of the animal. The
acceleration values for the gait of the animal are generally
widely distributed along the appropriate axis or TA vector,
depending on the duration of contact between the leg of the
animal and the ground within one epoch. This duration
strongly influences the selection of significant ACs and gait
discrimination.
The mathematical approach using the relative frequencies

of acceleration values distributed within ACs in a
time-dependent period of 3 s (one epoch) facilitates (i) com-
pression of a substantial amount of data recorded by the
accelerometer into a relatively small number of class intervals
for easier interpretation and processing; and (ii) higher accu-
racy of gait and posture classification, because of a disregard
for the minor variations in acceleration values, due to different
temporo-spatial sampling points within an epoch. The use of
relative frequencies, instead of absolute acceleration values,
has been suggested by Scheibe and Gromann (2006). More-
over, application of the short-time Fourier transform
(Watanabe et al., 2005) and wavelet analysis (Pastell et al.,
2009) by other authors confirms the approach of disregarding
single absolute acceleration values in data interpretation. Our
results also confirmed that the use of RFACs instead of
absolute acceleration values within a given time interval is a
reliable approach to create an algorithm for gait and posture
detection in animal. Thus, based on the RFACs within one
epoch, the first step in the decision tree will be to make the
distinction between mobile and static states of the animal,
followed by gait or posture discrimination.
One of the major challenges in accelerometer applications

and data interpretation is devising a method to reduce the
amount of recorded data, without compromising the
accuracy of the results, particularly in portable devices with
limited memory (Wilson et al., 2008). Therefore, the sam-
pling rate of the accelerometer should be optimized. Very
high sampling frequencies that produce large amount of data
will not necessarily increase the accuracy of the results
(Robert et al., 2009). In contrast, lower sampling rates might
fail to identify certain gaits (Trenel et al., 2009). Thus, com-
pliance with the Nyquist–Shannon sampling theorem, that is,
the sampling rate should be at least twice that of the highest
frequency contained in the signal (Nyquist, 1928; Shannon,
1949), is critical for the accuracy of data interpretation. In the
present study, we used a sampling rate of 33 Hz, which has
also been suggested by de Passille et al. (2010).
The amount of data recorded by the accelerometer is also

influenced by the number of axes involved in the sampling,
which justifies the need to select the most reliable axis for
identification of specific behaviours. The approach of sam-
pling from a single axis has been suggested by de Passille
et al. (2010), who proposed that the horizontal (forward) axis
was the most reliable. The duration of the time interval
(epoch) is of equal importance in optimizing the amount of
data and accuracy of classification. In the method of the

present study, we used epochs of 3 s, which is considered a
minimal time interval with the lowest levels of mis-
classification during walking (Robert et al., 2009; Nielsen
et al., 2010). The present method was guided by the afore-
mentioned aspects to optimize the amount of data recorded
by the accelerometer. Integration within the accelerometer of
an algorithm based on this method could substantially
resolve the challenges posed by large amounts of data. In
addition, where the circumstances permit, this method could
be integrated into accelerometers that use wireless data
transfer. Nevertheless, the battery life of the accelerometer
would remain a challenge for longer, more practical
durations in animal studies.
A relatively small number of animals was used in the

present study, merely to develop the proposed method for
data interpretation. Further study on a larger number of
subjects should be performed for cross-validation of the
classification functions, using the a priori predictions pro-
posed by the present study. Furthermore, validation of this
method in various quadruped species would contribute to
the development of a unified approach for gait and posture
discrimination that would facilitate wider practical usage of
sensor technology.

Conclusion
Tri-axial accelerometers provide real-time gait and posture
discrimination, based on the temporo-spatial position of the
specific leg of the animal under observation. The RFACs can be
used to determine specific gaits and postures. The vertical axis
of the accelerometer discriminates walking, trotting and
galloping by the four RFACs (0, 1], (1, 2], (2, 3] and (−3, −2],
and distinguishes between standing and lying. This axis also
exhibits high accuracy in the determination of gait, with the
smallest number of RFACs. The horizontal axis with the
RFACs (3, 4], (−4,−3], (2, 3], (−2,−1] and (1, 2] discriminates
gait, and even though it is not reliable for posture determi-
nation, this axis identifies lying on the left and right side. The
TA can be used for gait discrimination, but is insufficient for
posture determination. The classification functions in the
present study are reliable for gait determination, although
further cross-validation should be conducted. To our
knowledge, the present study establishes for the first time, an
optimized method for the use of accelerometer data in gait
and posture discrimination in sheep as the animal model.
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