
 | Virology | Full-Length Text

Complete genome reconstruction of the global and European 
regional dispersal history of the lumpy skin disease virus

Steven Van Borm,1 Simon Dellicour,2,3 Darren P. Martin,4 Philippe Lemey,3 Eirini I. Agianniotaki,5 Eleni D. Chondrokouki,5 Dejan 
Vidanovic,6 Nikola Vaskovic,6 Tamaš Petroviċ,7 Sava Laziċ,7 Xhelil Koleci,8 Ani Vodica,9 Igor Djadjovski,10 Kiril Krstevski,10 Frank 
Vandenbussche,1 Andy Haegeman,1 Kris De Clercq,1 Elisabeth Mathijs1

AUTHOR AFFILIATIONS See affiliation list on p. 14.

ABSTRACT Lumpy skin disease virus (LSDV) causes a disease of economic importance 
affecting cattle. Its global epidemiology is complex due to the combination of vector-
borne and anthropogenic spread, the circulation of vaccine-like recombinants, and the 
use of vaccines. The slow molecular evolution of its DNA genome limits the utility of 
genetic variation for accurate tracing based on evolutionary analyses, but this limitation 
has not yet been formally assessed. Furthermore, until present, whole genome sequenc
ing in affected areas has remained patchy. This study combines the first fine-grained 
sampling of LSDV whole genomes from a time-constrained (2015–2017) southeastern 
European (SEE) LSDV outbreak, which we analyze along with curated public genomes 
to investigate the global and regional viral dispersal dynamics. First, haplotype net
works visualizing the limited genetic variability associated with the SEE LSDV outbreak 
show intense intermixing between countries. We also assess at which spatial scale a 
correlation between genetic and geographic distances can be detected for LSDV. On a 
global scale, we show the importance of accounting for recombination events that can 
impact phylogenetic and phylogeographic reconstructions. Following the assessment of 
the temporal signal in the recombination-free alignment, our time-scaled continuous 
phylogeographic analysis of Kenya-like and recent wild-type viruses confirms the origin 
and global dissemination history of LSDV. Our analyses highlight the importance of 
careful selection and application of phylodynamic approaches to DNA viruses, as well as 
the importance of whole genome sampling in endemic and outbreak areas to improve 
our understanding of the evolution, epidemiology, and transmission dynamics of DNA 
viruses.

IMPORTANCE Lumpy skin disease virus (LSDV) has a complex epidemiology involving 
multiple strains, recombination, and vaccination. Its DNA genome provides limited 
genetic variation to trace outbreaks in space and time. Sequencing of LSDV whole 
genomes has also been patchy at global and regional scales. Here, we provide the 
first fine-grained whole genome sequence sampling of a constrained LSDV outbreak 
(southeastern Europe, 2015–2017), which we analyze along with global publicly available 
genomes. We formally evaluate the past occurrence of recombination events as well as 
the temporal signal that is required for calibrating molecular clock models and subse
quently conduct a time-calibrated spatially explicit phylogeographic reconstruction. Our 
study further illustrates the importance of accounting for recombination events before 
reconstructing global and regional dynamics of DNA viruses. More LSDV whole genomes 
from endemic areas are needed to obtain a comprehensive understanding of global 
LSDV dispersal dynamics.
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L umpy skin disease virus [LSDV; Poxviridae, Capripoxvirus genus (1)] is the causative 
agent of an important viral disease of cattle and water buffalo, lumpy skin disease 

(LSD). LSDV has a linear double-stranded DNA genome approximately 151 kb in length 
(2). The Capripoxvirus genus (CaPV) hosts two additional members: the goatpox virus 
(GTPV) and the sheeppox virus (SPPV), whose genomes show over 96% nucleotide 
identity to LSDV (3). LSD causes severe economic losses to the cattle sector due to 
morbidity, production losses, and control measures. As a consequence, the disease has 
been listed as notifiable by the World Organization for Animal Health (4). Arthropods 
provide the main route of LSDV transmission [reviewed in references (5, 6)]. The disease 
was first reported in 1929 in northern Rhodesia (current Zambia), reached South Africa 
in 1944 (7), and became an endemic disease in many countries of sub-Saharan Africa 
during the last century [reviewed in references (5, 8)]. During the last decades, the 
disease moved north and eastward to become endemic in the Middle East and Turkey (8, 
9). The first LSDV incursion on the European continent was recorded in Greece in August 
2015 near the Turkish border (10), followed by spread across the Balkan peninsula 
of continental Europe, including Greece, Bulgaria, North Macedonia, Albania, Kosovo, 
Serbia, and Montenegro (5, 8, 11). Simultaneously, outbreaks were reported in the 
Caucasus region and Kazakhstan. In southeastern Europe, after a decline in the reported 
outbreaks in 2017, no outbreaks were reported in 2018 and thereafter, confirming the 
effectiveness of a high-coverage (>80%) mass vaccination campaign in affected and 
neighboring countries with a live attenuated LSD vaccine based on the Neethling strain 
(9, 12).

Both homologous (i.e., LSDV-based) and heterologous (i.e., GTPV- or SPPV-based) 
live attenuated vaccines are used in LSD control efforts worldwide (13). Homologous 
vaccines are based on historical LSDV isolates from South Africa (Neethling strain) and 
Kenya [“Kenyan sheep and goat pox” — KSGP-based strain, identified as LSDV using 
genomic approaches (14, 15)] following classical attenuation approaches using serial 
passaging in cell cultures and the chorioallantoic membrane of embryonated chicken 
eggs (16). Neethling-based vaccines provide good protection against virulent LSDV 
strains but can cause mild adverse reactions in cattle referred to as “Neethling response” 
(local reaction at the vaccination site and, more rarely, generalized skin lesions) (13, 17, 
18). KSGP-based vaccines have been successfully used as heterologous vaccines against 
SPPV and GTPV in small ruminants but can cause clinical signs in vaccinated cattle (13, 
17).

Two to three years after the occurrence of LSDV in the Caucasus region and central 
Asia in 2014–2015, vaccine-like recombinant strains were detected in Russia (19, 20). 
Genomic analyses differentiated these from the wild-type strains typical of the LSDV 
outbreaks in Europe and the Middle East (19). The clinical features of the disease caused 
by these vaccine-like recombinant strains resembled the signs of the clinical disease 
in outbreaks caused by the wild-type LSDV strains. Molecular diagnostic assays for the 
differentiation of the Neethling LSDV vaccine and the wild-type LSDV strains had to be 
updated due to the emergence of these recombinant vaccine strains (21). The spread 
of these vaccine-like recombinants was hypothesized to be linked to the use of live 
Neethling strain vaccine in Kazakhstan (22) and either illegal movement of vaccinated 
animals or unauthorized vaccination in Russia (23). Detailed genomic analyses of vaccine 
batches used in Kazakhstan (22) suggest recombination events occurred during vaccine 
production due to the presence of multiple CaPV strains in vaccine seeds rather than 
after co-infection in cattle in the field (24). Although no evidence exists for the recombi
nation of LSDV in multiple infected cattle in the field, up to five different vaccine-like 
recombinants were detected in cattle in Russia and Kazakhstan between 2017 and 2020 
(24, 25), one of which [R4 (24)] spread to large parts of Asia (26, 27). Surprisingly, even 
though the importance of recombination-induced bias in phylogenetic analyses has 
been repeatedly stressed (28, 29), whole genome-based LSDV phylogenetic analyses 
have, until present, not been controlled for this effect [e.g., references (25, 30, 31)]. 
Further complicating the epidemiological picture, LSDV genomes characterized in India 
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and Bangladesh suggest a direct link with East African wild-type LSDV strains rather than 
vaccine-like recombinants circulating in large parts of Asia (32, 33).

The slow molecular evolution of Orthopoxviruses [between 6.7 × 10−6 and 1.1 × 
10−5 substitutions/site/year as estimated for Variola virus (34)] provides a challenge for 
exploring the evolutionary history of those viruses using phylodynamic approaches. 
Specifically for LSDV, one study compared the full genome of one historical and one 
contemporary South African LSDV isolate, estimating the substitution rate as 7.4 × 10−6 

substitutions/site/year (35). Such a low substitution rate could restrict the accumulation 
of enough genetic variability to accurately trace the dispersal history of lineages using 
phylogeographic analyses; a potential limitation that has never been formally assessed 
in the case of LSDV. Due to the low substitution rates of CaPV, generally, there will be 
only sufficient genetic variability within small genome regions (such as individual genes) 
to differentiate between the most divergent viral lineages. Therefore, such studies in 
southeastern Europe, differentiate between the Neethling vaccine LSDV strains and the 
wild-type LSDV strains. However, partial genomic sequences cannot be reliably used to 
differentiate the southeastern European LSDV lineages from one another [e.g., reference 
(36)].

The global epidemiological context of LSDV is complex. Virus transmission is 
mediated by a naturally broad range of blood-sucking arthropod vectors and the 
transport of cattle to naive regions. In addition, vaccination is applied, and both natural 
viral lineages, vaccine-derived lineages, and recombinant lineages (including recombi
nants of different vaccine strains) circulate. It would, therefore, be very useful from the 
perspective of formulating and evaluating control strategies if it was possible to use 
molecular epidemiology-based approaches to track the global and local dissemination of 
LSDV lineages using genome sequence data. In this context and given the generally low 
degrees of genetic diversity evident within the circulating LSDV lineages, whole genome 
sequence-based analyses would be needed to maximize the potential utility of such 
molecular epidemiological analyses.

Previously available genomic data sets for LSDV often lacked extensive sampling of 
full genome sequences or failed to take recombination events into account in their 
analyses (30, 31). Adding to this patchy global sampling of full LSDV genomes, our 
study generated the first fine-grained full genome sampling and sequencing of the 
southeastern Europe 2015–2017 incursion of LSDV to maximize the amount of genetic 
information that can be gained from this slowly evolving DNA virus. Specifically, we 
aimed to establish to what extent LSDV full genomes can unravel the dispersal history 
and recombination dynamics of the virus at global and more regional spatial scales, 
taking into account the bias that can be introduced when not accounting for recombina
tion events.

MATERIALS AND METHODS

Sampling and metadata curation

Sample repositories from LSDV-affected countries were investigated for LSDV-positive 
samples that had associated vaccination status, sample location, and sampling date 
metadata. Samples were verified as being LSDV positive (real-time qPCR assays according 
to the standard operating procedures of contributing national laboratories, details 
available on request) prior to shipping to Sciensano’s BSL3 facility for centralized LSDV 
whole genome sequencing (WGS). Legal, ethical, and biosafety requirements were 
met according to national and European legislation prior to sending the samples. 
Upon arrival, DNA was extracted and verified using a pan-CaPV real-time PCR assay 
targeting the conserved D5R region (nomenclature according to VACV strain Copenha
gen M35027.1 ortholog) (37), and only samples with sufficient LSDV concentrations 
(associated Cq scores < 30) were used for sequencing; a stringency that resulted in the 
rejection of screened samples from Montenegro and Azerbaijan. Between two and six 
skin biopsy samples per country (Albania n = 6, August–December 2016; Greece n = 
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5, November 2015–November 2016; North Macedonia n = 2, April–May 2016; Serbia n 
= 5, June–September 2016) were selected for additional whole genome sequencing to 
maximize the spatiotemporal sampling coverage (see Table S1 for the list of samples, 
associated metadata, and GenBank accession numbers).

DNA extraction and targeted CaPV whole genome sequencing

DNA extraction, LSDV genome amplification, massive parallel sequencing, and genome 
assembly were performed as previously described (38). Briefly, DNA was extracted from 
skin sample homogenates using a Puregene extraction kit (Qiagen), followed by PCR 
amplification of the genome by long-range PCR (amplicons of approximately 7,500 bp). 
Amplicons were equimolarly pooled per half genome and sequenced using a Nextera 
XT DNA Library Preparation Kit (Illumina) and a MiSeq Reagent Kit version 3, 2 × 
300 bp (Illumina) as previously described (38). The sequencing run was performed at the 
Neuromics Support Facility–VIB Genomics Core (UAntwerp, Belgium). Half genomes were 
de novo assembled and combined into complete genomes as described in reference (38). 
Discrepancies between the full-length consensus sequences and the genome sequence 
of LSDV isolate Evros/GR/2015 (KY829023.3, genome of the first incursion of LSDV in 
Europe in 2015) were confirmed or refuted by dideoxy chain terminator sequencing 
(Sanger sequencing) as previously described (38). Sanger sequencing was performed by 
the transversal activities in the applied genomics service of Sciensano on an Applied 
Biosystems 3130 Genetic Analyzer Sequencer using the BigDye Terminator v3.1 Cycle 
Sequencing Kit (Thermo Fisher Scientific) according to the manufacturer’s instructions. 
Annotation and amino-acid gene prediction of finished genomes were performed using 
GATU software (39) relative to the LSDV field isolate Evros/GR/2015 (KY829023.3) for 
wild-type viruses and Neethling-Herbivac (KX764644.1) for Neethling-like viruses. In total, 
18 complete coding sequences were generated and submitted to GenBank (see Table S1 
for accession numbers).

In addition to this study’s sequencing effort, all near-complete LSDV genomes with 
a minimum length of 150,000 bp were extracted from the NCBI nucleotide database 
(extraction date: 10 March 2023). Sequences with large gaps (>500 nt) were removed to 
maximize the number of available variable positions in the alignment. The final global 
LSDV alignment was made of 72 genomes, including 21 genomes from Europe (Table 
S1). Geographical coordinates were either provided by the sample or genome submitter 
or retrieved from Google Maps (https://www.google.com/maps/; accessed on 15 March 
2023) considering the center of the most precise administrative unit provided (see below 
regarding the inclusion of sampling uncertainty for the phylogeographic reconstruction). 
Sampling time was provided by the sample submitter or taken from the public sequence 
record metadata, with variable precision ranging from the exact sampling date (for all 
European genomes sequenced in the present study) down to the year. LSDV genomes 
were aligned using MAFFT v7.310 (40), and the resulting alignment was subsequently 
trimmed to remove extremities with missing data, reaching a final alignment length of 
148,398 nucleotides.

Recombination analyses

We applied the Φ-test (41) implemented in the program SplitsTree (42) to assess the 
presence of a recombination signal within our data set. This test is based on the 
computation of a pairwise homoplasy index that is a measure of the similarity between 
closely linked sites, and for which the level of significance is assessed by permuting 
nucleotide sites. We further inferred the position of recombination breakpoints by using 
the set of methods available in the program RDP4 (43) as well as the GARD method (44) 
implemented in the program HyPhy (45)

Phylogenetic analyses

We inferred maximum likelihood (ML) phylogenetic trees using the program IQ-TREE 
1.6.12 (46). The ML tree was inferred under a general time-reversible (GTR) model of 
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nucleotide substitution with empirical base frequencies and a four-category FreeRate 
model of site heterogeneity, which was selected as the best-fitting model using IQ-TREE’s 
ModelTest functionality and 100 bootstrap replicates to assess branch support. We 
also constructed a haplotype network, an alternative to phylogenetic trees, using the 
median-joining method (47) implemented in the program Network 5 (available at http://
www.fluxus-engineering.com) and plotted with the R function “networkGraph” available 
with the toolbox SPADS 1.0 (48). The temporal signal associated with the two wild-type 
clades was assessed by performing the root-to-tip regression analysis implemented in 
the program TempEst (49) and based on the corresponding ML tree inferred by IQ-TREE, 
which led to a coefficient of determination (R2) of 0.28.

Population genetic analyses

We performed two different analyses to explore the genetic differentiation and 
population structure inherent to the two “wild-type” clades, i.e., excluding vaccine-like 
recombinants and Neethling-like sequences (see the Results section): (i) an analysis 
of the isolation-by-distance (IBD) pattern (50) and (ii) spatial analysis of molecular 
variance (SAMOVA), the latter being a clustering algorithm based on the analysis of 
DNA sequences (51). For the IBD analyses, we performed a Mantel test (52) between 
an inter-individual distance based on pairwise nucleotide differences between DNA 
sequences (IID2) and the log-transformed great-circle geographic distance between 
sampling points. Mantel tests were based on 1,000 permutations and performed on 
different subsets of data (Table 1): when considering (i) the Kenya-like and recent 
wild-type viruses, (ii) only the recent wild-type clade, (iii) only the recent wild-type 
clade but when excluding African, Kazakhstan, and Russian samples, (iv) when only 
considering the European sequences (excluding Turkey), and (v) when only considering 
the R4 clade of vaccine-like recombinants. The SAMOVA method aims to assign sampling 
locations to K groups based on genetic similarity and geographic vicinity, the most likely 
structure corresponding to the partition maximizing the among-group differentiation 
as measured by the ΦCT statistic (53). We performed 100 independent runs of 10,000 
simulated annealing steps for each K value varying from 2 to 15. The computation of the 
pairwise inter-individual distances IID2 as well as the SAMOVA was performed with the 
program SPADS 1.0 (48).

Phylogeographic analyses

Despite the moderately low temporal signal assessed by the root-to-tips regression 
analysis, we were able to calibrate a molecular clock model in a continuous phylogeo
graphic analysis performed in the Bayesian framework of the software package BEAST 
1.10 (54) coupled with the BEAGLE 3 library (55) to improve computational performance. 
Specifically, we used the relaxed random walk diffusion model (56–58) implemented 
in BEAST to infer the dispersal history of wild-type LSDV lineages. The among-branch 
heterogeneity in diffusion velocity was modeled with a gamma distribution, branch-spe
cific evolutionary rates were modeled according to a relaxed molecular clock with an 
underlying lognormal distribution, the nucleotide substitution process was modeled 

TABLE 1 Investigation of the isolation-by-distance patterna

Subset of genomic sequences rS (p-value)

Kenya-like and recent wild-type viruses (clade 1.2) 0.648 (0.001)
Only recent wild-type viruses (clade 1.2b) 0.762 (0.001)
Only recent wild-type viruses (clade 1.2b) but when excluding African, 

Kazakhstan, and Russian samples
0.515 (0.002)

Only considering the European sequences of clade 1.2b (minus Turkey) 0.100 (0.239)
R4 recombinants clade 0.089 (0.270)
a We here report the Spearman correlation coefficient (rS) between the inter-individual genetic distance and 
the log-transformed geographical distance, along with the associated p-values obtained from the corresponding 
Mantel test.
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according to a GTR + Γ parameterization, and we also specified a flexible skygrid 
model as the tree prior (59). The Markov chain Monte Carlo algorithm was run for 109 

generations while sampling every 105 generations. Convergence and mixing properties 
were assessed using the program Tracer 1.7 (60), and that effective sampling size 
values associated with continuous parameters were all >200. After having discarded 
10% of sampled posterior trees as burn-in, we obtained and annotated the maximum 
clade credibility (MCC) tree using the program TreeAnnotator 1.10.4 (54). We used 
functions available in the R package “seraphim” (61, 62) to extract spatiotemporal 
information embedded within posterior trees and visualize the continuous phylogeo
graphic reconstructions.

Because of the lack of precision for the sampling location of a number of genomic 
sequences retrieved from GenBank, we used a uniform sampling prior approach to 
define a potential area of origin for these sequences (63, 64). This was the case for 
three genomic sequences from Kenya (AF325528.1, KX683219.1, and MN072619.1), one 
sequence from Namibia (MT007950.1), one sequence from India (OP297402.1), and one 
sequence from Israel (KX894508.1), for which we integrated sampling coordinates across 
the entire country; as well as for one sequence from the KwaZulu Natal province in 
South Africa (MW656253.1), two sequences from the Mymensingh division in Bangladesh 
(OP688128.1, OP688129.1), one sequence from the Dagestan autonomous republic in 
Russia (MH893760.2), one sequence from the Atyrau region in Kazakhstan (MN642592.1), 
one sequence from the Tokat province in Turkey (MN995838.1), and one sequence from 
the Yambol province in Bulgaria (MT643825.1), for which we integrated the sampling 
coordinates from the corresponding administrative polygon retrieved from the Database 
of Global Administrative Areas (GADM, https://gadm.org/).

RESULTS

Description of the generated genomic data set

This study resulted in 18 high-quality near-complete LSDV genome assemblies from 
southeastern Europe (2016–2017). Between two and six LSDV genomes were completed 
from North Macedonia, Greece, Albania, and Serbia. After confirmation with Sanger 
sequencing and annotation of the genomes, the sequences were submitted in Gen
Bank under accession numbers OR134832, OR134833, OR134834, OR134835, OR134836, 
OR134837, OR134838, OR134839, OR134840, OR134841, OR134842, OR134843, 
OR134844, OR134845, OR134846, OR134847, OR134848, and OR134849 (see Table S1 
for details and associated metadata). All sequences were characterized by a 145,885 bp 
central coding region, flanked by two inverted terminal repeats of at least 2,164  bp, and 
contain all expected LSDV open reading frames. They shared a high pairwise nucleotide 
sequence identity ranging between 0.984 and 1.000. The addition of complete and 
gap-free public LSDV genome sequences resulted in an alignment of 72 complete 
LSDV genomes including 21 from the southeastern European 2015–2017 epidemic 
(Fig. 1A; Table S1). Of note, the Greece/Evros/2015 (10), Bulgaria/2016 (65), Israel/2012 
(KX894508.1), and four Vietnamese (66) LSDV genomes were previously sequenced 
by our group and the genome assembly included Sanger sequencing confirmation of 
variant positions.

Visualization of the LSDV evolutionary history

The neutral definition of the term “clade” was used, as any part of a phylogeny including 
an ancestral lineage and all the descendants of that ancestor. The ML phylogeny (Fig. 
1B) and haplotype network (Fig. 1C) are both in agreement with the history of LSDV 
spread documented in disease reports and partial sequencing data. Neethling strain-like 
historical and vaccine viruses [clade “Neethling-like,” corresponding to “subgroup 1.1” 
in the terminology proposed by Biswas and colleagues (31)] are clearly distinguished 
from Kenya-like and recent wild-type viruses [“subgroup 1.2” according to reference 
(31)] and recombinant viruses. Two European LSDV genomes within this “Neethling-like” 
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clade represent cases with adverse reactions of Neethling-based live attenuated vaccines 
and clearly cluster with Neethling vaccines (Fig. 1B and C). This includes a single case 
from Serbia (SRB6402) sequenced in this study as well as a sequence from Croatia 
(MG972412.1), both in 2016. In addition, a series of South African LSDV virulent 

FIG 1 Sampling map and genetic variability of LSVD genomes. (A) Sampling map. (B) ML phylogenetic tree based on the entire alignment for which the 

internal nodes are highlighted only when the associated bootstraps support is higher than 70% (see Fig. 2 for a comparison with the ML tree based on the 

recombination-free alignment). (C) Haplotype network based on the entire alignment. In the network, each haplotype corresponds to a unique sequence 

represented by a circle, the size of which is proportional to its overall sampling frequency, and the genetic relatedness between haplotypes is represented by 

line segments. If more than one mutational change separates two haplotypes, a number indicates the number of mutations (see Fig. 2 for the haplotype network 

focused on the southeastern European clade).
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Neethling-like strains from the 1990s (67, 68) clearly cluster in the Neethling-like clade 
(Fig. 1B). Of note, a series of recently released genomes from historical (1958–1977 
(69)) Neethling-like field isolates were not publicly available at the time of our analyses. 
Interestingly, the haplotype network suggests an early differentiation of these virulent 
viruses from the Neethling vaccine attenuation history (Fig. 1C).

Within the Kenya-like and recent wild-type viruses clade [corresponding to “subgroup 
1.2” in the terminology proposed in reference (31)], a well-supported clade containing 
viruses from East Africa, India, and Bangladesh (clade 1.2a; Fig. 1B and C) is separated 
from recent wild-type viruses from southern Africa, central Asia, the Middle East, and 
Europe (clade 1.2b; Fig. 1B and C). Within the clade 1.2a, the Indian and Bangladeshi 
LSDV genomes show only a limited number of nucleotide differences to a genome 
from a commercial East African vaccine derived from a Kenyan 1974 strain (KX683219.1; 
Fig. 1C). Within clade 1.2b, the ML tree provides limited resolution at the European 
scale (Fig. 1B). The haplotype network (Fig. 1C) visualizes the differences between 
sequence variants on a finer geographical scale and highlights the pivotal role of the 
Middle East in the spread of LSDV from Africa towards both Europe and Central Asia. 
Within the southeastern European outbreak, LSDV genomes differ by a maximum of 
five single nucleotide substitutions, without evidence for clustering per country (Fig. 2). 
Eleven unique haplotype variants are present in the population of 19 wild-type samples 
from southeastern Europe. A single haplotype is shared by samples from four sampled 
countries (Albania, Greece, North Macedonia, and Serbia) and represents 6 of the 19 
sampled wild-type genomes (31.6%). A second haplotype is shared between Albania and 
North Macedonia. In addition, all countries except North Macedonia (where only two 
genomes were sequenced) show multiple unique haplotype variants within the country 
(Fig. 2).

We confirm the circulation of multiple vaccine-like recombinants (but see below 
for their phylogenetic analysis after correction for recombination events) and refer to 
the terminology proposed by Vandenbussche and colleagues (24). A single vaccine-like 
recombinant clade R4 groups the genomes representing the spread of this recombi
nant virus to large parts of Asia (Fig. 1B and C). The unexpected long distance (Fig. 
1B), even after removing recombination signals (Fig. 3), and number of single nucleo
tide polymorphisms (SNPs) (Fig. 1C) to MW732649.1 from Hong Kong (60 SNPs) and 
OP508345.1 from Xinjiang (20 SNPs) suggest potential issues with the assembly of those 
genomes.

Detection of recombination events in the LSDV global evolutionary history

We observed a significant signal for the occurrence of past recombination events (Φ-test, 
P < 0.001), and up to 78 past recombination events were identified by RDP4 (see Fig. 

FIG 2 Sampling map and genetic variability of LSDV genomes within the southeastern European outbreak. (A) Sampling map. (B) Haplotype network of 

wild-type LSDV dispersal during the southeastern European outbreak. In the network, each haplotype corresponds to a unique sequence represented by a circle, 

the size of which is proportional to its overall sampling frequency, and the genetic relatedness between haplotypes is represented by line segments. If more than 

one mutational change separates two haplotypes, a number indicates the number of mutations.
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3 for a graphical overview of the recombinant regions). To avoid bias of recombina
tion events in the phylogenetic reconstructions, we repeated the ML-based reconstruc
tion after removing recombination signals from the alignment using RDP4 (Fig. 3). In 
the absence of recombination signals (Fig. 3B), all previously identified recombinant 
genomes significantly cluster with the Neethling-like clade. This supports the conclu
sion that the recombinants originated from a Neethling-like virus. The visualization of 
removed recombination signals by RDP4 (Fig. 3C) confirms the presence of five different 
recombinants. We use the “R1–R4” terminology proposed by Vandenbussche et al. (24), 
while R5 is represented by the vaccine-like recombinant described from Tyumen, Russia 
in 2019 (25). R4 recombinants, spreading to large parts of Asia after their emergence, 
stand out as a monophyletic group but their close relationship with the Neethling-like 
clade as well as with the other recombinants OM530217 and MH646674 (R1) from Russia 
are now emphasized. The phylogenetic clustering of the reemergence of R1 at the 
same geographical location (Saratov, Russia, 2017 and 2019) (70) remains unaltered after 
correction for recombination signals.

Genetic differentiation and population genetic structure at different 
geographical scales

We investigated the genetic differentiation of LSDV at different geographical scales and 
identified a significant isolation-by-distance signal identified within the wild-type clades, 
but this signal is no longer significant when only considering the European sampling, 
meaning that at the European scale, we do not find any supported association between 
the genetic differentiation and the geographic distance (Table 1). Similarly, when only 
considering the spread of the R4 recombinants in Asia, no isolation-by-distance is 
evident. We further performed a SAMOVA to investigate the population genetic structure 
of wild-type LSDV samples. With a ΦCT statistic constantly increasing with the number of 
considered K clusters to delineate, this analysis fails to identify a clear clustering among 
sampling locations of wild-type genomic sequences. This indicates a lack of detection of 

FIG 3 Comparison between the ML tree based on the overall alignment (A) and the one based on the recombination-free (B) alignment. In both trees, we only 

highlight the internal nodes for which the associated bootstrap support is higher than 70%. (C) Next to the ML tree based on the recombination-free alignment, 

we also display a schematic whole genome view of the recombination-free genomic regions that were retained in the alignment (darker gray bands) and the 

recombination signals (lighter gray bands) that were removed from the alignment.
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a clear population genetic structure among the samples belonging to that clade, rather 
than highlighting a continuum of genetic variation across the study area.

Phylogeographic reconstruction of the dispersal history of LSDV lineages

The time-scaled phylogenetic inference associated with our continuous phylogeographic 
reconstruction allows estimating for the clade 1.2 (Kenya-like and recent wild-type 
viruses) a root age around 1888 [95% highest posterior density, HPD = (1744, 1958); Fig. 
4A] and a substitution rate equals to 6.08 × 10−5 substitutions/site/year [95% HPD = (4.07 
× 10−7, 3.38 × 10−4)]. The continuous phylogeographic reconstruction of the dispersal 
history of wild-type LSDV lineages (Fig. 4B) did not highlight multiple long-distance 
dispersal events among the infected continents, which further illustrates the isolation-
by-distance signal estimated across a large spatial scale. While this analysis infers the 
location of the most ancestral nodes connecting African, Asian, and European clades in 
Africa, the statistical uncertainty associated with the inferred location is relatively high, 
preventing to conclude on a precise geographic origin.

DISCUSSION

The considerable genetic variability of RNA virus populations allows for a detailed 
phylogeographic tracing within outbreaks [e.g., references (71–73)], but the limited 
genetic variability within DNA virus populations constrains the resolution at which 
population genetic and phylodynamic investigations can be performed even when 
based on the analysis of whole genome sequences. To our knowledge, this study 
presents the first fine-grained sampling of full genomes collected from a regional LSDV 
epidemic, which results in 21 high-quality complete genomes for an outbreak spanning 
less than 3 years and an outbreak area as small as the Balkan peninsula of continental 
Europe. We combined these genomes with a global context of publicly available gap-free 
complete LSDV genomes.

Previous analyses of LSDV whole genome data sets did not formally evaluate the 
correlation between geographical and genetic distances [e.g., reference (30)]. Here, we 
found that although this was the case on a global and inter-regional scales, no associa

FIG 4 Continuous phylogeographic reconstruction of the wild-type LSDV clades. (A) Time-scaled MCC tree obtained from the continuous phylogeographic 

inference on which we only highlighted the internal nodes associated with a posterior probability > 0.95. (B) Reconstruction of the dispersal history of LSDV 

lineages within the wild-type clade. Here, we map the MCC tree and 80% HPD regions reflecting the uncertainty related to the Bayesian phylogeographic 

inference. MCC tree and 80% HPD regions are based on 900 trees sampled from the posterior distribution of trees and are colored according to their time of 

occurrence.
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tion existed between genetic and geographic distances at the regional (southeastern 
Europe) scale. Different factors may contribute to this lack of geographical signal at the 
southeastern European scale compared to larger inter-regional scales. These include the 
slow evolutionary rate of CaPV and the limited geographical area and timeframe of the 
outbreak due to the successful regional eradication of the disease using mass vaccina
tion with homologous live attenuated vaccines. In addition, intense interconnectivity 
between affected countries due to a combination of vector-borne and anthropogenic 
transmission likely resulted in a highly intermixed virus population as also indicated by 
the lack of clustering in the SAMOVA. Sampling even more densely for whole genomes in 
this limited outbreak would likely not have resulted in a significant isolation-by-distance 
signal at a regional scale. As a result, even whole genome sequences of LSDV did 
not allow tracing in time or space at this regional scale. Of note, this lack of regional 
isolation-by-distance is specific to the particular epidemic studied in the present study, 
which took place in a very short timeframe (3 years) and across a relatively small 
geographical area (maximum great-circle distance between sampling locations: 733 km). 
Similarly, we show that within the currently available public whole genome data of clade 
R4 vaccine-like recombinants spreading through East Asia (China, Taiwan, Vietnam, and 
Thailand), there is no support for isolation-by-distance. In areas of endemic circulation 
or extended epidemic spread of CaPVs, sufficient genetic variation may result in detailed 
phylogeographical analyses on a smaller geographical scale.

In the context of limited genetic variation, haplotype networks allow a useful 
visualization of the genetic differences between sampled genomes in a regional 
outbreak. These approaches have been recently used for understanding the spatial 
and temporal relationships between mpox virus (previously monkeypox virus) (MPXV) 
isolates (74, 75). LSDV is well-adapted to the cattle host, in contrast to the continuing 
adaptation of the MPXV in the human host potentially affecting the genetic variation 
(76) visualized in haplotype networks. For LSDV, the network visualization of sequence 
polymorphisms confirms the presence of multiple unique sequence variants within 
European countries in such a short timeframe and limited geographical area. However, 
it also allows visualizing the lack of isolation-by-distance on this smaller geographical 
scale as there is no clustering per country. On a global scale, genetic distance-based as 
well as haplotype-based methods offer a meaningful visualization of LSDV dissemination 
and evolution. Our reconstruction is largely in line with previous reconstructions of 
global LSDV epidemiology based on epidemiological or (partial) genomic information 
[reviewed in references (5, 8)]. Our analyses confirm previous phylogenetic findings 
for Neethling strain LSDV vaccines with a linked cluster representing the circulation of 
virulent but phylogenetically vaccine-like LSDV lineages from outbreaks in South Africa 
during the 1990s as previously described (67). A recent study by van Schalkwyk and 
colleagues showed that the complete genomes of historical (1958–1977) South African 
virulent field isolates clustered within the Neethling-like clade, suggesting continued 
historical circulation of Neethling-like viruses (69). Unfortunately, these genomes were 
not publicly available at the time of our analyses. Within the Neethling-like clade, two 
recent genomes from Serbia and Croatia cluster closely with vaccine genomes and 
represent cases with adverse reactions to live attenuated vaccines as reported previously 
(12, 17, 18) and supported by the sampling dates fitting with the implementation of 
mass vaccination in the Balkan peninsula in 2016.

Removing highly passaged vaccines, vaccine-associated strains, and recombinant 
viruses from the data set, a spatially explicit reconstruction of the global dissemination 
history of wild-type LSDV was possible. This placed the origin of LSDV wild-type viruses 
in sub-Saharan Africa with a timing coherent with the first description of the disease 
in northern Rhodesia (Zambia) in 1929 and South Africa in 1944 (7). Although the full 
genome sampling of endemically circulating and spreading LSDV lineages in Africa 
and the Middle East is extremely patchy, we confirm the endemic circulation of LSDV 
wild-type in sub-Saharan Africa and its spread from there to the Middle East. For the 
particular case of endemic LSDV circulation, detailed public whole genome information 
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is missing for most of the historical and recent endemic circulation in Africa and the 
Middle East, resulting in the high degrees of uncertainty in the geographical locations 
of ancestral sequences yielded by continuous phylogeographic analyses. Epidemiolog
ical data suggest that, from the Middle East, LSDV further spread to Europe as well 
as to Central Asia (5). Interestingly, the placement in Turkey and Israel of multiple 
internal nodes of our spatially explicit reconstruction of the LSDV wild-type dispersal 
history confirms the pivotal role of the Middle East in LSDV global epidemiology and is 
consistent with the suspected circulation and diversification of LSDV in the Middle East 
prior to further dissemination to Europe and Asia (5). The haplotype network confirms 
this pivotal role of the Middle East from which LSDV spread to both Europe and the 
Caucasus and central Asia (5). Moreover, the placement of Turkey and Israel in the 
haplotype network is consistent with the findings of risk assessment studies exploring 
the spatial and temporal risk of LSD, which identified similar regions in the Middle East at 
high risk of LSDV transmission (77, 78).

Our analyses also confirm the direct link between a commercial vaccine derived 
from a historical Kenyan strain and recent genomes from India and Bangladesh (32, 33). 
Interestingly, the viral genome most closely related to the Indian viruses represents a 
live attenuated vaccine batch produced from a Kenyan isolate, KSGP 0240, from 1974 
[KX683219 (15)]. Although separated in sampling time by 45 years (strain used for the 
KSGP vaccine) and 54 passages in lamb cell culture (lab attenuation history), coding 
sequences of both viruses differ by only three single nucleotide polymorphisms. In 
comparison, endemically circulating viruses in Africa between 1999 and 2018 show 
the accumulation of more than 35 SNPs over a 19-year period. In fact, the genetic 
similarity between LSDV from the Indian subcontinent and African strains (including 
the KSGP 0240-based live attenuated vaccine) resembles more the genetic similarity 
between Neethling strain-based vaccine batches and those occasionally isolated from 
animals affected by vaccination side effects in Europe. This suggests that anthropogenic 
involvement in the recent release of KSGP-like strains in East Africa, and/or on the 
Indian subcontinent is more likely than the continued endemic circulation of wild-type 
viruses in East Africa followed by introduction to India. However, the limited number 
of coding differences between the East African and Indian LSDV genomes has resulted 
in the truncation of open reading frames encoding kelch-like proteins (LSD_19 and 
LSD-144 genes) in the Indian viruses: a genetic change that is likely to have phenotypic 
consequences involving virulence and host range (32). A more representative whole 
genome sampling (from biobank samples) of the endemically circulating LSDV lineages 
in East Africa between the 1970s and the time when the introduction to India occurred 
is needed to pinpoint the most probable introduction sources of wild-type LSDV on the 
Indian subcontinent.

As mentioned above, although the importance of recombination-induced bias in 
phylogenetic analyses has been repeatedly stressed (28, 29), this issue was not addressed 
in previous phylogenetic analyses of whole LSDV genomes (e.g. 25, 30, 31 ). We confirm 
the emergence of at least five different vaccine-like recombinant viruses in livestock in 
central Asia (24, 25). A single recombinant strain [R4; see reference (24)] further spread 
to large parts of Asia. An advanced deep sequencing and bioinformatics investigation 
of vaccine batches used in Kazakhstan consistent with the time of the emergence of 
these vaccine-like recombinants suggested that these recombinants most likely resulted 
from mixed strains during vaccine seed production rather than from mixed infection 
of cattle with wild-type and vaccine strains (24). No direct evidence exists for the 
spontaneous recombination of capripox viruses in dually infected animals in the field. 
Removing recombination signals from our maximum likelihood analyses elucidates the 
vaccine origin of recombinant viruses within the “Neethling vaccines” clade. Specifically, 
our analysis (compared to analysis lacking correction for recombination) implicates the 
vaccine strains as the main contributors of genetic material to the five recombinant 
lineages with the remainder of the genomes of these lineages having been derived from 
parental genomes in the wild-type clade.
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Both our assessments of recombination events and temporal signal constitute 
particularly important analytical steps when attempting to reconstruct the evolution
ary and dispersal history of DNA viruses, which have more slowly evolving and larger 
genomes than RNA viruses and are often subject to recombination. In the context of 
the limited genetic variability available in slowly evolving DNA virus populations, both 
the accuracy of the generated genomic data (which can be substantially impacted by a 
single miscalled SNP) and the suitability of phylodynamic methods have an important 
impact on the outcomes of the analyses. Presenting a rare instance of detailed whole 
genome sampling in a time-constrained outbreak of a DNA virus that is well-adapted to 
its cattle host, we could formally evaluate the geographic scale at which a correlation 
existed between genetic and geographical distance. Importantly, we also conducted an 
analysis of recombination breakpoints, which, if not taken into account, can introduce 
severe biases during phylogenetic reconstruction as evolutionary models assume that 
the evolutionary histories of the analyzed sequences can be represented by a single 
phylogeny.

The current global LSDV situation entails the occurrence in the field of wild-type 
lineages, vaccine lineages, and at least one vaccine-like recombinant strain (R4) that 
is consistently spreading in Asia. As LSDV genomic variation is low and randomly 
distributed over the genome and because recombination is also a potentially problem
atic issue, the generation of high-quality full genome sequences is extremely relevant. 
However, our analyses also confirm that, as can be expected due to low LSDV evolu
tionary rates, the geographical resolution of genetic variation within LSDV epidemic 
outbreaks such as that occurring between 2015 and 2017 in southeastern Europe is too 
low to trace virus dispersal with either fine-grained geographical (within country) or 
fine-grained temporal (within year) resolution. We also show that full genome phyloge
netic analyses should avoid the impact of recombination in order to accurately reflect the 
evolutionary history of LSDV. Haplotype networks provide an interesting visualization 
of all sequence variants circulating in an epidemic providing limited genetic variability. 
Specifically for the southeastern European outbreak investigated in the present study, we 
observed that although several sequence variants were present at the same time and 
within countries, these do not cluster by time or country of origin. We formulate the 
following recommendations for the informative use of LSDV whole genome sequencing: 
(i) to increase both current sampling and WGS of samples in endemic regions, and the 
WGS of biobanked historical samples collected during outbreaks or in areas of endemic 
circulation; (ii) to consistently sample and WGS index cases in new geographical areas, 
unexpected epidemiological settings, or following instances of disease reoccurrences 
to maximize chances of detecting recombinants or unexpected long-distance LSDV 
movements (e.g., eastern Africa to India/Bangladesh); and (iii) to carefully assess the 
occurrence of recombination events and to evaluate the temporal signal within the data 
set prior to conducting time-scaled phylogeographic reconstructions. Following these 
recommendations, and preferentially using standardized methodologies in an interna
tional collaborative effort, properly targeted whole genome sequencing of capripox 
viruses can provide important insights to better understand viral evolutionary and 
dispersal histories: insights that would be useful for the assessment and optimization 
of control strategies.
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