
Classifying Power Quality Disturbances in Noisy 
Conditions using Machine Learning

Bojana Velichkovska  
Faculty of Electrical Engineering 

and Information Technologies 

Ss. Cyril and Methodius University 

1000 Skopje, N. Macedonia 

 bojanav@feit.ukim.edu.mk 

Marija Markovska 
 Faculty of Electrical Engineering 

and Information Technologies 

Ss. Cyril and Methodius University 

1000 Skopje, N. Macedonia 

 marijam@feit.ukim.edu.mk 

Hristijan Gjoreski 
 Faculty of Electrical Engineering 

and Information Technologies 

Ss. Cyril and Methodius University 

1000 Skopje, N. Macedonia 

 hristijang@feit.ukim.edu.mk

Dimitar Tashkovski 
Faculty of Electrical Engineering and Information Technologies 

Ss. Cyril and Methodius University 

 1000 Skopje, N. Macedonia 

 dtaskov@feit.ukim.edu.mk 

 

ABSTRACT 
When ensuring high-quality power supply of the power grid it is of 

the upmost importance to correctly detect and classify any power 

quality (PQ) disturbance. Selecting the most relevant features is 

very important in the process of training a genera machine learning 

model. Therefore, we analyze the power signals and extract 

information from them, and then select the most significant 

features. Additionally, an effective classification model is required. 

In this study we apply grid search throughout the features sets on 

one side, and the classification algorithms on the side. This way, 

we determine the most effective combination of an algorithm and 

feature set for classification of power quality disturbances. 
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1. INTRODUCTION 
As nowadays the power grid undergoes many disturbances, it has 

become more of a challenge to not only detect these disturbances, 

but also to correctly identify them (as harmonics, transients, voltage 

dips, etc.). Awareness regarding a disruption within a signal could 

be used to minimize the undesired effects which poor power quality 

could inflict. The information gathered during detection and 

classification of power grid malfunctions could be utilized as 

insight in solving them. Additionally, the reliability of a power 

distribution network is key in preventing complaints by customers, 

which is why there is an increased focus on detection of 

disturbances in the grid. 

In the recent years, with the development of the novel machine 

learning and feature extraction techniques, the power quality 

disturbances domain have also benefitted by introducing various 

approaches based on machine learning. 

With regard to the feature extraction methods used to formulate the 

data frame before applying an algorithm, there are several digital 

signal processing techniques. S-transform is one of the most 

commonly used feature extraction approaches [1]. Other popular 

feature extraction tools are short-time Fourier transform (STFT), 

fast working Fourier transform (FT), Neural Networks, Wavelet 

Transform (WT) and Discrete Wavelet Transform [2][3][4][5].  

WT analyses give frequency and time information accurately by 

convolving the dilated and translated wavelet with the input signal. 

This property makes the WT approach suitable for detecting 

various deviations in voltage and current waveform, caused by 

different PQ disturbances. 

Proposed methods for classifications of PQ disturbances include 

rule-based approaches, as the one presented in [1], time series 

analysis [5], artificial neural networks (ANNs) [6] and machine 

learning techniques as Support Vector Machines, Decision Trees 

and Random Forrest [7][8]. 

Upon combining different feature extraction methods with machine 

learning approaches unique investigations of the problem are 

provided. We utilize the results of feature extraction and feature 

selection design to create descriptive feature groups and to use the 

obtained groups for training various models. The feature extraction 

process carries significant weight in addressing the type of 

disturbance inhibiting the power signal. A correctly determined set 

of features can be crucial for the accuracy of a model, as on a weak 

set of features even the best approach would provide extinguishable 

results. Moreover, a compressed feature set can influence the 

required processing time.  

The processing of the signals and the feature extraction and 

selection method are addressed in section II, the approach methods 

are discussed in section III, the results are presented in section IV 

and we conclude this research in section V. 

2. DATA AND FEATURE EXTRACTION 
Our dataset is comprised of samples from 21 different type of PQ 

disturbances, as given in Table I, generated in accordance with the 

mathematical definitions given in [9]. We used those samples as 

PQ signals accompanied with 20 dB, 30 dB, 40 dB and 50 dB white 

Gaussian noise. Every signal we examined contained 10 cycles, for 
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fundamental frequency of 50 Hz and sampling frequency of 3.2 

kHz. Accordingly, a signal instance in our dataset contained 640 

data samples linked in a time series. Note that there were 21000 

training and 21000 test signal instances. Upon these signal 

instances we preformed automatic extraction of relevant features 

with the help of tsfresh (Time Series FeatuRe Extraction on basis 

of Scalable Hypothesis tests) [10]. The tsfresh library is used to 

accelerate the process of extracting features by combining 63 time 

series characterization methods, which resulted in 794 time series 

features. Related work that use tsfresh for feature extraction is 

proposed in [12]. 

Table 1 PQ Classes 

PQ Disturbance Classes 

Pure C1 

Sag C2 

Swell C3 

Interruption C4 

Transient/Impulsive/Spike C5 

Oscillatory transient C6 

Harmonics C7 

Harmonics + Sag C8 

Harmonics + Swell C9 

Flicker C10 

Flicker + Sag C11 

Flicker + Swell C12 

Sag + Oscillatory transient C13 

Swell + Oscillatory transient C14 

Notch C15 

Harmonics + Sag + Flicker C16 

Harmonics + Swell + Flicker C17 

Harmonics + Sag + Oscillatory transient C18 

Harmonics + Swell + Oscillatory transient C19 

Harmonics + Sag + Flicker + Oscillatory transient C20 

Harmonics + Swell + Flicker + Oscillatory transient C21 

The obtained features can be applied for classification. We used the 

complete set of extracted features that tsfresh provides, to train our 

models. However, as the number of obtained features was 

significant, it was necessary to influence the computational 

efficiency of the models. To do so, we used a feature selection 

module designed to reduce the number of features by selecting the 

most relevant descriptors of the problem. 

Firstly, we determined the mutual information between each 

extracted feature and the corresponding class. Considering the fact 

that the higher the value of the mutual information the more 

relevant the feature is to the class, we sorted the features in 

descending order based on this value. We selected the upmost 300 

features. Next, we divided the features in groups of 50. For the first 

group, we calculated the Pearson correlation coefficient [11] for 

every pair of features. Upon encountering a pair with a correlation 

higher than 0.8, the feature with the lower mutual information to 

the class was removed. Once the whole group was iterated, the next 

group was appended to the remainder of the features and the 

process was repeated for all groups, until a final set of features was 

obtained.  

These features were a mix of both time domain features and 

frequency domain features. We inputted the time domain and 

frequency domain features to our models separately, as well as a 

union between the sets upon training our models. 

3. MACHINE LEARNING APPROACH 
With the four feature-wise possible data frames (all initial features, 

remainder of features after the feature selection process only 

containing time domain features, only containing frequency 

domain features and a combination of the two) we trained our 

models with 1000 signals per class. The signals used for training 

and testing within one class had different phase shifts. Our test set 

also contained 1000 signals per class.  

We trained our models with different signal sets, where each set 

was synthetized with 20 dB, 30 dB, 40 dB or 50 dB of white 

Gaussian noise. Also, a set of signals synthesized with 20-50 dB of 

noise was used. The latter is due to the noise variations occurring 

within a real signal.  

The following five algorithms were used for the experimental 

analysis. 

 K Nearest Neighbors (KNN) is algorithm that analyzes a test 

sample in comparison to the whole of the train data. Through 

comparing the sample with the whole of the data frame, the 

closest neighbors which have the highest similarity with the 

sample are found. They determine the class in which the sample 

will be placed. 

 Decision Tree is an algorithm which preforms data division by 

splitting the frame into several branches recursively, in a way 

that each split is determined by a value of one feature from the 

data frame. The branching ends when a class for the analyzed 

sample is reached. 

 Random Forest is an ensemble algorithm of decision trees. 

Each tree performs on the values of a random feature vector 

sampled independently and with the same distribution for all 

trees in the forest.  

 Gradient Boosting produces a prediction model in a stage-wise 

fashion as an ensemble of weak prediction models, typically 

decision trees.  

 XGBoost is an implementation of gradient boosted decision 

trees which are designed for speed and performance.  

4. RESULTS 
Through the results given in Tables 2-6, we can observe the 

behavior of our algorithms depending on the noise and the feature 

set selected.  

We concluded that using all the features tsfresh extracts to train our 

models provided the highest accuracy. After we extracted the 

features with the method described in Section 2 and trained our 

models with the extracted features, a significant decrease in the 

accuracy of the models occurs. Those remaining features we 

divided into two categories, time domain and frequency domain 

features, before we retrained our algorithms. The time domain 

features in the worst-case scenario provided insignificant decrease 

in the accuracy of the classifiers, whereas the accuracy obtained 
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through the frequency domain features caused a severe drop in 

accuracy.  

When analyzing the algorithms themselves it shows that on overall 

the XGBoost algorithm performed best. 

Table 2. Comparison of algorithms accuracy with 20 dB noise. 

20 dB white Gaussian noise 

Classifier Extracted 

Features 

Selected 

Features 

Time 

Domain 

Features 

Frequency 

Domain 

Features 

Nearest 

Neighbors 

0.99 0.43 0.46 0.31 

Decision 

Tree 

0.29 0.6 0.54 0.37 

Random 

Forrest 

0.43 0.42 0.53 0.26 

Gradient 

Boosting 

0.99 0.75 0.75 0.53 

XGBoost 0.98 0.78 0.77 0.54 

Table 3. Comparison of algorithms accuracy 

with 30 dB noise. 

30 dB white Gaussian noise 

Classifier Extracted 

Features 

Selected 

Features 

Time 

Domain 

Features 

Frequency 

Domain 

Features 

Nearest 

Neighbors 

0.99 0.46 0.52 0.34 

Decision 

Tree 

0.17 0.68 0.63 0.43 

Random 

Forrest 

0.48 0.52 0.6 0.25 

Gradient 

Boosting 

0.98 0.85 0.85 0.55 

XGBoost 0.98 0.88 0.87 0.57 

 

Table 4. Comparison of algorithms accuracy 

with 40 dB noise. 

40 dB white Gaussian noise 

Classifier Extracted 

Features 

Selected 

Features 

Time 

Domain 

Features 

Frequency 

Domain 

Features 

Nearest 

Neighbors 

0.99 0.54 0.59 0.43 

Decision 

Tree 

0.29 0.68 0.65 0.5 

Random 

Forrest 

0.43 0.57 0.6 0.39 

Gradient 

Boosting 

0.99 0.87 0.87 0.63 

XGBoost 0.99 0.9 0.89 0.65 

 

Table 5. Comparison of algorithms accuracy 

with 50 dB noise. 

50 dB white Gaussian noise 

Classifier Extracted 

Features 

Selected 

Features 

Time 

Domain 

Features 

Frequency 

Domain 

Features 

Nearest 

Neighbors 

0.99 0.57 0.63 0.45 

Decision 

Tree 

0.29 0.63 0.65 0.52 

Random 

Forrest 

0.51 0.58 0.69 0.44 

Gradient 

Boosting 

0.98 0.87 0.87 0.64 

XGBoost 0.99 0.9 0.89 0.7 

 

Table 6. Comparison of algorithms accuracy 

with 20-50 dB noise. 

20~50 dB white Gaussian noise 

Classifier Extracted 

Features 

Selected 

Features 

Time 

Domain 

Features 

Frequency 

Domain 

Features 

Nearest 

Neighbors 

0.98 0.51 0.57 0.4 

Decision 

Tree 

0.42 0.64 0.6 0.43 

Random 

Forrest 

0.45 0.54 0.59 0.3 

Gradient 

Boosting 

0.99 0.85 0.84 0.6 

XGBoost 0.99 0.88 0.87 0.6 
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5. CONCLUSION 
With this paper we addressed the effectiveness of observing the PQ 

signals as time series and using features obtained with tsfresh in 

classification of PQ disturbances. The testing was conducted with 

numerous classification models, each time on 21 classes and 

accompanied with different noise levels.  

The results show that features extracted with tsfresh can be used for 

correctly classifying PQ disturbances. However, a deeper 

understanding in choosing subsections of those features is needed, 

and also additional testing. 

Our future endeavors will be creating a more optimal feature set, 

which might consist of a combination of our current features and 

features obtained from Wavelet Transform. Additionally, we will 

investigate the possibility of improvements using deep learning 

methods. 
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