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Abstract: Numerous studies have detailed instances of demographic bias in medical data and artificial intelligence 

(AI) systems used in medical setting. Moreover, these studies have also shown how these biases can 

significantly impact the access to and quality of care, as well as quality of life for patients belonging in 

certain under-represented groups. These groups are then being marginalised because of stigma based on 

demographic information such as race, gender, age, ability, and so on. Since the performance of AI models 

is highly dependent on the quality of data used to train the algorithms, it is a necessary precaution to analyse 

any potential bias inadvertently existent in the data, in order to mitigate the consequences of using biased 

data in creating medical AI systems. For that reason, we propose a machine learning (ML) analysis which 

receives patient biosignals as input information and analyses them for two types of demographic bias, 

namely gender and age bias. The analysis is performed using several ML algorithms (Logistic Regression, 

Decision Trees, Random Forest, and XGBoost). The trained models are evaluated with a holdout technique 

and by observing the confusion matrixes and the classification reports. The results show that the models are 

capable of detecting bias in data. This makes the proposed approach one way to identify bias in data, 

especially throughout the process of building AI-based medical systems. Consequently, the proposed 

pipeline can be used as a mitigation technique for bias analysis in data. 

1 INTRODUCTION 

There exit numerous factors which contribute to or 

exacerbate disparities in healthcare, as are implicit 

and explicit biases which imbibe discriminatory 

practices based on demographic information as race, 

ethnicity, gender, or age [1]. With biased practices 

preserving, patients can receive subpar care quality, 

which can range from delays in admission and poor 

treatment to inaccurate diagnosis and potential for 

worsened health conditions [2].  

The impact of these issues largely affects 

underrepresented groups, and these (un)intended 

consequences even impede academic performance as 

medical professionals find themselves unable to treat 

certain populations. In example, dermatologists have 

spoken of their inability to accurately diagnose 

diseases in patients of colour due to under-

representation of certain populations in medical 

textbooks [3]. Consequently, five-year melanoma 

survival estimations show the survival rate for Black 

patients is only 70% compared to the 94% for White 

patients [4]. Compared to the self-awareness of 

dermatologists, there is a different side to medical 

personnel, as shown by [5], where it is illustrated 

that physicians are significantly less likely to 

recommend bypass surgery for Black compared to 

White patients. The contributing factor in these 

decisions was physicians believing Black patients to 

be less educated and, therefore, less likely to adhere 

to necessary activity post-surgery.  

Moreover, personnel biases extend to disability 

attitudes [6], with 83.6% of healthcare providers 

having a preference for able-bodied patients. 

Socioeconomic status is another aspect in which 

medicine is biased, and patients of lower status are 

likely to have worse self-reported health and at a risk 

of multimorbidity [7], in addition to having limited 

access to health care and being at a greater risk for 

substandard care [8]. 

The biases are not limited to preferences only, 

and extend to assumptions based on demographic 

information which personnel use when treating 

patients. The authors of [9] identify gender bias in 

patient-provider encounters and treatment decisions, 

with dichotomous depictions of “brave men” and 

“emotional women”. The study also found that 



 

physicians are likely to attribute woman’s pain as a 

product of a mental health condition rather than as a 

physical condition. Medical personnel disregarding 

patients’ conditions can lead at the very least to 

delays in diagnosis. One example is [10], which 

found that women wait longer on average for a 

diagnosis compared to men in 72% of cases. Worst 

case scenarios can result in increased risk of death, 

e.g., how lack of awareness of the impact of heart 

attacks on women contributes to higher rates of 

females dying from heart attacks [11]. Healthcare 

professionals are less likely to recommend older 

patients for invasive or aggressive procedures 

denoting the choice as a “compassionate” approach 

even if said decision impacts life quality and 

expectancy in these patients [12]. 

Despite efforts to address and mitigate biased 

practices, health inequities persist, and infinitely 

worse get propagated in medical datasets and AI 

models which impact large populations. An 

algorithm was found to be racially biased since it 

used medical costs as a proxy for care needed, and 

consequently assigned the same level of risk to 

Black and White patients, even though the Black 

patients were in a worse medical condition [13]. A 

study of an algorithm for abnormalities in chest X-

rays showed that highest rate of underdiagnosis 

exists in young females [14]. Another algorithm, 

which aimed to help with in-home care for patients, 

was found to recommend extreme cuts in cases of 

disabled patients, resulting in reduced quality of life 

and increased hospitalisation [15].  

As integration of AI in medical systems is 

expected to increase in the upcoming years, it is 

necessary to address and resolve biased issues in 

order to limit negative impact, as well as understand 

where the bias originates in order to reduce the 

chances of propagating said bias into production 

stages, and thus, mitigation strategies will be 

necessary. Previous examples demonstrate that one 

potential source of bias for AI models can be the 

data used for the research and its distributions, as 

shown in [16] where the authors show the impact of 

gender imbalance in medical imaging datasets in 

computer-aided diagnostic tools. Additionally, the 

data used is the driving force for the algorithms, as 

they extrapolate information from said data in order 

to understand the problem and arrive at a decision. 

Since the basic foundation for AI systems is the 

data, we wanted to investigate whether data bias is 

visible and easily discernable by the algorithms even 

when confounding variables are excluded from the 

training data. That is to say, we investigate whether 

potential biased issues can be detected with simple 

analysis of the data itself. However, as all data can 

be a subject to bias, medical datasets are not 

excluded from the influences of biased medical 

personnel or biased decisions in real practice. 

Moreover, even though it is necessary for developers 

to thoroughly investigate trained models before their 

active use, in many cases hidden (or implicit) biases 

are not observed before models are deployed. This 

results in biased real-world applications, which 

impact large populations [13][14]. Normally, biases 

arise from using confounding variables, however 

bias can be present even when confounding 

variables are excluded from research. 

  For that reason, we wanted to investigate 

whether implicit biases can be found in data points 

where they should not exist, namely, measurements 

from bedside monitors. Therefore, we analyse bias 

from two demographic aspects, age and gender, 

using machine learning (ML) algorithms. The model 

is derived on 80% of the data, whilst the 

performance is evaluated from a holdout of 20% 

using a classification report [17] and confusion 

matrix as metrics [18]. 

Previous papers have shown both gender [19] 

[20] [21] and age [22] differences in biosignals. 

Moreover, ML algorithms have been used to predict 

age and gender from iris biometrics [23] [24]. ML 

has also been used for racial bias analysis in patient 

vital signs [25], but to the best of our knowledge 

researchers have not trained ML algorithms only on 

biosignals from bedside monitors to differentiate 

patient age and gender. This is a necessary analysis, 

and offers insights into whether differences in 

biosignals can unintendedly be learned by a model 

in a discriminatory way, and therefore make the 

model predict in favour of certain patient 

populations at the expense of others.  

The paper is organised as follows. Section two 

describes the data used for the research as well as 

the applied methodology. Section three contains the 

results and discussion, whilst section four concludes 

the paper. 

2 METHODOLOGY 

This section outlines the data used for the 

research and the specifics of the preprocessing stage. 

Additionally, we give an overview of the algorithms 

used as well as the metrics which evaluate the 

trained models. 

For the purposes of this research, we use the 

VitalDB dataset [26], which contains biosignals and 

clinical information from 6,388 non-cardiac surgical 



 

patients that underwent surgery in Seoul National 

University Hospital in Seoul, Republic of Korea. 

The data has high-resolution with 2.8 million data 

points per case on average. The data of interest for 

us included: from demographic information, age and 

gender, and from vital information measured using 

Solar 8000M monitor, heart rate, respiratory rate, 

and (systolic, diastolic, and mean) blood pressure 

both invasively and non-invasively measured. As 

each of the biosignals was organised in a separate 

file, before proceeding with training the algorithms, 

it was necessary to merge the information while 

minding the time stamp of each measurement in 

order to maintain the continuity of the data. 

Additional information related to the surgical 

approach and the anaesthesia were not considered. 

The selected data was analysed in two different 

formats: first, the original data as recorded by the 

monitor without interference, and second, using 

features obtained with the tsfresh library [27]. In 

both cases, only patients with measurements for all 

biosignals of interest were considered, which 

reduced the population to 2905 patients.  

The analysis of the demographic information, 

age and gender, is separate; namely, the gender 

analysis is a binary classification, whereas the age 

analysis is a multiclass classification problem. Each 

analysis was conducted both with the original data 

and with tsfresh statistics from the original data. All 

cases consider several ML algorithms: Logistic 

Regression (LR) [28], which estimates the 

probability of an event occurring, and so establishes 

baseline results, then Decision Trees (DT) [29] 

which represents a tree-like model showing series of 

decisions and possible consequences, Random 

Forest (RF) [30] which contains a collection of trees 

and uses a majority voting system to obtain the final 

prediction, and XGBoost [31], which compared to 

Random Forest operates on adjustable parameters 

through iterations, is proven as the most successful 

algorithm, even in cases of small and medium 

datasets, with limited feature count, as is the case 

here. However, as XGBoost is prone to overfitting 

when trained on small data, we performed parameter 

optimisation so to restrict the expansion of the 

model’s structure.  

The evaluation of the classification for each of 

the models was performed using a confusion matrix 

and a classification report (which observes metrics 

across each class), both for binary and multiclass 

classification. The confusion matrix visually 

represents the performance of the models, as it 

summarises the predicted and actual values obtained 

from the model and illustrates all misclassifications. 

The classification report shows the performance for 

each individual class and provides overall metrics 

for all classes. It observes the overall accuracy of the 

model and provides precision, recall, and F1-score 

values for each class. Precision measures how many 

of the positive predictions made are in fact correct, 

whilst recall measures how many of the positive 

cases from the overall positives were correctly 

predicted. The F1-score combines both metrics and 

shows intel into how many times the model made a 

correct prediction across the entire dataset.  

3 RESULTS 

The obtained results are divided into two separate 

groups: binary classification results for gender bias 

and multiclass classification results for age bias. The 

age bias results observe two age range divisions: one 

in three groups and another in four groups. The 

division of age ranges in three subgroups resulted in 

the first group of patients under 30 years, the second 

with patients between 30 and 49 years, and the third 

contained patients aged 50 and above. As majority 

of patients were aged 50 and over, and considering 

the age range considered for the third group was 

larger, we extended the analysis into a division of 

four groups, where the third range was split in two, 

with patients aged 50 to 69 years, and another with 

patients aged 70 and above.  

 

3.1 Gender Bias 

In order to perceive gender bias, the biosignals are 

used to classify patients as either male or female. 

The accuracy for all algorithms, both trained on the 

original data and the tsfresh features given in Table 1.  

Table 1 Accuracy from Gender Bias Analysis 

Models Original Data TSFRESH Features 

LR 64% 61% 

DT 99% 53% 

RF 100% 63% 

XGBoost 84% 58% 

 

As can be observed from the Table 1, the 

prediction is better when trained on the original 

values of the data. As expected LR provides the 

baseline result, whereas the three remaining 

algorithms show improvement in performance. The 

accuracy of 84% for XGBoost shows that gender 

can be identified from biosignals in four from five 

patients, which is a significant number. The two 



 

remaining algorithms show an accuracy of 99% and 

100% respectively, which essentially indicates that 

biosignals can help AI algorithms to identify all 

patients’ gender details.  

The precision, recall, and F1-score are structured 

in Table 2. With XGBoost exists a drop in predictive 

power between the two classes, which is not the case 

with the results from DT and RF. The drop in the 

metrics for female patients can partially be due to a 

smaller pool of female patients. Nevertheless, these 

results are consistent with previous research data 

showing male patients have higher blood pressure 

compared to females [32].  

Table 2 Classification Report from Gender Bias Analysis 

on the Original Data (M – male, F – female) (in %) 

Models Precision Recall F1-score 

 M F M F M F 

LR 64 61 87 29 74 39 

DT 99 99 99 99 99 99 

RF 100 100 100 99 100 100 

XGBoost 83 85 91 73 87 78 

This shows that models are able to detect subtle 

differences in data between patients of different 

genders, and while these subtle differences are 

necessary when analysing blood pressure 

information, they are not a beneficial feature when 

analysing biosignals in general, since models’ 

performances need to be invariant to demographic 

information.  

3.2 Age Bias 

The results for age bias, obtained using the selected 

biosignals, are observed from two standpoints: first, 

where only three groups of patients are considered, 

and second, with four groups of patients considered 

(created by dividing one of the three groups from the 

first observation into two). As this approach uses 

multiclass classification, only three algorithms were 

considered; namely LR was not trained and tested 

for these data points. The results from the division of 

patients in three groups (under 30; between 30 and 

49; 50 and over) are given in Table 3. The results 

from the division of patients in four groups (under 

30; between 30 and 49; between 50 and 69; 70 and 

over) are given in Table 4.  

Table 3 Accuracy from age bias analysis (3 groups) 

Models Original Data TSFRESH Features 

DT 99% 69% 

RF 100% 76% 

XGBoost 91% 75% 

 

These results show that patients’ age groups can 

be identified using biosignal information with an 

accuracy of 100% when using RF. The high 

accuracy results are obtained on the original data 

without value interference, whereas processing the 

data and using features extracted with tsfresh results 

in significant decrease of performance. When 

observing the behaviour of the models on the train 

and test data, the differences in metrics indicate that 

the models overfit when trained on the tsfresh 

features, which partially accounts for the worsened 

performance. Another reason is the difference in 

data points, meaning as there is lower data point 

count with tsfresh (since this approach aggregates 

the original data) the model is impacted by that 

reduction.  

Table 4 Accuracy from age bias analysis (4 groups) 

Models Original Data TSFRESH Features 

DT 98% 43% 

RF 99% 54% 

XGBoost 80% 51% 

 

With DT and RF obtaining near perfect results, it 

is interesting to analyse the performance of 

XGBoost and potential reasons for its performance. 

The confusion matrix from the analysis of three 

groups using the original data, given in Figure 1, 

shows the model mistakes patients aged between 30 

and 49 with patients aged 50 and over, which might 

indicate that the model struggles with differentiating 

blood pressure values per age [33]. Potential 

conflicts in age-related medical problems can stem 

from differences in biological and chronological age 

[34], however with the other two algorithms 

performing with an accuracy approaching 100%, this 

is unlikely the case here. 

Another thing which can be noted is that the 

performance of the models decreases when patients 

aged 50 and over are divided in two groups, with DT 

dropping from 99% to 98%, RF dropping from 

100% to 99%, and XGBoost significantly dropping 

 
Figure 1 Confusion matrix for original data with three 

age groups analysed 



 

from 91% to 80%. The change in performance can 

be observed in the confusion matrix for the original 

data for four groups, as seen in Figure 2. Namely, 

once the patients are divided, the model is impacted 

and unable to successfully learn the difference 

between patients aged 50 to 69 and patients aged 

over 70. As the confusion matrix shows, a third of 

patients aged over 70 are misclassified into the 

group containing patients aged 50 to 69.  

3.3 Discussion  

The results for both gender and age bias show 

that ML algorithms are able to differentiate genders 

and age ranges based on biosignals, which in turn 

shows that identifying potential biases in data can be 

accomplished by observing whether specific input 

information can be used to predict classes belonging 

to a variable carrying said potential bias. In cases 

where the algorithms accomplish near perfect score, 

as is the situation here with DT and RF, it is safe to 

say that using the data in the same format might 

confuse the algorithms and lead them to predict 

based on information which should be disregarded.  

With results showing high accuracy in predicting 

demographic information, it is necessary to discuss 

potential reasons behind the successful performance 

of the models. Namely, differences in biosignals 

based on gender and age have been shown, and it is 

likely the ML models observe these differences and 

make predictions on them. With models being able 

to differ between patient groups based on biosignals, 

it is possible that ML models trained on these 

biosignals for various other medical purposes also 

make their decisions based on these differences, and 

adjust predictions based on demographic 

information. 

Therefore, another interesting discussion to touch 

up on are the implications of these results and the 

challenges which they pose for real-world use of ML 

algorithms in medical setting. Namely, implicit bias 

can easily be propagated along the pipeline, and 

create biased application, which in turn can lead to 

skewed outcomes and inequity among different 

patient populations. This can lead to favouritism of 

certain patient groups as well as reduced or 

inaccurate performance of models based on 

demographics. Depending on the application and the 

purpose of the algorithms, serious illnesses can be 

disregarded or overlooked, patients can be silenced 

on important health problems, patients might receive 

substandard preventive care, and many others. All of 

the above can lead to higher chances of worsening 

medical conditions, health complications, disruption 

of patients’ lives, and in extreme cases, deaths which 

could have been avoided. 

4 CONCLUSION 

This paper proposes a demographic bias analysis 

approach from patients’ biosignals, using ML 

algorithms to perform binary and multiclass 

classification in order to identify patient gender and 

age. The approach focused on analysing two types of 

results, firstly, the original data was used, and 

secondly, the data was processed and extracted 

tsfresh features were used. In both cases, bias could 

be seen, however bias was more prominent with the 

original data. This indicates that extracting features 

using tsfresh can be seen as a marginal mitigation 

technique in partially handling bias in this dataset. 

However, further research is required in order to 

understand whether the same holds for other data.  

Moreover, with results showing that biosignal 

information can be used to classify patients 

according to gender and age (with two separate 

analyses into three and four age groups), the 

approach can allow researchers to understand 

whether algorithms might detect hidden bias in data 

which cannot be easily observed by the developer. 

Therefore, the approach itself can be used to 

mitigate potential biases in creating and selecting 

datasets, as well as throughout the processing stages 

when developing AI-based medical systems. This 

would reduce the propagation of biased data and 

practices in real-world applications before they are 

deployed into production, which would greatly 

benefit patients discriminated upon by biased 

applications. 

 
Figure 2 Confusion matrix for original data with four 

age groups analysed 
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