
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

This is accepted version.

Optimal Scalable Real-Time ECG Monitoring of
Thousands of Concurrent Patients

K. Bajalcaliev1, D. Mileski12, P. Gushev1, M. Gusev12 and B. Jakimovski2
1Innovation Dooel, Skopje, North Macedonia

2Sts Cyril and Methodius University in Skopje, Faculty of Computer Science and Engineering, Skopje, North Macedonia
E-mail: kostadin.bajalcaliev@innovation.com.mk, dimitar.mileski@finki.ukim.mk,

pano.gushev@innovation.com.mk, marjan.gushev@finki.ukim.mk, boro.jakimovski@finki.ukim.mk

Abstract—This paper explores the transformation of elec-
trocardiogram (ECG) monitoring from traditional offline to
Real-Time analysis, enabled by high-speed mobile networks
and affordable data plans. The transition to live monitoring
presents challenges in data streaming and processing and the
necessity of balancing immediacy with accuracy. We optimize
two critical aspects of cloud architecture and scalability under
the broader umbrella of cloud efficiency by evaluating the
architecture’s components and their contribution to overall
efficiency. The focus is on accommodating over a thousand
concurrent patients streaming ECG data while maintaining
cost-effectiveness, constrained by Near Real-Time Round Trip
Time (RTT) of ≤ 3 seconds, achieving a throughput of ≥
333.333 (msgs/s).

Keywords—cloud efficiency, scalable, cost-effective, near
real-time, ECG

I. INTRODUCTION

This paper addresses the challenge of real-time elec-
trocardiogram (ECG) streaming for thousands of patients
worldwide, emphasizing critical aspects such as cloud
computing scalability, resource utilization optimization,
and potential cost reduction for managing this high-
frequency data flow, which involves sending ECG data
every second for each of the thousands of patients.

The technologies facilitating continuous ECG signal
monitoring include ECG sensors, Personal Area Networks
(PAN) like Bluetooth, high-processing-power smart de-
vices, and the emergence of smartphones with robust pro-
cessing capabilities, along with cloud computing. Utilizing
cloud computing techniques becomes essential for scaling
the entire infrastructure to achieve real-time and continuous
monitoring across thousands of patients.

The technologies supporting scalability in the cloud
encompass containers, container management and orches-
tration systems, cloud-native services, and programming
languages, distributed event streaming systems for high-
performance data pipelines, high-performance in-memory
data stores, and specific best practices derived from parallel
and distributed processing. This paper focuses on technolo-
gies and practices that provide increased cloud scalability.

In prior implementations of Large-Scale Streaming ECG
Monitoring for Thousands of Patients, with ECGs streamed
every second [1], we observed a considerable expense
associated with the Public Cloud [2]. One approach is to
use FinOps [3] (Financial Operations) to reduce the cost of

the Public Cloud that supports the businesses. In previous
implementations, we used a public cloud and proprietary
cloud-native services for the entire pipeline. In this paper,
we employ a different approach. This paper experimentally
identifies architectural components to determine the opti-
mal scalable architecture. The experiments use one msg =
125 samples of ECG data, or 918 bytes.

In this paper, we set the following research questions:

• RQ1: What is the optimal scalable architecture that
uses only VM and Cloud Storage that can support
Real-Time ECG Monitoring of Thousands of Con-
current Patients, with RTT of ≤ 3 seconds, achieving
a throughput of ≥ 333.333 (msgs/s)?

• RQ2: What is the optimal scalable architecture that
minimizes the number of cloud services while maxi-
mizing resource utilization, with RTT of ≤ 3 seconds,
achieving a throughput of ≥ 333.333 (msgs/s)?

This paper proposes a limitation by exclusively employ-
ing VM and Cloud storage. The VM hosts a serverfull
architecture integrating open-source systems and program-
ming languages recognized for their high performance.

Delays between sensor sampling and ECG transmission
to the cloud (ranging from 10 to 60 seconds) hinder real-
time monitoring capabilities and potentially compromise
timely interventions. The high costs of utilizing managed
services in public clouds to support a large user base
are also significant. Some related work utilizes simple
ECG processing techniques, which do not include beat
and episode detection, classification, or real-time moni-
toring for thousands of patients worldwide. Our extensive
ECG processing pipeline contributes to increased response
times, adding milliseconds and seconds to the overall RTT.

We propose a high-performance system for real-time
ECG data transmission and monitoring. By benchmarking
combinations of system components with critical metrics,
like response time and error percentage, we propose an
optimal architecture that can efficiently handle thousands
of patients. Our approach simplifies deployment by using
a single VM and providing optional Cloud Object Storage.

The paper structure is as follows: Section II discusses
the similarities and differences in related work. Section III
presents the methods, including the system organization,
used technologies, experiments, and the evaluation method-



ology. Results are presented in Section IV and discussed
in Section V. Finally, Section VI provides conclusions and
future work.

II. RELATED WORK

The system proposed in [4] operates through HTTP
client-server architecture. The ECG signal is transmitted
from the Smartphone to the cloud using the MQTT proto-
col, which maintains a long-lived connection between the
devices. Their solution incorporates doctors from sensors
to smartphone apps to the cloud. Our paper focuses on the
optimal architecture for processing signals, not the overall
system. They tested the system for six patients, and there
is no information about response time or throughput. Our
approach streams data for thousands of patients.

In [5] Apache Storm topology, orchestrates the real-time
processing. This system functions as a network of spouts
and bolts within Storm. Apache Hadoop processes histor-
ical data (batch). The study reported average persisting
times for ECG/EKG messages: 39 minutes and 30 sec-
onds (±2 minutes and 40 seconds). The average message
processing capacity for ECG/EKG messages achieves 126
messages per second (msgs/s) (throughput). In contrast, our
paper focuses on ECG monitoring of thousands of real-
time patients with an RTT of ≤ 3 seconds, achieving a
throughput of ≥ 333.333 (msgs/s).

The dataset size of 3.2 GB, derived from five EDF
files, was batch-processed. The multi-node Cloudwave
implementation processed one ECG channel in 19.2 sec-
onds, while the desktop took 62 seconds for the same
task; processing one ECG channel in another scenario
lasted approximately 25.2 seconds, and processing all four
channels required about 94.2 seconds, whereas processing
36 segments of data took about 145.2 seconds, with the
desktop’s processing time unspecified [6]. It’s important
to note that our approach differs as we employ real-
time processing and handle real-time streaming data from
thousands of patients, not batch processing.

Other approaches include serverless computing on the
federated cloud using lambda architecture [7], which is
different from this approach that focuses on a single cloud
provider.

III. METHODS

This section encompasses system organization, experi-
ments, and evaluation methodology. It explains the struc-
turing and arrangement of components, determining how
they interact and their roles within the system’s architec-
ture. Experiments include different combinations of system
components and varying numbers of concurrent patients
streaming ECG every second to determine the optimal
scalable real-time ECG monitoring solution, utilizing eval-
uation metrics.

A. System organization

The core components for ECG processing are the
Beat Detection and Classification (BDC) and the Data

BDCDPU Workflows

Docker
Compose

File System

VM: Linux CentOS 7
vCPU: 4 Memory: 16GB Memory: 16GB

VMWare Workstation 

Result Buckets 
Cloud Storage

Host: Windows 
CPU: 3.41 GHz RAM: 32.0 GB

Fig. 1: System organization

Processing Unit (DPU). Part of the DPU’s functionality
includes preprocessing, BDC invocation, postprocessing,
and finalization tasks such as statistical analysis and report
generation. It serves as the entity responsible for receiving
incoming ECG data streams and processing, storing, and
retrieving data locally or in cloud storage. The DPU utilizes
patient tokens for authentication. BDC operates indepen-
dently for arrhythmia detection. This module includes
noise detection, data filtering, and identification of specific
ECG features.

The goal of this paper is not to evaluate the system’s
deployment across different cloud providers. The objective
is to identify the optimal and scalable real-time ECG
monitoring architecture suitable for thousands of patients,
deployed within a single VM (Cloud Region: Skopje,
Macedonia) and utilizing Cloud Storage (Cloud region:
Europe-west1, Belgium). This research examines the im-
pact of each architecture component (Fig 1) on the RTT.

The cloud solution deploys the Object Storage (Google
Cloud Storage) as the only system component, leaving the
deployment of object storage, virtual machine (VM) cloud
instances, and storage regions on different cloud platforms
for future work.

The workload generation and signal processing compo-
nents are in the same local network on the same physical
machine. Apache JMeter runs on a physical machine with a
CPU of 3.41 GHz and RAM of 32.0 GB. A series of JMX
test files collects the results in a JTL file (CSV format).
It is important to emphasize that for JMeter to utilize
the hardware resources efficiently, the jmeter.properties
file needs the correct configuration, enabling it to send
thousands of requests per second using a single-node
Apache JMeter.

Linux CentOS 7 VM deploys the solution with the
VMware Workstation virtualization software. The VM
consists of vCPU with four cores, 16GB memory, and
100 GB disk. VMware supports the export of the VM
to OVA (Open Virtualization Appliance) and OVF (Open
Virtualization Format), as well as VM disks in VMDK
format. Conversion tools can convert VMDK to VHD



TABLE I: Experiments Table

Experiment Deployment Patients Duration (min)

E1 BDC Files 1, 10, 25, 50, 100, 150, 200, 500, 1000 10
E2 BDC Redis 1, 10, 25, 50, 100, 150, 200, 500, 1000 10
E3 DPU Workflows + BDC Redis 1, 10, 25, 50, 100, 150, 200, 500, 1000 10
E4 DPU Workflows + Cloud Storage + BDC Redis 1, 10, 25, 50, 100, 150, 200, 500, 1000 10

format, facilitating migration to different cloud platforms.
Docker containers deploy all components of the ECG

processing pipeline, managing and orchestrating the con-
tainers with Docker Compose as a lightweight tool for
multi-container applications on a single host. We do not
utilize Kubernetes because we rely on a single host (VM).
Kubernetes is a robust container orchestration platform
for managing containerized applications at scale across a
distributed cluster of hosts. Instead, we employ Docker
Compose because it is exclusively for single-host setups.
While Kubernetes offers the flexibility of managing single
or multiple hosts, it is notably more complex than Docker
Compose. The pipeline (Fig 1) uses a Docker Compose
YAML file, specifying services, networks, volumes, en-
vironment variables, and other necessary configurations
for the components of the ECG processing pipeline. The
Docker Compose consists of the following services:

1) DPU Workflows: The DPU data processing unit
service has a single Docker image to prepare and collect
data from BDC, incorporating other ECG processing algo-
rithms. The configuration parameters in DPU Workflows
specify whether to invoke only BDC and whether patient
data can be retrieved and stored from the cloud or local
storage (Linux file system), which is crucial for conducting
various experiments.

2) BDC: represents a proprietary ECG beat detection
and classification service developed in the Go program-
ming language to process patient data streams. Patient
data streams generate 1-second ECG signals every second
for each. During the initial activation, BDC collects data
requiring warming up with a specific window size to
start with proper detection and classification. Afterward,
each request to BDC returns annotations of beats and
ECG episodes and continues processing patient streams.
Each patient stream uses a unique PatientToken to identify
patients in DPU workflows, BDC, Redis, and storage.

3) Redis: integrates caching or storing intermediary
data from the BDC service. A single-instance Redis de-
ployment operates as a standalone server without clustering
or replication mechanisms.

The experiments specify two types of storage: local
storage (Linux file system) and Google Cloud Storage (Ob-
ject Storage), which are configured by parameters in the
request. DPU Workflows and BDC employ local storage,
while DPU Workflows exclusively use cloud storage.

B. Experiments

Each deployment and patient scenario undergoes a test
duration of 10 minutes (Table I). Five deployments define

the experiments E1 to E5. Workloads from 1 to 1000
simultaneous patients specify test cases as patient scenar-
ios. The total execution time for all experiments is 360
minutes or 6 hours for nine patient scenarios (test and five
deployments. Table I presents the destination component
for JMeter requests. JMeter directly sends requests to BDC
in experiments E1 and E2. E3 (DPU Workflows + BDC
Redis) and E4 (DPU Workflows + Cloud Storage + BDC
Redis).

C. Evaluation methodology

The experiment evaluation metrics are response time,
throughput, and response error percentage.

• Response Time Distribution: Represents the number
of requests distributed across different response time
intervals (in milliseconds), providing insights into the
distribution of response times across the application’s
workload.

• Response Time Percentiles: Offers a detailed break-
down of response times at different percentiles (e.g.,
90th or 95th percentile), indicating the response time
below which a certain percentage of requests fall.

• Error percentage: Indicates the percentage of re-
quests that resulted in errors or failures, helping
to assess the overall reliability and stability of the
system.

• Transactions per second: Measures the system’s
throughput by quantifying the number of transactions
processed per unit of time, providing valuable in-
formation about the system’s capacity and ability to
handle specific workloads.

IV. RESULTS

The results are grouped into BDC and DPU categories to
measure how each component affects the system’s overall
performance. Fig. 2 and Fig. 6 display the Response
Time distribution, Fig. 3 and Fig. 7 show Response Time
percentiles, Fig. 4 and Fig. 8 illustrate Transactions per
second, and Fig. 5 and Fig. 9 depict Error percentage.

Response time distribution on the x-axis represents
response time, while the y-axis represents the number of
requests with that response time. Response time percentiles
on the x-axis indicate the percentile, and the y-axis displays
response time in milliseconds. Transactions per second on
the x-axis represent the experiment’s duration in minutes,
while the y-axis represents the number of transactions
per second (throughput). Error percentage displays the
percentage of all requests that returned an error (were not
processed successfully).



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
0

6
0

0

1
1

0
0

1
6

0
0

2
1

0
0

2
6

0
0

3
1

0
0

3
6

0
0

4
1

0
0

4
6

0
0

5
1

0
0

5
6

0
0

6
1

0
0

6
6

0
0

7
1

0
0

7
6

0
0

8
1

0
0

8
6

0
0

9
1

0
0

9
6

0
0

1
0

1
0

0

1
0

6
0

0

1
1

1
0

0

1
1

6
0

0

1
2

5
0

0

1
3

4
0

0

N
U

M
B

ER
 O

F 
R

EQ
U

ES
TS

RESPONSE TIME (MS)

1p HTTP Request

10p HTTP Request

25p HTTP Request

50p HTTP Request

100p HTTP Request

150p HTTP Request

200p HTTP Request

500p HTTP Request

1000p HTTP Request

(a) Files

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

7
0

0

1
4

0
0

2
1

0
0

2
8

0
0

3
5

0
0

4
2

0
0

4
9

0
0

5
6

0
0

6
3

0
0

7
0

0
0

7
7

0
0

8
4

0
0

1
1

2
0

0

1
3

2
0

0

1
4

4
0

0

1
5

8
0

0

1
7

3
0

0

1
8

3
0

0

1
9

2
0

0

2
0

5
0

0

2
1

6
0

0

2
2

3
0

0

2
3

0
0

0

2
6

4
0

0

N
U

M
B

ER
 O

F 
R

EQ
U

ES
TS

RESPONSE TIME (MS)

1p HTTP Request
10p HTTP Request
25p HTTP Request
50p HTTP Request
100p HTTP Request
150p HTTP Request
200p HTTP Request
500p HTTP Request
1000p HTTP Request

(b) Redis

Fig. 2: BDC - Response time distribution

0

2000

4000

6000

8000

10000

12000

0
.1

4
.5

8
.9

1
3

.3

1
7

.7

2
2

.1

2
6

.5

3
0

.9

3
5

.3

3
9

.7

4
4

.1

4
8

.5

5
2

.9

5
7

.3

6
1

.7

6
6

.1

7
0

.5

7
4

.9

7
9

.3

8
3

.7

8
8

.1

9
2

.5

9
6

.9

P
ER

C
EN

TI
LE

 V
A

LU
E 

(M
S)

PERCENTILE

1p HTTP Request
10p HTTP Request
25p HTTP Request
50p HTTP Request
100p HTTP Request
150p HTTP Request
200p HTTP Request
500p HTTP Request
1000p HTTP Request

(a) Files

0

2000

4000

6000

8000

10000

12000

0
.1

4
.3

8
.5

1
2

.7
1

6
.9

2
1

.1
2

5
.3

2
9

.5
3

3
.7

3
7

.9
4

2
.1

4
6

.3
5

0
.5

5
4

.7
5

8
.9

6
3

.1
6

7
.3

7
1

.5
7

5
.7

7
9

.9
8

4
.1

8
8

.3
9

2
.5

9
6

.7

P
ER

C
EN

TI
LE

 V
A

LU
E 

(M
S)

PERCENTILE

1p HTTP Request

10p HTTP Request

25p HTTP Request

50p HTTP Request

100p HTTP Request

(b) Redis

Fig. 3: BDC - Response time percentiles

1

2

4

8

16

32

64

128

256

512

0
.0

0

0
.4

8

0
.9

0

1
.2

8

1
.6

5

2
.0

7

2
.4

7

2
.8

5

3
.2

3

3
.6

3

4
.0

3

4
.3

7

4
.7

5

5
.2

5

5
.7

3

6
.1

3

6
.5

5

6
.8

8

7
.3

2

7
.7

7

8
.2

3

8
.6

0

8
.9

8

9
.4

2

9
.7

8

N
U

M
B

ER
O

F 
TR

A
N

SA
C

TI
O

N
S/

S

MINUTES

1P 25P 100P

(a) Files

1

2

4

8

16

32

64

128

256

512

0
.0

0

0
.5

2

1
.0

2

1
.3

3

1
.7

2

2
.0

8

2
.4

2

2
.8

2

3
.1

8

3
.6

5

4
.0

2

4
.3

5

4
.8

0

5
.2

5

5
.6

7

6
.2

3

6
.8

0

7
.2

3

7
.6

5

7
.9

7

8
.3

3

8
.6

5

9
.0

8

9
.4

0

9
.8

0

N
U

M
B

ER
O

F 
TR

A
N

SA
C

TI
O

N
S/

S

MINUTES

1P 25P 100P 200P 1000P

(b) Redis

Fig. 4: BDC - Transaction per second

0.00%
0.10%
0.20%
0.30%
0.40%
0.50%

1
p

1
0

p

2
5

p

5
0

p

1
0

0
p

1
5

0
p

2
0

0
p

5
0

0
p

1
0

0
0

p

1
p

1
0

p

2
5

p

5
0

p

1
0

0
p

1
5

0
p

2
0

0
p

5
0

0
p

1
0

0
0

p

BDC Files BDC Redis

ER
R

O
R

 P
ER

C
EN

TA
G

E

Fig. 5: BDC Files - Error percentage

V. DISCUSSION

BDC integrates two operation modes: one with databases
and the other with Redis.

A. Analysis of E1

In the E1 experiment deploying BDC files, all requests
below 200 patients (200 concurrent streams) are completed
in less than 3 seconds. During the 10-minute experiment,
120,000 requests were sent for 200 patients at a rate of 200
requests per second. Only 0.07% of requests were com-
pleted between 3 to 6 seconds, while the others were under



-4500

15500

35500

55500

75500

95500
0

6
0

0

1
2

0
0

1
8

0
0

2
4

0
0

3
0

0
0

3
6

0
0

4
2

0
0

4
8

0
0

5
4

0
0

6
0

0
0

6
6

0
0

7
2

0
0

7
8

0
0

8
4

0
0

9
0

0
0

9
6

0
0

1
0

2
0

0

1
0

8
0

0

1
1

4
0

0

1
2

0
0

0

1
2

6
0

0

N
U

M
B

ER
 O

F 
R

EQ
U

ES
TS

RESPONSE TIME (MS)

1p HTTP Request

10p HTTP Request

25p HTTP Request

50p HTTP Request

100p HTTP Request

150p HTTP Request

200p HTTP Request

500p HTTP Request

1000p HTTP Request

(a) DPU

-4500

15500

35500

55500

75500

95500

1
3

0
0

0

1
4

1
0

0

2
6

4
0

0

2
9

3
0

0

3
6

4
0

0

3
8

6
0

0

4
0

5
0

0

6
4

7
0

0

7
1

8
0

0

7
9

1
0

0

8
5

7
0

0

8
9

4
0

0

9
1

7
0

0

9
3

2
0

0

9
4

4
0

0

9
5

7
0

0

9
7

2
0

0

9
8

7
0

0

1
0

0
1

0
0

1
0

1
1

0
0

1
0

2
2

0
0

1
0

2
9

0
0

1
0

3
8

0
0

1
0

5
0

0
0

1
0

6
2

0
0

N
U

M
B

ER
 O

F 
R

EQ
U

ES
TS

RESPONSE TIME (MS)

1p HTTP Request
10p HTTP Request
25p HTTP Request
50p HTTP Request
100p HTTP Request
150p HTTP Request
200p HTTP Request
500p HTTP Request
1000p HTTP Request

(b) DPU Cloud Storage

Fig. 6: DPU - Response time distribution

0

10000

20000

30000

40000

50000

60000

0
.1

4
.5

8
.9

1
3

.3

1
7

.7

2
2

.1

2
6

.5

3
0

.9

3
5

.3

3
9

.7

4
4

.1

4
8

.5

5
2

.9

5
7

.3

6
1

.7

6
6

.1

7
0

.5

7
4

.9

7
9

.3

8
3

.7

8
8

.1

9
2

.5

9
6

.9

P
ER

C
EN

TI
LE

 V
A

LU
E 

(M
S)

PERCENTILE

1p HTTP Request
10p HTTP Request
25p HTTP Request
50p HTTP Request
100p HTTP Request
150p HTTP Request
200p HTTP Request
500p HTTP Request
1000p HTTP Request

(a) DPU

0

10000

20000

30000

40000

50000

60000

0
.1

4
.5

8
.9

1
3

.3

1
7

.7

2
2

.1

2
6

.5

3
0

.9

3
5

.3

3
9

.7

4
4

.1

4
8

.5

5
2

.9

5
7

.3

6
1

.7

6
6

.1

7
0

.5

7
4

.9

7
9

.3

8
3

.7

8
8

.1

9
2

.5

9
6

.9

P
ER

C
EN

TI
LE

 V
A

LU
E 

(M
S)

PERCENTILE

1p HTTP Request

10p HTTP Request

25p HTTP Request

50p HTTP Request

100p HTTP Request

(b) DPU Cloud Storage

Fig. 7: DPU - Response time percentiles

1

2

4

8

16

32

64

128

256

512

1024

0
.0

0

0
.3

7

0
.9

0

1
.2

3

1
.6

8

2
.0

2

2
.4

7

2
.9

0

3
.4

7

3
.8

8

4
.3

2

4
.7

2

5
.0

8

5
.4

2

5
.8

3

6
.1

5

6
.6

0

6
.9

0

7
.2

5

7
.6

8

7
.9

8

8
.4

3

8
.7

2

9
.1

2

9
.5

2

N
U

M
B

ER
O

F 
TR

A
N

SA
C

TI
O

N
S/

S

MINUTES

1P 25P 100P

(a) DPU

1

2

4

8

16

32

64

128

256

512

1024

0
.0

0

0
.5

0

0
.9

3

1
.4

5

1
.9

0

2
.3

8

2
.8

0

3
.2

5

3
.6

3

4
.0

5

4
.4

8

4
.9

2

5
.4

0

5
.8

2

6
.3

5

6
.8

2

7
.2

0

7
.5

3

7
.8

7

8
.1

8

8
.5

3

8
.8

7

9
.1

8

9
.5

0

9
.8

5

N
U

M
B

ER
O

F 
TR

A
N

SA
C

TI
O

N
S/

S

MINUTES

1P 10P 50P 150P

(b) DPU Cloud Storage

Fig. 8: DPU - Transactions per second

0.00%0.00%0.00%0.00%0.00%0.00%0.00%0.00%0.04%
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

1
p

1
0

p

2
5

p

5
0

p

1
0

0
p

1
5

0
p

2
0

0
p

5
0

0
p

1
0

0
0

p

DPU Workflows - BDC Redis

ER
R

O
R

 P
ER

C
EN

TA
G

E

(a) DPU

0
.0

0
%

0
.0

0
%

0
.0

0
%

0
.0

0
%

0
.0

0
%

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

1
p

1
0

p

2
5

p

5
0

p

1
0

0
p

1
5

0
p

2
0

0
p

5
0

0
p

1
0

0
0

p

DPU Workflows - GCP Cloud Storage - BDC RedisER
R

O
R

 P
ER

C
EN

TA
G

E

(b) DPU Cloud Storage

Fig. 9: DPU - Error Percentage



3 seconds. For 500 patients (500 requests per second),
the highest number of requests took 2500 ms, indicating
that BDC Files satisfy Near Real-Time Processing (≤ 3s)
up to 500 patients. However, for 1000 patients, the most
significant number of requests took 4200 ms, failing to
meet the condition of ≤ 3s condition.

B. Analysis of E2

The competition response time for all requests of up
to 200 patients was less than 3 seconds in the E2 experi-
ment with BDC Redis deployment. Only 0.96% completed
between 3 to 7 seconds, and all others under 3 seconds.
Similar to E1 results (BDC Files), for 500 patients, the
highest number of requests took 2500 ms, satisfying Near
Real-Time Processing (≤ 3s) up to 500 patients. However,
for 1000 patients, the most significant number of requests
took 5000 ms, not meeting the ≤ 3s condition.

The distribution of results is normal (Gaussian). Al-
though the results show a symmetric distribution for 500
patients, it is a right-skewed or positively skewed distri-
bution for 100 patients, indicated by a longer tail on the
right side representing more data points with higher values
than expected in a perfectly symmetrical distribution. Fig. 3
presents the response time in percentiles.

C. Analysis of errors

Regardless of whether it is BDC Files or BDC Redis,
the error percentage is less than 0.5%. Errors appear in
the E1 experiment (BDC Files) for more than 150 patients
and in the E2 experiment (BDC Redis) for only 1000
patients. Converted to the number of requests that ended
with an error, this equates to 0.44% of the total 120,000
requests for 1000 requests per second sent over 10 minutes,
totaling 528 requests. Further, this error rate implies that
528 seconds (8.8 minutes) of ECG signal are not processed
out of 120,000 requests (33 hours) by Redis and BDC.
Cumulatively, BDC Files has an error percentage of 0.67%,
and BDC Redis has 0.44%.

Errors in the BDC Redis deployment appear only for
1000 patients, which is negligible at 0.04%. A single factor
contributing to errors in BDC Redis was the high volume of
requests, rather than malformed data or requests requiring
additional analysis.

D. Analysis of E3 and E4

Due to a lower error rate, Redis is preferable for the
rest of the experiments E3 and E4 (Table I). In addition,
Redis is a better scalability option, supporting a multi-
node cluster to scale the system. Additionally, there is a
lot of room for improvement for Redis, such as differ-
ent in-memory database mechanisms like replication and
sharding, numerous hosted Redis servers, and supporting
a plain Linux file system.

Increasing the number of requests above 500 takes
longer than 3 seconds, indicating that adding other com-
ponents, such as DPU Workflows, will not satisfy the
response times to be ≤ 3s.

E. Overall analysis

Evaluating the results within the scope of the research
questions, we concluded the following:

RQ1: Results showed that employing BDC Redis, BDC
Files, and DPU Workflows without Cloud Storage achieved
an approximate throughput of 250 msg/s out of the targeted
333.333 msg/s, enabling the streaming of Real-Time ECG
data for 750 patients per second out of the targeted 1000.

RQ2: Findings revealed that utilizing only VM cloud
service improved performance compared to cloud storage.
Cloud storage resulted in significantly lower throughput,
equivalent to streaming ECG data for 24 patients per
second out of the targeted 1000.

VI. CONCLUSION AND FUTURE WORK

This research addressed designing an optimal scalable
architecture for Real-Time ECG Monitoring of Thousands
of Concurrent Patients using only Virtual Machines (VMs)
and Cloud Storage. The study aimed to achieve a Round-
Trip Time (RTT) of ≤ 3 seconds and a throughput of ≥
333.333 msg/s by minimizing the number of cloud ser-
vices while maximizing resource utilization. We achieved
approximately 250 msg/s for BDC Redis and BDC Files,
and (DPU Workflows - BDC Redis), effectively streaming
Real-Time ECG data for 750 patients every second. The
worst results occurred when using cloud storage, with
about eight msg/s, equivalent to real-time streaming ECG
data for 24 patients every second.

Future work for the optimal scalable real-time ECG
monitoring system involves exploring deployment across
different public cloud platforms, assessing various object
storage solutions, scaling with multi-node Redis clusters,
and integrating Kubernetes for container orchestration.

REFERENCES

[1] M. Gusev, S. Ristov, A. Amza, A. Hohenegger, R. Prodan, D. Mileski,
P. Gushev, and G. Temelkov, “Cardiohpc: Serverless approaches
for real-time heart monitoring of thousands of patients,” in 2022
IEEE/ACM Workshop on Workflows in Support of Large-Scale Sci-
ence (WORKS). IEEE, 2022, pp. 76–83.

[2] D. Mileski and M. Gusev, “Finops in cloud-native near real-time
serverless streaming solutions,” in 2023 31st Telecommunications
Forum (TELFOR). IEEE, 2023, pp. 1–4.

[3] J. Storment and M. Fuller, Cloud FinOps. ” O’Reilly Media, Inc.”,
2023.

[4] M. L. Sahu, M. Atulkar, M. K. Ahirwal, and A. Ahamad, “Iot-enabled
cloud-based real-time remote ecg monitoring system,” Journal of
medical engineering & technology, vol. 45, no. 6, pp. 473–485, 2021.

[5] D. Chen, Y. Chen, B. N. Brownlow, P. P. Kanjamala, C. A. G.
Arredondo, B. L. Radspinner, and M. A. Raveling, “Real-time or near
real-time persisting daily healthcare data into hdfs and elasticsearch
index inside a big data platform,” IEEE Transactions on Industrial
Informatics, vol. 13, no. 2, pp. 595–606, 2016.

[6] S. S. Sahoo, C. Jayapandian, G. Garg, F. Kaffashi, S. Chung, A. Bo-
zorgi, C.-H. Chen, K. Loparo, S. D. Lhatoo, and G.-Q. Zhang, “Heart
beats in the cloud: distributed analysis of electrophysiological ‘big
data’using cloud computing for epilepsy clinical research,” Journal
of the American Medical Informatics Association, vol. 21, no. 2, pp.
263–271, 2014.

[7] S. Ristov, M. Gusev, A. Hohenegger, R. Prodan, D. Mileski, P. Gu-
shev, and G. Temelkov, “Serverless ecg stream processing in feder-
ated clouds with lambda architecture,” IEEE Computer, vol. to be
published, 2023.


	Introduction
	Related Work
	Methods
	System organization
	DPU Workflows
	BDC
	Redis

	Experiments
	Evaluation methodology

	Results
	Discussion
	Analysis of E1
	Analysis of E2
	Analysis of errors
	Analysis of E3 and E4
	Overall analysis

	Conclusion and Future Work
	References

