
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

This is accepted version.

Architecture of a Distributed Infrastructureless
System

D. Mileski∗+, M. Gusev∗+
∗ Sts Cyril and Methodius University in Skopje, Faculty of Computer Science and Engineering

+ Innovation Dooel, Skopje, North Macedonia
E-mail: {dimitar.mileski, marjan.gushev}@finki.ukim.mk

Abstract—Recent trends in the production of portable
devices, such as smartphones, smartwatches, and all other
smart devices, show that their computing resources are
comparable to laptops and desktop computers produced
several years ago. In addition, many installed IoT devices
around us realize that pervasive and ubiquitous computing
integrates a remarkable amount of computing power. Unfor-
tunately, these computing resources efficiently comply with
the ever-increasing demand for computing power. Realizing
a system that integrates devices on more minor architectural
levels (IoT and edge layers) is a complex and challenging
task, especially if the system goes beyond edge computing
toward autonomous processing and realizes the essence of
dew computing. The system should be platform-agnostic and
provider-agnostic so all surrounding devices may partici-
pate and build more powerful computing resources. Finally,
the proposed system realizes Infrastructureless computing,
integrating Serverless, Deviceless, and Thingless computing
as a service to nearby consumers. This paper analyzes the
architecture of such a distributed computing system.

Keywords—Dew Computing, Decentralized Supercom-
puter, Global Computing Power Market, Infrastructureless,
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I. INTRODUCTION

A wide variety of devices incorporate computing and
storage components, harnessed and offered as a service,
ranging from powerful servers that often remain idle and
underutilized to edge devices like smartphones, smart-
watches, laptops, and credit card-sized computers such as
Raspberry Pi [1], Orange Pi [2], Asus Thinker [3], and
more. Various components within smart home systems
possess computing and storage capabilities as services.
The provider and the consumer are key stakeholders
sharing IoT or smart devices, tablets, laptops, or similar
computing resources in the edge computing environment.

The main idea is to provide computing resources, realiz-
ing the Infrastructureless computing concept [4], without
worrying about resources and using the resources found
nearby. This concept originates from serverless computing,
where cloud providers dynamically manage the allocation
of resources, generalizing the idea on lower architectural
levels, including deviceless, which extends serverless com-
puting on nearby devices rather than centralized servers
[5]–[10] and Thingless computing [4]. In addition, users
can leverage Deviceless as an alternative to the IoT-as-a-
Service provided by the I/O cloud paradigm. Deviceless
functions/actions operate on ephemeral and stateless con-
tainers, with a duration that may be limited to a single

invocation [6]. Thingless further extends the concept of
serverless computing by abstracting away physical depen-
dencies, enabling interactions and computations without
reliance on things (IoT).

We introduce a decentralized system formed in the
proximity of the consumer as a distributed Infrastruc-
tureless system (DIS) to realize Deviceless and Thingless
computing in various IoT and smart devices. This con-
cept provides an environment where functions can run
on nearby devices closer to the user, while Thingless
computing extends this concept even on the ”things” archi-
tectural level [4]. The DIS approach enables a vast array
of diverse devices to provide computing in a platform-
agnostic way, integrating them into the cloud and enabling
post-cloud edge computing and dew computing. In these
scenarios, computing tasks do not solely execute on the
cloud; instead, they involve function execution on diverse
devices and things, expanding the scope beyond cloud-
based execution.

Deviceless and Thingless computing can ensure scalable
dew computing [11], where scalability occurs at the device
level rather than the server level. The proposed DIS system
can support scalable dew computing solutions [12].

The paper structure is as follows. Section II discusses
the similarities and differences of the related work. Sec-
tion III presents the system architecture and flow diagram
for the computing providers and consumers. Implementa-
tion details are in Section IV, and Conclusion and Future
Work in Section V.

II. RELATED WORK

Mobile crowd computing includes device-to-device dis-
tributed computing [13], or smartphone Collaboration in
data acquisition [14] with aspects different from our re-
search. We focus on distributed and decentralized com-
puting systems (decentralized supercomputers), providing
examples of production systems and overviewing We-
bAssembly as an enabler for executing code at the Edge
and Dew Computing in a platform-agnostic manner.

A. Distributed and Decentralized Computing Systems

The idea is to conduct radio SETI (Search for Extra-
Terrestrial Intelligence) using a virtual supercomputer.
SETI@Home [15] was officially launched in 1999 and



has remained operational for two decades, attracting over
5.2 million individuals worldwide until 2020 [16] [17].

The Golem Project [18] presents a decentralized su-
percomputer network offering an innovative approach to
accessing computational power through a peer-to-peer
network. This network allows users to rent computing
resources from providers, making complex applications
more cost-effective. The Golem ecosystem involves three
key roles: providers supplying resources, requestors ac-
cessing those resources, and developers integrating soft-
ware through the Application Registry. Golem envisions
itself as a fundamental component of a decentralized
internet but faces dependencies on other technologies. The
Golem Network Token (GNT) is central to its opera-
tions, with security measures, including audits, ensuring
resilience. Golem employs Docker containers to package,
isolate, and execute computational tasks efficiently and
securely within its decentralized supercomputer network.

The iExec project [19] builds upon existing research
technologies on Desktop Grid computing to leverage un-
derutilized internet-distributed computing resources, of-
fering a cost-effective alternative for computationally in-
tensive tasks. iExec’s implementation uses XtremWeb-
HEP, a mature open-source Desktop Grid software with
essential features like fault tolerance, multi-application
support, data management, and security. A notable re-
search contribution within iExec’s framework is the Proof-
of-Contribution (PoCo) protocol, which introduces off-
chain consensus. PoCo allows external resource providers
to validate their contributions directly on the blockchain,
enhancing transparency and accountability. iExec’s re-
search provides valuable insights and potential directions
for further exploration in decentralized cloud computing.

SONM [20] is a decentralized fog supercomputer de-
signed for general-purpose computing tasks, offering an
alternative to centralized cloud services. SONM leverages
IoT devices and implements fog computing, eliminat-
ing the need for expensive cloud infrastructure. It uses
Ethereum Smart Contracts and its token, SNM, for re-
source access. SONM supports various applications, in-
cluding scientific calculations, site hosting, game servers,
neural networks, and rendering. SONM aims to reduce
end-user costs by lowering bandwidth expenses, encour-
aging hardware contributions, and promoting competition.
The architecture resembles a modular PC, comprising hub
nodes (processors), miners (GPUs), a P2P message bus,
clients, plugins, and a blockchain-based BIOS. The system
utilizes the Slave Messaging Framework and intelligent
contracts for network governance.

All these projects employ Docker [21] containers as a
virtualization technology and do not address devices on a
lower architectural level. While there is a consensus among
development teams that Docker is a contemporary and
advantageous solution, in this paper, we focus on using
these concepts on the device and thing architectural levels
and propose WebAssembly (WASM) [22] as an enabler for
next generation Deviceless computing at the edge instead

of Docker.
One significant difference between our proposed DIS

solution and related work is using Deviceless and Thing-
less computing instead of Serverless computing, represent-
ing the most granular way of utilizing computing services
and the most granular pricing model.

B. WebAssembly at the Edge

Ten out of 13 tests show that WebAssembly outperforms
containerd container runtime using distro-less and distro-
oriented container images comparing the cold start delays
and total execution times of three WebAssembly runtimes:
WasmEdge, Wasmer, and Wasmtime [23] confirming a
promising enabler of next-generation serverless solutions.

The integration of WASM as a runtime environment
for Serverless computing needs a specific focus on its
application in edge computing [24], confronting the chal-
lenges posed by cold start latencies in traditional Docker-
like Serverless frameworks. A new WebAssembly-based
runtime environment (WOW) is integrated with Apache
OpenWhisk to demonstrate significant reductions in cold
start latencies (up to 99.5%), improvements in memory
consumption (over five times), and substantial enhance-
ments in function execution throughput (up to 4.2 times)
on edge computing devices compared to Docker-based
runtimes.

Evaluating three Serverless access patterns at the edge
in scenarios from a campus camera network involves
approximately 1,000 devices for real-time threat identi-
fication [25]. In a single client, multiple access workload,
WASM is 1.5 to 3 times slower for moderate tasks and
six times slower for basic tasks than OpenWhisk. Despite
OpenWhisk’s cold start penalties, it achieves native speed
for subsequent calls, while WASM lags due to slower
execution. In the Multiple Client, Single Access workload,
WASM performs 70-90% faster on average than Open-
Whisk, showing more stable response times. Combining
both access patterns in Multiple Client, Multiple Access
workload, OpenWhisk benefits from efficiency in Single
Client, Multiple Access, offsetting the disadvantage from
Multiple Client, Single Access. Wasm maintains consistent
performance with latencies similar to previous workloads.
Compared with containers, WASM’s primary advantage is
avoiding a significant cold start penalty with consistent
performance and lower average latency than containers.

WASM implementation for Serverless computing at the
Edge [26] overcomes inefficiencies in existing cloud-based
solutions due to its lightweight and high-speed execution.
The proposed aWsm framework, a native Wasm compiler,
and runtime demonstrate promising startup latency of
approximately 10µs to 30µs for null functions and a
memory of 18KB to 179KB for benchmarks.

The aWsm functions cold-start latencies are smaller
(0.2ms-0.4ms) than traditional VM/container cold-starts,
indicating efficient Edge performance. Their approach in-
cludes sandboxing, customizable scheduling, and profiling
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Fig. 1: Architecture of a Distributed Infrastructureless
System

for efficient Serverless execution, addressing challenges
associated with Edge computing.

”Infrastructureless computing” is a more general con-
cept of providing computing infrastructure to nearby users
without worrying about the resources, isolating program-
ming from infrastructure specifications, and encompass-
ing Serverless and Deviceless computing. In addition, it
introduces a shift in computing layers, with functions
executed on lower architectural levels, such as edge servers
or devices. Examples of this model’s potential include
activating smartphones for overnight computing tasks or
utilizing smart devices in parked cars [4], mainly to
enhance the dew computing architectural model, making
it a sophisticated platform for future architectural models.
Our proposed DIS solution advocates a platform-agnostic
operating system and computing access different from the
serverless approach. WASM is implemented on devices
and things instead of dockers on servers, particularly for a
proof of concept. This approach aligns with the evolving
landscape of decentralized cloud computing, contributing
to the evolution of decentralized infrastructure and market
networks.

III. DIS ARCHITECTURE AND ORGANIZATION

This section specifies a DIS system describing the
corresponding architecture, organization of the constituent
parts, and flow activity diagrams.

A. Architecture

Fig. 1 presents the proposed DIS system’s architecture
in the cloud platform and edge providers’ layer that
consists of four integral parts (sublayers):

• Micro Computing Provider (MCP) that offers com-
puting resources (processing, storage, and network-
ing) as a service on the micro level;

• Micro Computing Devices (MCD) which implement
MCP, including smartphones, laptops, PCs, or other
devices with processing, storage, and networking
capabilities, such that one or more MCDs can im-
plement one MCP;
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Fig. 2: Organization of a Distributed Infrastructureless
System

• Host Application native to the device’s platform (An-
droid, iOS, Linux, Windows, etc.); and

• Micro Functions (MF) deployed on the host applica-
tion.

The computing network serves as the medium for com-
munication between the platform (cloud) and computing
providers (edge). It connects a collection of providers
offering devices with computing power for deploying MFs.
Five internal sublayers constitute the cloud platform:

• Instance Pool as a set of MCDs to deploy MF and
then call MF for execution;

• Load Balancer responsible for redirecting and bal-
ancing traffic among instances;

• Orchestrator to manage and orchestrate the rest of
the microservices within the platform;

• Micro Function Instances (MFI) representing an ab-
straction over the Instance Pool; and

• Micro Function Service (MFS) provides a Function
as a Service (FaaS) with elasticity and billing on a
per-call basis, determined by the utilized vCPU and
memory.

B. Organization

Fig. 2 presents a detailed DIS organization including:

• Computing Provider (CP) as an entity with Edge
Devices offering computational tasks.



• Computing Consumer (CC) is an application or ser-
vice needing computing resources, and

• Cloud Platform that empowers CC infrastructure,
creates Micro Function Services (MFS), and runs
these services on select Micro Computing Devices
(MCDs).

The CP provides an MCD, a Smartphone, Laptop, PC,
Server, or Edge device with computing, networking, and
storage components. The Host App on the MCD executes
code from Micro Functions (MFs), measures practical
work, and monitors CP earnings.

Depending on the MCD’s operating system, the Host
App includes the native code, HTML, CSS, and JS nec-
essary to run WebAssembly (WASM). The Host App
also facilitates communication through APIs with Com-
puting Provider Services in the platform. These cloud
services encompass monitoring, deployment, and access
to blockchain services that record MFS executions.

Each MF implements WASM code executed by a
WASM Runtime. The Host App runs compiled WASM
code (.wasm file) written in WASM programming lan-
guages [27] [28] and then compiled to WASM by
Cloud Platform. When a CC writes the code for MFS
and deploys it, the platform provides an endpoint that
can be invoked, like the existing public cloud FaaS.
After code deployment, the platform issues a URL
(http://www.platform.com/endpoint) invoked when an ex-
ternal service, written by the CC, initiates communication
with MFS.

The Orchestrator manages and coordinates calls to
Micro Function Instances (MFI), Computing Consumer
Services, Computing Provider Services, and the Load
Balancer. The Load Balancer distributes traffic among
instances.

A Region represents a group of instances in the same
geographic area, defined by town, city, country, or even
more granular geographic locations if the CP has Location
Services enabled in the MCD. The Instance Pool is a
collection of all available instances on the platform divided
into Regions.

C. Flow Diagram

The flow diagram (Fig. 3) encompasses both the Micro
Computing Provider (MCP) and the Computing Consumer
(CC) to present request servicing. For example, if a user
wants to offer computing resources in exchange for an
award, the workflow consists of:

1) A new MCP user creates an account for the DIS
platform.

2) The MCP user signs a contract to allow an awarding
mechanism (proof of work defining the Unit of Work
and the corresponding award).

3) The MCP user downloads a Host App (Android,
iOS, Linux, Windows), which serves as the user in-
terface for the DIS platform to monitor the execution
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Fig. 3: Flow Diagram of a Distributed Infrastructureless
System

status and total award. The Host App receives MFs
to deploy and execute as the unit of work.

Consumers manage their tasks through a command-line
interface (CLI) or a graphical user interface (GUI). The
interaction between MCPs and CCs within the system
involves:

1) A new CC user creates an account.
2) The CC user creates a MFS.
3) The CC user uploads source code in WASM-

supported programming language [27] [28].
4) DIS compiles the source code into a WASM module

in the background.
5) The DIS platform deploys the WASM module to

MCDs.
6) The CC user invokes a public endpoint URI exposed

by DIS to execute the code.
7) The CC user receives the results of the execution

and billing info.

IV. IMPLEMENTATIONS

A. Computing Provider

MCD requires an Internet connection, at least one in-
stalled operating system (Android, iOS, Windows, Linux,
and MacOS), an installed Host App, and enabled location
services. One approach to developing a Host App is to use
multiplatform frameworks for different operating systems.
Examples include Flutter [29], React Native [30], and
Xamarin/.NET MAUI [31]. Another approach is to use a
programming language that can be compiled for different
operating systems and use a UI library. For instance, one
of Go’s (programming language) most powerful features
is the ability to cross-build executables for any Go-
supported foreign platform, making testing and package
distribution much easier without access to a specific dis-
tribution platform. Applications written exclusively in Go
can be constructed using the ’gomobile build’ command
[32], generating executable outputs for Android and iOS
platforms.
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The Fyne [33] UI toolkit can develop graphical user
interfaces (UI) in Go across iOS, Android, Windows, and
Linux, designed explicitly for creating native applications
with native user interfaces.

Integrating WebAssembly with a Host App involves
using WebAssembly APIs and often includes the creation
of a JavaScript wrapper. While the WebAssembly API
and JavaScript wrappers are standard, developers also use
other tools, libraries, and approaches for this integration.
WebAssembly runtimes [34], such as Wasmedge [35], op-
timized for edge computing with a focus on low memory
footprint and quick startup times; Wasmtime [36], an open-
source standalone runtime supporting both ahead-of-time
(AOT) and just-in-time (JIT) compilation with increased
execution flexibility; Wasmer [37], a general-purpose run-
time designed for speed and lightweight deployment,
suitable for various environments, such as desktop, server,
and embedded systems.

MFs execute the .wasm file upon the request from the
Cloud Platform and return a response (Fig. 2). The request
triggers the execution of temporary stateless containers.
Deviceless MFs run on ephemeral stateless containers
(may only last for one invocation) [6].

B. Computing Consumer

Web, API, and CLI should be implemented as inter-
faces through which CC registers, logs in, uploads code,
compiles, and executes. Various tools and technologies
facilitate cross-platform development of interfaces using
a unified codebase, including Go or NodeJS.

C. Cloud Platform

Communications between the Cloud Platform and the
Host App on MCD can be realized as WebSocket tunnels
with reverse tuning mechanisms to bypass firewalls and
NATs. We deploy the containers with functions at the net-
work edge (behind NATs and firewalls). The Computing
Network can have WebSocket tunnels so Cloud Platform
Services can use the remote containers and a new ID. Part
of that Computing Network can include plain WebSocket
control channels and REST APIs.

Another approach to implementing a Computing Net-
work is to use Cloud Native Network [38]. Containers talk
to each other and the infrastructure layer through a cloud-
native network. Distributed applications have multiple
components that use the network for different purposes.
Tools in this category create a virtual network on top of
existing networks specifically for apps to communicate,
referred to as an overlay network. Some of the famous

Cloud Native Networks are Cilium (graduated), Container
Network Interface (CNI) (incubating), and FabEdge (sand-
box) [38].

All Cloud Services can be implemented in Go (pro-
gramming language) as a Cloud Native. Instance Pool is
a Cloud Service with all instances divided into Regions,
where a Region is a code abstraction of all instances in
only a geographic area.

The Load Balancer can be Cloud Native Service Proxy
[38] that functions as a tool that intercepts traffic going to
or coming from a specific service, applies certain logic to
it, and subsequently directs the traffic to another service.
As an intermediary, it gathers information about network
traffic and enforces rules. This role may range from a
straightforward load balancer that directs traffic toward
individual applications to a more intricate scenario involv-
ing a network of interconnected proxies running alongside
individual containerized applications and managing all
network connections.

Orchestration and scheduling refer to running and man-
aging containers across a cluster, including Knative, wasm-
Cloud, OpenFunction, or Kubernetes [38].

A stack-based virtual machine implements the platform-
agnostic approach via WebAssembly as a binary instruc-
tion format. WASM is purposefully crafted as a versatile
compilation target for programming languages, facilitating
web deployment for client and server applications [22] and
supporting JavaScript [39].

Fig. 4 presents MF deployment. A CC user uploads
source code in one of the programming languages [27]
[28], which is compiled by the DIS platform with CC
Wasm Compile Service (Fig. 2) by supported WASM
compilers, and the resulting WASM module is transferred
to the MCD by CC and CP Deploy Service.

D. Non-functional requirements

1) Security and Privacy: Encryption protocols are vital
for securing data transmission between CP and MCDs,
ensuring privacy and data integrity.

2) Billing and Pricing: Possible billing and pricing
models include a donation-based model without monetary
transactions and a token-based system (cryptocurrency).

3) Energy and Battery Efficiency: Distributing compu-
tational tasks across a decentralized network of MCDs
minimizes the impact on individual devices’ battery life.

4) Monitoring and Debugging: DIS provides monitor-
ing and debugging services for both MCP and CC.



5) Verification and Sandboxing capabilities: DIS pre-
vents malicious actors from compromising platform in-
tegrity.

V. CONCLUSION AND FUTURE WORK

DIS architecture realizes an Infrastructureless System
distributed over many devices. Computing Providers can
share their devices (smartphones, laptops, PCs, servers,
edge devices, etc.) and offer their computing components
with financial compensation. Numerous devices, often
underutilized computing power, can be leased out. This ar-
chitecture also facilitates collaboration among computing
consumers (developers, scientists, etc.) who can execute
tasks using these services, leveraging serverless features
and utilizing devices provided by computing providers. A
central component of the architecture presented in the pa-
per is WebAssembly (WASM), serving as a crucial factor
for platform-agnostic processing in advancing toward the
next generation of Thingless, Deviceless, and Serverless
computing, collectively referred to as Infrastructureless
computing.

Implementation is a crucial focus for future work,
exploring how potentially thousands or millions of devices
can effectively address the challenges of parallel and
distributed processing. Open challenges include integration
in Massively Parallel Processing and how this system can
serve as a foundational platform for developing services
in the cloud continuum (dew, edge, and fog).
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